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CHAPTER 1

Information from neutron scattering

1. Introduction

This lecture gives an introduction into applications of quasielastic neutron
scattering in the field of protein dynamics. It is by now a well established
fact that molecular flexibility and dynamics play an essential role in the func-
tioning of proteins. These properties depend, in turn, on temperature and hy-
dration. A critical temperature for the physical functioning of some proteins
seems to be the so-called glass-transition temperature at about 200 K. Below
that temperature, the protein motion is essentially harmonic. Above 200 K, an
additional stochastic component is seen in the dynamics, and at the same time
the atomic fluctuations increase much more rapidly with temperature than be-
low the transition temperature. The transition from one regime to the other is
not very sharp, but takes place over a temperature range of some 10 Kelvin.
W. DOSTER et al. studied the glass transition of myoglobin extensively by neu-
tron scattering [1]. Recently CORDONE et al. demonstrated that myoglobin can
be “frozen” in the harmonic state by immersing it in a trehalose solution [2].
Trehalose is a saccharide used by certain plants to protect themselves against
extreme dryness. It conserves the plants in an inactive mode and allows them
to recover normal functioning in a reversible way. A more direct relation be-
tween the glass transition temperature and protein function has been demon-
strated by FERRAND et al. who showed that the photoactive membrane protein
bacteriorhodopsin also undergoes a dynamic transition at a temperature [3] of
about 220K, which is a critical temperature for the photo-activity of that pro-
tein: Below 220K bacteriorhodopsion cannot perform a complete photocycle.
Finally, RASMUSSEN et al. showed by X-ray crystallography that ribonuclease
looses its function below 220 K [4]. Exceeding the glass transition temperature
is, however, not a necessary condition for the functioning of proteins. DANIEL
et al. have shown that enzyme activity is not necessarily correlated with the
transition temperature [5].

Thermal neutron scattering, which is sensitive to the dynamics and the
structure of condensed matter on the atomic scale, gives very precise infor-
mation about atomic fluctuations and dynamics in proteins. The energy of
kBT at T = 300K corresponds to a wavelength of 1.78 Å, which is the length
scale of typical interatomic distances. The accessible time window is about
100 femtoseconds to 1 nanosecond, and the upper limit can be extended to
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6 1. INFORMATION FROM NEUTRON SCATTERING

several 10 nanoseconds by spin-echo techniques. Compared to the enormous
range of characteristic time scales of protein dynamics, which can extend up
to a millisecond and more, this is still a relatively short time. Nevertheless,
important dynamical processes, such as diffusion of small ligands in proteins,
happen within this time window. Alternative and complementary techniques
to neutron scattering are Mößbauer and Raman spectroscopy (see e.g. [6] for
a recent application), far infrared spectroscopy, and NMR. From neutron scat-
tering one obtains an average view of all atomic contributions. To analyze the
complex spectra from proteins, one can use simple analytical models to under-
stand essential features of the spectra. The internal dynamics is, however, too
complex for a quantitative interpretation in terms of such models. Here com-
puter simulations, and in particular Molecular Dynamics (MD) simulations,
can help to gain more insight into the dynamics of proteins. Both methods ac-
cess the same time and space domains, and the comparison of simulated and
measured spectra is very direct, since neutrons are diffused by the atomic nu-
clei (neglecting magnetic scattering), which are the objects of MD simulations.
Once an agreement between simulated and experimental spectra is found, the
simulated trajectories can be analyzed in detail and information not accessible
to experiments can be extracted from simulations [7, 8, 9]. Some recent ap-
plications concerning the simulation-based development of models for slow
protein dynamics will be discussed in this lecture. They are relevant to the
interpretation of quasielastic neutron scattering.

2. Neutron scattering theory

2.1. Properties of thermal neutrons. To be useful for research purposes,
neutrons which have been produced by nuclear fission or by a spallation pro-
cess must be slowed down to thermal energies. This is achieved by sending
them through a moderator where they loose their initial energy in many colli-
sions with the molecules of the moderator. After the moderation process the
neutrons thus have typical energies of kBT , where kB is the Boltzmann con-
stant (1.381 10−23J/K) and T the temperature in Kelvin. At T = 300K the
thermal energy is about 25meV . The energy-momentum relationship of neu-
trons is that of non-relativistic particles,

E =
p2

2m
, (1)

where p is the momentum and m is the neutron mass (1.008 a.m.u. =
1.674 10−27kg). Using the relation between momentum and velocity, p = mv,
we find vth = 2285m/s as the velocity for thermal neutrons with an energy of
25meV .
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The Planck/De Broglie relationship yields a relation between the momen-
tum, p, and the wave vector, k, of a neutron,

p = ~k, (2)

k =
2π

λ
n, |n| = 1. (3)

Here ~ = h/2π, h = 6.626176 Js is PLANCK’S constant, and n is a unit vector.
We note that in quantum mechanics a particle with a sharply defined momen-
tum is represented by a plane wave

ψ(r, t) ∝ exp

(
i

~
(p · r− Et)

)
. (4)

On account of the relations (2) and (3) the wavelength of a thermal neutron is
found to be

λ =
h√

2mE
= 1.8Å for E = kBT, (T = 300K). (5)

This means that the wave length of thermal neutrons is compatible with typical
interatomic distances in condensed matter. Since the energy is comparable to
the thermal energy of atoms in such systems, neutrons can be used to study
the dynamics and the structure of condensed matter.

2.2. Dynamic structure factor. In neutron scattering experiments one
measures the differential scattering cross section as a function of the energy
and the momentum transfer on the sample [10, 11] (see Fig. 1). These quanti-
ties are denoted by ∆E = E0 − E and ∆p = p0 − p, respectively, where the
index ‘0’ refers to the incident neutrons. Usually the energy and momentum
transfers as well as the momenta are expressed in units of ~, i.e.

∆E = ~ω, (6)
∆p = ~(k0 − k) = ~q. (7)

Using the above definitions of ω and q, the differential scattering cross section
can be cast into the form

d2σ

dΩdω
=
|k|
|k0|
S(q, ω) (8)

The function S(q, ω) is called the dynamic structure factor and represents the
quantity of interest in neutron scattering experiments. To understand which
information it contains, we write it in the form

S(q, ω) =
1

2π

∫ +∞

−∞
dt exp(−iωt)I(q, t) (9)



8 1. INFORMATION FROM NEUTRON SCATTERING

k
0

k

detectors

sample

θ

d²σ

dΩdω
k

0

k q

θ

FIGURE 1. Sketch of a neutron scattering experiment. The neu-
trons hit the sample with an energy E0 = ~2k2

0/2m and leave it
with E = ~2k2/2m after the collision. The vectors k0 et k are the
corresponding momenta in units of ~.

where I(q, t) is the intermediate scattering function. I(q, t) can be split into a
coherent and an incoherent part,

I(q, t) = Icoh(q, t) + Iinc(q, t) , (10)

where Icoh(q, t) and Iinc(q, t) are defined as

Icoh(q, t) =
∑
α,β

bα,cohbβ,coh

〈
exp
(
iqT ·Rβ(t)

)
exp
(
−iqT ·Rα(0)

)〉
, (11)

Iinc(q, t) =
∑
α

b2
α,inc

〈
exp
(
iqT ·Rα(t)

)
exp
(
−iqT ·Rα(0)

)〉
, (12)

respectively. The symbol 〈. . .〉 denotes a quantum statistical average over a
thermodynamic ensemble, and Rα is the position operator of atom α. The
quantities bα,coh et bα,inc are the coherent and incoherent scattering length, re-
spectively, of atom α. They have values of the order of a fm (1 fm = 10−15m),
which is about the size of an atomic nucleus. The total scattering cross section of
atom α is given by

σα,tot = 4π
(
b2
α,coh + b2

α,inc

)
, (13)

and refers to a bound atom.
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FIGURE 2. Upper left: Interference of neutron waves emitted
from different atoms at the same time (coherent elastic scatter-
ing = diffraction). Upper right: Interference of neutron waves
emitted from different atoms at different times (coherent inelas-
tic scattering). Lower: Interference of neutron waves emitted
from the same atom at different times (incoherent inelastic scat-
tering).

It should be noted that Iinc(q, t) describes only self-correlations between
atomic positions, whereas Icoh(q, t) describes also cross-correlations due to col-
lective motions – see Fig. 2. It is important to note that the accessible (|q|, ω)-
range is determined by the relation between momentum and energy (disper-
sion relation). To keep the notation simple we introduce

q := |q| =
√
q2
x + q2

y + q2
z (14)

for the modulus of the momentum transfer. It follows from (1) and (2) that

E =
~2k2

2m
=

~2k0
2

2m
− ~ω. (15)

Therefore

q = k0

√
2− ~ω

E0

− 2

√
1− ~ω

E0

cos θ. (16)
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FIGURE 3. Accessible (q, ω)-range for a given initial energy,
E0. Depicted is the relation between q/k0 and ~ω/E0 for θ =
{0,±π

2
,±π}. Note that q(θ, ω) is even in θ (see eq. 16).

For a given scattering angle θ, the momentum transfer q is a function of ω
(see Fig. 3). Since the energy loss of the neutrons cannot exceed their initial
energy, E0, it follows that E0/~ is an upper limit for ω.

2.3. Detailed balance and classical limit. Since I(q, t) is a time correlation
whose time evolution follows the laws of quantum mechanics, the dynamic
structure factor is not symmetric in ω. Energy loss of the neutron is preferred
to energy gain [11, 10],

S(q, ω) = exp

(
~ω
kBT

)
S(−q,−ω) (17)

We recall that ~ω > 0 is an energy gain of the sample and therefore an energy
loss of the neutron. Usually one replaces the intermediate scattering function
by its classical counter part – i.e. a classical time correlation function – if the
sample under consideration can be described in terms of classical mechanics.
This procedure consists in passing formally ~ to zero. As a result the resulting
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dynamic structure factor fulfills

Scl(q, ω) = Scl(−q,−ω) (18)

It has been shown in [12] that the quantum time correlation function defining
I(q, t) is not to be replaced by its classical counterpart if the scattering system
is described by classical mechanics. Essentially the mathematical limit ~ → 0
leads to neglecting the kinematic effects of the momentum transfer ~q from
the neutron to the sample. Only if

~2q2

2M
� kBT (19)

where M is the effective mass of the scattering atom, Scl(q, ω) describes neu-
tron scattering from classical systems and one can approximate

Icoh(q, t) ≈
∑
α,β

bα,cohbβ,coh

〈
exp
(
iqT · [Rβ(t)−Rα(0)]

)〉
, (20)

Iinc(q, t) ≈
∑
α

b2
α,inc

〈
exp
(
iqT · [Rα(t)−Rα(0)]

)〉
. (21)

Here {Rα(t)} are real-valued vectors and not operators anymore. The classical
approximation will be made in the following.

2.4. Incoherent scattering. If one considers a sample containing a large
proportion of hydrogen atoms one can approximate

I(q, t) ≈ N b2
H,incIH(q, t) (22)

where N is the number of hydrogen atoms in the sample, bH,inc is the incoher-
ent scattering length of hydrogen, and

IH(q, t) =
1

N

∑
α∈{H}

〈
exp
(
iqT · [Rα(t)−Rα(0)]

)〉
(23)

Correspondingly we define the dynamic structure factor

SH(q, ω) =
1

2π

∫ +∞

−∞
dt exp(−iωt)IH(q, t) (24)

Table 1 shows that approximation (22) can be made since incoherent scatter-
ing from hydrogen atoms dominates all other scattering processes. This fact
allows to mask certain parts of a system under consideration by partial deutera-
tion. If one studies for example a (“normal”, hydrogenated) protein in a deuter-
ated solution, the solvent contribution is strongly reduced and one measures
essentially self-correlations of the hydrogen positions in the protein. Hydro-
gen atoms in a protein are homogeneously distributed, and neutron scattering
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Element H D C O N S

bcoh −3.741 6.674 6.648 5.805 9.300 2.847

binc 25.217 4.022 0.285 0.000 2.241 0.188

TABLE 1. Scattering lengths of some elements in fm (10−15m).

experiments thus give an averaged view of protein dynamics. So far most neu-
tron scattering experiments with proteins have been made with hydrogenated
proteins, either in D2O-solutions or in D2O-hydrated powders. Experiments
with powders have been quite popular in the past since they prevent global
protein translations and rotations, which make the analysis of neutron scatter-
ing spectra difficult.

To understand better which information can be obtained from incoherent
neutron scattering, it is convenient to introduce the van Hove self-correlation
function [13] via

GH(r, t) =
1

(2π)3

∫
d3q exp(−iqT · r)IH(q, t). (25)

Defining the single particle density,

ρα(r, t) := δ (r−Rα(t)) , (26)

one can write

GH(r, t) =
1

NH

∑
α∈{H}

Gαα(r, t), (27)

Gαα(r, t) =

∫
d3r′ 〈ρα(r + r′, t)ρα(r′, 0)〉 . (28)

Definition (28) is closely relation to the “Patterson form” of the intensity of a
diffracted X-ray wave in crystallography. The introduction of van Hove corre-
lation functions is only useful in the classical limit (which we consider in this
lecture). In this case one can write

Gcl
αα(r, t) = 〈δ (r− [Rα(t)−Rα(0)])〉 , (29)

and the van Hove self-correlation function Gcl
αα(r, t) can be interpreted as prob-

ability density for a displacement r of atom α within time t.

2.5. Elastic Incoherent Structure Factor. In many cases the samples used
for studies of protein dynamics were hydrated powders. In such a system
translations and rotations of a whole protein are blocked and neutrons see then
only internal motions of proteins. The latter are by definition confined in space,
and limt→∞GH(r, t) takes a finite value – in a very rough approximation the
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FIGURE 4. Sketch of an incoherent neutron scattering spectrum.
Due to finite instrumental resolution the elastic line has always
finite width.

inverse of the average volume explored in configuration space. Consequently,
the intermediate scattering function tends to a plateau value, too,

EISF (q) = lim
t→∞

IH(q, t) =

∫
d3r exp(iqT · r)GH(q,∞) (30)

This plateau value is called the Elastic Incoherent Structure Factor (EISF). The
name becomes clear if we consider the dynamic structure factor. Defining

I ′H(q, t) = IH(q, t)− IH(q,∞), (31)

one can write
SH(q, ω) = EISF (q)δ(ω) + S ′H(q, ω) (32)

The component S ′H(q, ω) contains the quasielastic spectrum, which is centered
on ω = 0 and describes stochastic motions, and the inelastic spectrum, which
is due to vibrational motions (see Fig. 4). The symbol δ(ω) stands for a Dirac
distribution and represents an ideal elastic line of zero width and finite inte-
gral. One possible representation is a normalized Gaussian in the limit of zero
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FIGURE 5. Temperature dependence of S(q, ω) for D2O-
hydrated myoglobin powders from ref. [14] (data re-plotted).
The data are shown for a mean scattering angle of 108.3◦. At low
temperatures one sees a “Boson-peak” at about 25 cm−1.

width,

δ(ω) =
1

2π

∫ +∞

−∞
dt exp(−iωt) = lim

ε→0

1√
2πε

exp

(
− ω

2

2ε2

)
. (33)

The EISF is an important quantity since it gives a first idea about the char-
acteristics of the dynamical processes in the scattering system. It follows from
definition (24) of SH(q, ω) that

∫ +∞
−∞ dω SH(q, ω) = IH(q, 0) = 1. Using (32) we

therefore obtain

EISF (q) +

∫ +∞

−∞
dω S ′H(q, ω) = 1 (34)

This is a “sum rule”, saying that any dynamical process yielding a contribution
to S ′H(q, ω) leads to a drop-off in the EISF .

Finally, we note that the EISF can also be written in the form

EISF (q) =
1

NH

∑
α∈{H}

∣∣∣〈exp
(
−iqT ·Rα

)〉∣∣∣2 (35)



2. NEUTRON SCATTERING THEORY 15

0 500 1000 1500 2000 2500 3000

q
2
 [nm

-2
]

0.1

1.0

L
o

g
(E

IS
F

)

202 K
242 K
277 K
320 K

FIGURE 6. Normalized elastic intensity of D2O-deuterated
myoglobin at 202 K (triangles up), 242 K (circles), 277 K
(squares) d) 320K (triangles down). The data are re-plotted from
ref. [15].

Here one makes use of the fact that the motions of an atom become uncorre-
lated in the limit of an infinite time lag.

2.6. Motion types. In order to able to analyse the data from quasi- and
inelastic neutron scattering in terms of models for different motion types the
motion of the atoms in the sample need to be decomposed in the form

Rα = RCM + rα + uα. (36)

Here RCM is the position of the center-of-mass of a tagged protein, rα is the
position of atom α relative to the center-of-mass, with |rα| = const., and uα
describes motions around RCM + rα. The basic assumptions are now that the
motions of RCM , rα, and uα are uncorrelated and that all atoms can be consid-
ered as equivalent. More precisely, we consider a tagged protein molecule, and
R = RCM + r + u is the position of a “representative atom” in that protein
molecule. Formally, such a description is valid only for small and highly sym-
metric molecules such as methane (CH4). In more complicated systems this



16 1. INFORMATION FROM NEUTRON SCATTERING

picture cannot be maintained and a tagged atom should be thought of as a
“model atom” having the average properties of the scattering atoms.

Making the above assumptions, the intermediate scattering function I(q, t)

can be factorized as 1

I(q, t) = ICM(q, t)Irot(q, t)Iint(q, t) (37)

where

ICM(q, t) = 〈exp(iqT · [RCM(t)−RCM(0)])〉, (38)
Irot(q, t) = 〈exp(iqT · [r(t)− r(0)])〉, (39)
Iint(q, t) = 〈exp(iqT [u(t)− u(0]))〉. (40)

The indices “rot” and “int” refer to rotational and internal motions, respec-
tively. The latter are often identified with vibrations, but they may as well
describe diffusive motions which are confined in space. Protein atoms in hy-
drated protein powders perform such motions. An immediate consequence of
(37) is that SH(q, ω) is a convolution product2 in frequency space of the form

S(q, ω) = (SCM ∗ Srot ∗ Sint)(q, ω) (41)

In such a convolution product each “factor” produces a broadening of the
spectrum. If each contribution could be represented by a Gaussian, the total
width would be the sum of the widths of the individual contributions.

2.7. Gaussian approximation. In the following we will discuss the Gauss-
ian approximation (GA) of the incoherent scattering function. In practice the
latter concerns essentially internal motions. This point will be come clear in the
next chapter when analytical models for protein dynamics will be discussed.
In order to simplify the formulae we will chose q = qex, and, for simplic-
ity we consider only one single atom. The GA for an ensemble of atoms is
straightforward. When the GA is used for analytical models the chosen atom
is a sort of “representative atom” for the dynamics of all hydrogen atoms in
the system. In this case one makes a second severe approximation, writing
I(q, t) = NHb

2
H,incI(q, t), where I(q, t) describes the dynamics of a tagged hy-

drogen atom. Keeping the above remarks in mind, we start from the interme-
diate scattering function

I(q, t) = 〈exp(iq[x(t)− x(0)])〉 . (42)

With the definition
d(t) = x(t)− x(0) (43)

1In the following we omit the subscript ’H’.
2The definition of the convolution of two functions is (f ∗ g)(x) =

∫ +∞
−∞ dy f(x− y)g(y).
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the function I(q, t) can be written as a cumulant expansion [16, 17],

I(q, t) = exp
(
−q2ρ1(t) + q4ρ2(t)− q6ρ3(t) + . . .

)
(44)

The first few terms ρk(t) are given by

ρ1(t) =
1

2!
〈d2(t)〉, (45)

ρ2(t) =
1

4!

(
〈d4(t)〉 − 3〈d2(t)〉2

)
, (46)

ρ3(t) =
1

6!

(
〈d6(t)〉 − 15〈d4(t)〉〈d2(t)〉+ 30〈d2(t)〉2

)
. (47)

We note that
Wx(t) ≡ 〈[x(t)− x(0)]2〉 = 2 ρ1(t) (48)

is the mean square displacement of the selected atom in x-direction. In an
isotropic system we have Wx(t) = Wy(t) = Wy(t). Defining

W (t) = 〈[R(t)−R(0)]2〉 = Wx(t) +Wy(t) +Wz(t) (49)

definitions the GA can thus be written as

I(q, t) ≈ exp

(
−q

2

6
W (t)

)
(50)

If the motions of the representative atom are confined in space the MSD
tends towards a plateau value for t→∞ (see e.g. relation (108)),

lim
t→∞

W (t) = 2 〈R2〉 (51)

In the GA the EISF thus has a particularly simple form:

EISF (q) = lim
t→∞

I(q, t) ≈ exp

(
−q

2

3
〈R2〉

)
(52)

It follows from the cumulant expression (44) that the GA is always a good ap-
proximation for small q, independent of the forces acting on the tagged atom.

3. Examples

3.1. Neutron scattering from hydrated myoglobin powders. Let us now
consider elastic and quasielastic scattering from D2O-hydrated myoglobin
powders as an example to illustrate the sum rule (34) for the EISF. For this pur-
pose we use data from CUSACK & DOSTER [14] and from DOSTER et al. [15].
Since the heme group of myoglobin contains an iron atom, the internal dy-
namics of this protein has been studied quite early by Mößbauer spectroscopy
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FIGURE 7. Position fluctuations of hydrogen atoms in myo-
globin as a function of temperature [1].

(see [18] and references cited herein). Later DOSTER, CUSACK and co-workers
stayed with myoglobin, using however neutron scattering.

Since the atomic motions in powders are confined in space, the EISF does
not vanish. Fig. 5 shows S(q, ω) for D2O-hydrated myoglobin powders at
different temperatures. With increasing temperature the quasielastic line be-
comes broader, and, according to the sum rule (34), one should expect that the
EISF drops off. This is indeed the case, as can be seen from Fig. 6. It should
be noted that S(q, ω) in Fig. 5 is not given for a specific value of q, but for an
average value of the scattering angle θ (see Fig. 3).

3.2. Elastic scans and glass transition. Expression (52) is often used to to
analyze “elastic scans” of protein powders, tracing ln(EISF ) versus q2. Within
the Gaussian approximation the slope of ln(EISF ) yields thus an estimation of
the mean square position fluctuation, 〈x2〉. Tracing the latter versus tempera-
ture allows to localise the dynamic transition (“glass transition”) seen in many
proteins at around 200 K – see Figs. 7 and 8. This dynamic transition is char-
acterized by an abrupt change of the slope of the position fluctuations plotted
versus temperature. For low temperatures the position fluctuations grow ap-
proximately linearly with temperature, which is characteristic for harmonic
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FIGURE 8. Position fluctuations of the hydrogen atoms in bac-
teriorhodopsin (BR) as a function of temperature and hydra-
tion [3]. For BR in the dry membrane the EISF exhibits a har-
monic behavior over the whole temperature range, whereas for
BR in the hydrated membrane a dynamic transition is seen at
around 220 K. This dynamic transition is correlated with the
function of BR as a “proton pump”.

behavior. This point will become clear when we will discuss the Langevin os-
cillator as a simple model for the motion of atoms in a protein. The abrupt
change in slope is identified with “anharmonic behavior”, but as we will see
later, one may also consider that the dynamics above the transition tempera-
ture is characterized by an effective harmonic potential with smaller curvature.

3.3. Quasielastic scattering from lysozyme in solution. . The last exam-
ple show data from a recent study of lysozyme in solution using the high reso-
lution time-of-flight spectrometer IN5 at the Institut Laue-Langevin in Greno-
ble [19]. The solvent was a deuterated acetate buffer (50mM and pH4.6) whose
condition favours the monomeric form of lysozyme. The usage of a deuterated
solution increases the contrast between the lysozyme molecules and the solu-
tion, which is not the object of interest in the presented study. In order to
minimise the risk of aggregation the protein concentration was chosen to be
60 mg/ml. This concentration leaves still a sufficient amount of protein for the
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FIGURE 9. Log-log plot of the quasielastic neutron scattering
spectrum of lysozym in a deuterated solution. The data have
been obtained from the IN5 spectrometer at the Institut Laue-
Langevin in Grenoble [19]. The vertical broken line indicates the
point on the frequency axis where the EISF-weighted contribu-
tion due to global diffusion and instrumental resolution becomes
dominant – see details in the text.

scattering experiments. Figure 9 shows the scattering intensities of the protein
for qel = 0.4 Å−1 and qel = 1.2 Å−1. For energy transfers smaller than about
0.03meV the influence of instrumental resolution and global diffusion of the
lysozyme molecules become visible. To understand this point we account first
for the finite resolution of the instrument, writing

Smeas(q, ω) = (R ∗ S)(q, ω). (53)

Here R(ω) is the resolution function of the instrument. We note that the latter
may also be a function of the momentum transfer q. The index “meas” stands
for “measured”. If we assume that global and internal motions of proteins are
uncorrelated, we can write

S(q, ω) = (Sg ∗ Sint)(q, ω), (54)

where Sg(q, ω) describes the global motions, i.e. translations and rotations of
whole proteins. Assuming that translational and rotational motions are also
uncorrelated, Sg(q, ω) is itself a convolution product,

Sg(q, ω) = (SCM ∗ Srot)(q, ω). (55)
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Since the EISF of internal protein motions is non-zero, we can use expression
(32) and write (we omit the index “H”)

S(q, ω) = EISF (q)Sg(q, ω) + (Sg ∗ S ′)(q, ω) . (56)

Using that the above expression is to be convoluted with the resolution func-
tion in order to obtain the measured spectrum, we get from (53)

Smeas(q, ω) = EISF (q)(R ∗ Sg)(q, ω) + (R ∗ Sg ∗ S ′)(q, ω) . (57)

The hump at smaller energy transfers which is seen in Fig. 9 is due to the
EISF-weighted contribution to the spectrum which represents the (resolution-
broadened) spectrum of global diffusion. The remaining spectrum describes
predominantly internal protein dynamics which is characterised by a broad
spectrum of relaxation rates. A simulation-based theoretical model will be
developed at the end of the lecture.





CHAPTER 2

Analytical models for I(q, t)

1. Introducing dynamical models

In the following the expression “particle” can refer to quite different physi-
cal objects. It may design a whole protein or simply a tagged “representative”
atom in a protein. The state of the system under consideration may be defined
by a set of f parameters, Ω ≡ {Ωi} (f = 1, . . . , f ). To express spectroscopic
quantities like neutron scattering spectra we need the joint probability density
P (Ω, t; Ω′, t′) for finding the system at time t′ in state Ω′ and at time t > t′ in
state Ω. Using Baye’s rule one can write

P (Ω, t; Ω′, t′) = P (Ω, t|Ω′, t′)P (Ω′, t′) (58)

where P (Ω, t|Ω′, t′) is the conditional probability density to find the system in
state Ω at time t, given it was in state Ω′ at time t′. The quantity P (Ω′, t′)
is the probability density for finding the system at time t′ in state Ω′. If the
system is in equilibrium we may write P (Ω, t|Ω′, t′) = P (Ω, t − t′|Ω′, 0) and
P (Ω′, t′) = Peq(Ω

′) is the equilibrium density. The latter is related to the condi-
tional probability density by

Peq(Ω) = lim
t→∞

P (Ω, t|Ω′, t′) (59)

In the following we consider systems in equilibrium and set t′ = 0. With the
above definitions the intermediate scattering function takes the form

I(q, t) =

∫ ∫
dΩdΩ′ P (Ω, t; Ω′, t′) exp

(
iq · [R(Ω)−R(Ω′)]

)
(60)

and the van Hove function reads correspondingly

G(r, t) =

∫ ∫
dΩdΩ′ P (Ω, t; Ω′, t′)δ (r− [R(Ω)−R(Ω′)]) (61)

In (60) and (61) the joint probability density, P (Ω, t; Ω′, t′), is written in the form
(58) and a dynamical model is introduced for the conditional probability den-
sity. The evolution of the latter is determined by a partial differential equation
following from the dynamical model,

∂tP = L̂ΩP ; P (Ω, 0|Ω′, 0) = δ(Ω− Ω′) (62)

23
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Here L̂Ω is a differential operator acting on the variables Ω.

2. Global motions

In the following we will discuss two models which are used to describe the
translational and rotational motions of whole molecules. They are applicable
to diluted solutions and spherical molecules in the case of rotational motion.

2.1. Translational diffusion. Let us first consider the translational motion
of whole protein molecules immersed in a viscous solvent like water. Here
one can assume that the molecules undergo diffusional motion on a coarse-
grained time scale considerably longer than the velocity relaxation time of the
solvent molecules. This type of motion is known as Brownian motion. If the
protein concentration is lower than about 5 % volume fraction, hydrodynamic
interactions between the protein molecules can be neglected and it is sufficient
to consider a single molecule. The state of the system is thus simply described
by the three Cartesian coordinates of the tagged molecule, Ω ≡ {x, y, z}, and
R = (x, y, z)T is position vector of its center of mass. The time evolution of
P (R, t|R′, 0) is described by the diffusion equation,

∂tP = D

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
P (63)

Here D is the translational diffusion constant which has the dimension m2/s
in SI units. The diffusion equation (63) is to be solved with the initial condition

P (R, 0|R′, 0) = δ(R−R′). (64)

The solution of (63) has Gaussian shape in R,

P (R, t|R′, 0) =
1

√
4πDt

3 exp

(
−|R−R′|2

4Dt

)
, (65)

and the equilibrium distribution is here simply

Peq(R) =
1

V
, (66)

where V is a macroscopic integration volume.
Using Eq. (60), the intermediate scattering function takes the form

I(q, t) = exp(−Dq2t) (67)

and the corresponding van Hove function is obtained from1 (61),

G(r, t) =
1

√
4πDt

3 exp

(
− r2

4Dt

)
(68)

1r := ‖r‖ =
√
x2 + y2 + z2.
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FIGURE 1. Form of S(q, ω) for translational diffusion. The
widths of the the two Lorentzian profiles (on the ω-scale) are
Γ = 0.5 (narrow line) and Γ = 2.

If expression (67) is Fourier transformed with respect to time we obtain the
dynamic structure factor,

S(q, ω) =
1

π

Dq2

(Dq2)2 + ω2
(69)

The van Hove function and the intermediate scattering function have
Gaussian shape in both r and q, and the dynamic structure factor has the form
of a Lorentzian in ω. Here the Gaussian approximation is exact. Free diffusion
is the simplest dynamical process giving rise to quasielastic scattering (see Fig.
4). The half width at half maximum (HWHM) of the quasielastic line is given
by

Γ = Dq2 (70)

Examples for Lorentzian profiles are shown in Fig. 1.
Let us now compute the mean-square displacement associated with the

model of free diffusion. For this purpose we write

W (t) =

∫
V

∫
V

d3Rd3R′ P (R, t|R′, 0)Peq(R)(R−R′)2.
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FIGURE 2. Diffusion coefficient for the CM of lysozyme from
dynamic light scattering [22] and MD simulation [21].

Performing the trivial integration over R′ and comparing the conditional prob-
ability density (65) with the van Hove correlation function (68) for free diffu-
sion shows that

W (t) =

∫
V

d3r r2G(r, t) = 6Dt (71)

This is the well-known Einstein diffusion law for free diffusion. It shows that
the molecules can move arbitrarily far from the origin. A consequence is that
the EISF for freely diffusing particles is zero. This follows immediately from
its definition (30) which yields with (67) EISF (q) = limt→∞ I(q, t) = 0.

A recent example for the application of the above scattering law to protein
dynamics can be found in [20]. The diffusion constant for lysozyme is found
to be 7.2 ± 0.3 · 10−7 cm2/s. Fig. 2 shows a recent calculation of the trans-
lational diffusion coefficient of lysozyme as a function of pressure obtained
from MD simulation [21], as compared to results from dynamic light scattering
(DLS) [22]. Although the statistics in the calculation of the diffusion constant
from MD simulation is very poor (one single lysozyme molecule in a box wa-
ter) the simulation results are in good agreement with DLS. The value of the
diffusion constant measured by dynamic light scattering may be inserted into
the Stokes-Einstein relation [23], assuming that the protein is sphere of radius
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a,

D =
kBT

6πηa
(72)

In this expression η is the viscosity of the solvent, which is in practice water
with η = 1.002Pa · s at room temperature (1Pa = 1N/m2). Using the dif-
fusion constant from dynamic light scattering [22], D = 1.45 10−6cm2/s, one
finds a = 1.47nm. This is the radius of a lysozyme molecule if the latter is ap-
proximated by a sphere. This simple calculation is not necessarily a proof that
the neutron scattering result is wrong. Apart from hydration shells, which
influence the effective hydrodynamic radius of a protein, the diffusion con-
stant is influenced by long-ranged electrostatic forces between the diffusing
protein molecules, as well as by hydrodynamic interactions. It is probably not
reasonable to assume that the hydration shells in the light and neutron scat-
tering experiments are very different and so thick that they could double the
diameter of the lysozyme molecule. At concentrations of 60-80 mg/ml, which
correspond to the experimental situation, hydrodynamic interactions are not
yet strong and the diffusion constant is predominantly influenced by inter-
molecular electrostatic forces which depend considerably on screening effects
produced by the presence of dissociated salt in the solution. One should also
keep in mind that DLS does not directly probe single particle diffusion [24]. All
these points must be considered in detail in order to understand the difference
of the diffusion constants observed by neutron scattering and DLS.

2.2. Rotational diffusion of molecules. Rotational diffusion is a more
complicated process than the isotropic translational diffusion discussed above
since the molecules are now described as rigid bodies and not as points. Let
us for the moment consider one single atom which moves on the surface of a
sphere due to the molecular rotation. The latter is decribed by a set of angles
Ω = (α, β, γ), which we define to be the Euler angles (see Fig. 3). The time
evolution of position of the selected atom is then described by

r(t) = D
(

Ω(t)
)
· r(0) (73)

where D is a rotation matrix which is parametrized by the selected set of an-
gles, Ω. The vector r(0) is the initial position. Due to the purely rotational
motion we have

|r(t)| = R = const. (74)
We consider again free diffusion, which is here free rotational, isotropic diffu-
sion. This model applies to a diluted solution of spherical particles. The corre-
sponding differential equation for P (Ω, t|Ω′, 0) reads (see Appendix 4)

∂tP = γr

{
∂2

∂β2
+ cot β

∂

∂β
+

1

sin2 β

(
∂2

∂α2
+

∂2

∂γ2

)
− 2

cot β

sin β

∂2

∂α∂γ

}
P (75)
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FIGURE 3. Definition of the Euler angles. Here n is a body-fixed
unit vector whose orientation is specified by the angles α and β.
The angle γ describes a rotation of the body about n.

Here γr is the rotational diffusion constant which has the dimension 1/s in SI
units. The solution of (75) is derived in Appendix 4 and we give here directly
the result,

P (Ω, t|Ω′, 0) =
∞∑
l=0

+l∑
m,n=−l

2l + 1

8π2
exp
(
−γrl(l + 1)t

)
Dl
mn(Ω)Dl ∗

mn(Ω′). (76)

where Dl
mn(Ω) are the Wigner rotation matrices [25, 26]. The equilibrium den-

sity is here

Peq(Ω) = lim
t→∞

P (Ω, t|Ω′, 0) =
1

8π2
. (77)
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Inserting (76) into (60) yields the intermediate scattering function2 (see Ap-
pendix 4)

I(q, t;R) =
∞∑
l=0

(2l + 1)j2
l (qR) exp

(
−Γlt

)
. (78)

where we have defined
Γl = l(l + 1)γr (79)

The parameters R indicates that the intermediate scattering function corre-
sponds to a fixed radius. We assume now that the diffusing protein can be
approximated by a sphere of radius a and that the distribution of hydrogen
atoms in the protein is homogeneous. This is a reasonable assumption since
hydrogen atoms are contained in all amino acids at approximately equal pro-
portion. With this premise one can average expression (78) over a spherical
shells ranging from R = 0 to R = a. As a result

I(q, t) =
∞∑
l=0

(2l + 1)Al(qa) exp(−Γlt) (80)

where the coefficients Al(qa) are given by

Al(qa) =
3

a3

∫ a

0

dRR2j2
l (qR) (81)

The term with l = 0 is the EISF shown in Fig. 4,

EISF (qa) = A0(qa) =
3[2qa− sin(2qa)]

4q3a3
(82)

Fourier transform of expression (80) yields the dynamic structure factor for
rotational diffusion

Srot(q, ω) = A0(qa)δ(ω) +
1

π

∞∑
l=1

(2l + 1)Al(qa)
Γl

Γ2
l + ω2

(83)

To obtain an estimate for the rotational diffusion constant γr which determines
the widths of the Lorentzians in the dynamic structure factor through the re-
lation (79) one can use the analogue of the Stokes-Einstein (72) relation for
rotational diffusion [27]

γr =
kBT

4πηa3
(84)

Using lysozyme as an example, which has a radius of a = 1.45nm, yields
γr = 1.06 · 108 s−1 at T = 293K, which corresponds to a rotational relaxation

2The jl(z) are the spherical Bessel functions.



30 2. ANALYTICAL MODELS FOR I(q, t)

0 1 2 3 4 5 6

q*a

0

0.2

0.4

0.6

0.8

1

Diffusion in a sphere

Rotational diffusion

FIGURE 4. EISF for rotational diffusion of a spherical protein of
radius a (solid line) and for diffusion of a point-like particle in a
spherical cavity of radius a (dashed line).

time of τr = 9.4ns, with τr ≡ γ−1
r . This example shows that rotational dif-

fusion of whole proteins is a slow process on the neutron time scale. It is
interesting to compare this time scale to the one of translational diffusion. If
we use D = 1.45 · 10−6cm2/s [22] for the translational diffusion coefficient and
q = 1 Å−1 we obtain Dq2 = 1.45 · 1010 s−1 which corresponds to a relaxation
time of τ = 69 ps. This shows that translational diffusion of proteins is consid-
erably faster than rotational diffusion, except for higher orders of l. In the latter
case the associated amplitudes Al(qa) are, however, small. We note also that
the rotational EISF is small for momentum transfers of the order of q ≈ 1 Å−1,
which are characteristic for most spectrometers for quasielastic scattering ex-
periments. In this case we have qa ≈ 20 andA0(qa) ≈ 0. In such an experimen-
tal situation one may simply neglect the effect of rotational diffusion of whole
proteins.

3. Internal motions

3.1. Diffusion inside a sphere. A simple model which can account for
quasielastic scattering due to spatially confined motions is diffusion inside a
sphere [28]. Applications to internal protein dynamics can be found in [29]
and [30]. The dynamical variables are the spherical coordinates Ω ≡ {r, θ, φ}.
Here r is the distance of the diffusing hydrogen atom to the center of the
sphere, and {θ, φ} specify the direction of its position vector. The constraint
for the motion is that r ≤ a, where a is the radius of the sphere. The derivation
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of the scattering law starts from the diffusion equation in the variables {r, θ, φ}
and proceeds along similar lines as for rotational diffusion. The calculation
of P (Ω, t|Ω′, 0) is, however, more complicated and we give here only the re-
sults. For details we refer to [28]. As in the case of rotational diffusion, the
intermediate scattering function has a multiexponential non-gaussian form:

I(q, t) =
∞∑

l,n=0

(2l + 1)Aln(q) exp
(
−Γlnt

)
(85)

Defining the numbers xln through

l jl(x
l
n)− xlnjl+1(xln) = 0 l > 0, (86)

j1(x0
n) = 0 l = 0, (87)

the functions Aln(q) can be expressed as follows: For {l, n} 6= 0, 0 one has3

Aln(q) =


6(xln)2

(xln)2−l(l+1)

[
qa jl+1(qa)−ljl(qa)

(qa)2−(xln)2

]2

, qa 6= xln

3
2
j2
l (x

l
n) (xln)2−l(l+1)

(xln)2
, qa = xln.

(88)

In (85) Γ0
0 = 0, and the term with {l, n} = 0, 0 thus yields the EISF (see fig. 4),

EISF (q) = A0
0(q) =

[
3j1(qa)

qa

]2

(89)

For {l, n} 6= 0, 0 the constants Γln are given by

Γln = D

(
xln
a

)2

(90)

The relations (86) and (87) follow from boundary conditions for the radial part
of P (Ω, t|Ω′, 0) and account for the condition that the diffusing particle must
stay inside a sphere of a given radius.

It follows from (85) that the dynamic structure factor takes the form

S(q, ω) = A0
0(q)δ(ω) +

1

π

∞∑
l,n6={0,0}

(2l + 1)Aln(q)
Γln

(Γln)2 + ω2
(91)

3As in the model for rotational diffusion, the jl(z) are the spherical Bessel functions.
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3.2. Langevin oscillator. A model which allows to describe different types
of internal motions in a protein is the Langevin oscillator. Varying the friction
constant produces vibrational motions as well as purely diffusional motion
which give rise to quasielastic scattering. To keep the presentation simple we
consider for the moment one-dimensional motion. In this case the dynamical
variables are the deviation of the oscillating atom from its equilibrium position
and the corresponding velocity, Ω ≡ {x, v}. The interaction of a tagged atom
with its environment is described by a harmonic force,

F (x) = −Mω2
0x (92)

which tends to keep the atom close to its equilibrium position. Harmonic os-
cillation of a particle in the presence of a random force representing collisions
with neighbor particles is described by the stochastic equation of motion

d2x

dt2
+ γ0

dx

dt
+ ω2

0x =
1

M
Fs (93)

where Fs is a stochastic force with the properties

〈Fs(t)〉 = 0, 〈Fs(t)Fs(t′)〉 = 2γ0MkBTδ(t− t′). (94)

Eq. (93) is a generalization to Langevin’s equation of motion for free diffu-
sion [31].

3.2.1. Fokker-Planck equation. In order to be able to compute the intermedi-
ate scattering function one needs the equation of motion for a conditional prob-
ability density. In our case we need to describe the evolution of this conditional
probability in (x, v)-space in presence of a harmonic potential, U(x) = 1

2
Mω0x

2.
The corresponding equation of motion is the Fokker-Planck equation [32, 33, 34]

∂P

∂t
= Aij

∂

∂Ωi

(ΩjP ) +Bij
∂2P

∂Ωi∂Ωj

Here we have used Ω ≡ {Ω1,Ω2} ≡ {x, v} to keep the notation compact. The
matrices A ≡ (Aij) and B ≡ (Bij) are called drift and fluctuation matrix, re-
spectively, and are defined as

A =

(
0 −1
ω2

0 γ0

)
, B =

(
0 0
0 kBT

M
γ0

)
. (95)

The conditional probability density P (Ω, t|Ω′, 0) is a Gaussian in the variables
Ω1 ≡ x and Ω1 ≡ v [33],

P (Ω, t|Ω′, 0) = (2π)−1 (detσ(t))−1/2

exp

(
−1

2
(Ωi − 〈Ωi(t)〉)[σ−1(t)]ij(Ωj − 〈Ωj(t)〉)

)
, (96)
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The center of the Gaussian is given by 4

〈Ωi(t)〉 = Gil(t)Ω
′
l, G = exp(−At), (97)

and its width by

σij(t) = 〈[Ωi(t)− 〈Ωi(t)〉] [Ωj(t)− 〈Ωj(t)〉]〉 = 2

∫ t

0

dτ Gik(τ)BklGjl(τ). (98)

It follows from the above relations that P (Ω, 0|Ω′, 0) = δ(Ω− Ω′) and that

Peq(x) = (2π)−1
(

detσ(∞)
)−1/2

exp

(
−1

2
Ωi[σ

−1(∞)]ijΩj

)
. (99)

On account of (98) one finds that

σij(∞) = 〈ΩiΩj〉, σ(∞) =
kBT

M

(
ω−2

0 0
0 1

)
. (100)

3.2.2. Gaussian form of the intermediate scattering function. Starting with the
above prerequisites one can now proceed to compute the intermediate scatter-
ing function according to (60). We omit the calculation and refer to [35] for
details5. The result for I(q, t) is then

I(q, t) = exp

(
−q

2

2
Wx(t)

)
(101)

where Wx(t) is the mean-square displacement,

Wx(t) = 〈[x(t)− x(0)]2〉,

which was introduced in (48). It is well known that the MSD can be expressed
in terms of the velocity autocorrelation function (VACF) [16, 36]. Defining the
latter as

cvv(t) := 〈v(t)v(0)〉, (102)

one can write [16]

Wx(t) = 〈[x(t)− x(0)]2〉 = 2

∫ t

0

dτ (t− τ)cvv(τ) (103)

This shows that the time and q-dependent intermediate scattering function
I(q, t) is entirely determined by cvv(t).

4Here and following summation over two identical indices is implied. This means that
aibi ≡

∑
i aibi, aikbkj ≡

∑
k aikbkj etc.

5In this reference the multidimensional case is treated.
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FIGURE 5. Left: MSD for the Langevin oscillator in the un-
derdamped regime (dashed line) and in the overdamped regime
(solid line). Right: Corresponding intermediate scattering func-
tion for a fixed value of q. The plateau value is the EISF.

3.2.3. Velocity autocorrelation function. From (93) one can derive a closed
equation for cvv(t), using that the velocity of the Langevin oscillator is not cor-
related with the random force, 〈v(0)Fs(t)〉 = 0. One obtains then

d2cvv
dt2

+ γ0
dcvv
dt

+ ω2
0cvv = 0. (104)

One distinguishes two regimes6:

a) γ0/2 < ω0 (underdamped motion)
b) γ0/2 > ω0 (overdamped motion)

Depending on which case is considered, cvv(t) takes the form

cvv(t) =


kBT
M

exp
(
−γ0t

2

) {
cos Ωt− γ0

2Ω
sin Ωt

}
γ0/2 < ω0,

kBT
M

exp
(
−γ0t

2

){
cosh |Ω|t− γ0

2|Ω| sinh |Ω|t
}

γ0/2 > ω0,
(105)

and its Fourier spectrum is given by (see Fig. 6)

gvv(ω) =


kBT
M

γ0ω2(
γ20
4

+(ω−Ω)2
)(

γ20
4

+(ω+Ω)2
) γ0/2 < ω0,

kBT
M

γ0ω2

(ω2+(
γ0
2
−|Ω|)2)(ω2+(

γ0
2

+|Ω|)2)
γ0/2 > ω0.

(106)

6All formulae to be derived in the following can be considered in the limiting case
γ0/2 = ω0 .
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FIGURE 6. Left: gvv(ω) in in arbitrary units for the under-
damped regime (dashed line) and the over-damped regime
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3.2.4. Mean square displacement. Using (103) we find that the MSD is given
by

Wx(t) =


2kBT
Mω2

0

(
1− exp

(
−γ0t

2

) {
cos Ωt+ γ0

2Ω
sin Ωt

})
γ0/2 < ω0,

2kBT
Mω2

0

(
1− exp

(
−γ0t

2

){
cosh |Ω|t+ γ0

2|Ω | sinh |Ω|t
})

γ0/2 > ω0,

(107)
It follows that Wx(t) tends to a plateau for t→∞ (see Fig. 5):

lim
t→∞

Wx(t) =
2kBT

Mω2
0

(108)

This follows from the fact that the motion is limited in space. In the limit
t → ∞ all cross-correlations between positions have decayed to zero and we
have W (∞) = 2〈x2〉 for motion which is confined in space. Therefore we can
conclude from (108) that

〈x2〉 =
kBT

Mω2
0

(109)

The above expression allows to extract an effective force constant, K = Mω2
0 ,

from the scattering data [37].
3.2.5. Analytical form of the intermediate scattering function. We can now

write down an analytical expression for the intermediate scattering function
and the EISF. In the underdamped case we obtain

I(q, t) = exp

[
−q2 kBT

Mω2
0

(
1− exp

(
−γ0t

2

){
cos Ωt+

γ0

2Ω
sin Ωt

})]
(110)
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FIGURE 7. Fitted quasielastic spectrum of lysozyme in aque-
ous solution at room temperature [21] (compare sketch in Fig. 4).
The data have been obtained with the time-of-flight spectrome-
ter Mibemol at the Laboratoire Léon Brillouin in Saclay.

It follows that the EISF takes the simple form

EISF (q) = exp

[
−q2 kBT

Mω2
0

]
(111)

In the overdamped case I(q, t) takes the form

I(q, t) = exp

[
−q2 kBT

Mω2
0

(
1− exp

(
−γ0t

2

){
cosh |Ω|t+

γ0

2|Ω|
sinh |Ω|t

})]
(112)

Note that the EISF does not depend on the friction constant, since it is a purely
static average which is entirely determined by the harmonic potential func-
tion. The regime of Brownian motion is characterized by strongly overdamped
motion, where γ0 � ω0, and observation times t� 1/γ0. In this case the inter-
mediate scattering function reads [35]

I(q, t) = exp

[
−q2 kBT

Mω2
0

(
1− exp

(
−γ−1

0 ω2
0t
))]

. (113)

3.2.6. Dynamic structure factor. The dynamic structure factor for the
Langevin oscillator cannot be obtained by an analytical formula. Fig. 6 shows
a numerical calculation of S ′(q, ω) for the underdamped regime (dashed line)
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and the overdamped case (solid line). In the second case one sees only a single
quasielastic line. If γ0 → 0 one obtains the spectrum of an harmonic oscillator
without friction [11]. If q2〈x2〉 � 1 the intermediate scattering function may be
expanded as

I(q, t) ≈ 1− q2

2
Wx(t). (114)

If strongly overdamped motion is considered, S ′(q, ω) takes the analytical form
of a Lorentzian. This is seen from Eq. (113). Fitting the quasielastic spec-
trum for internal protein dynamics with a Lorentzian-shaped scattering profile
yields, however, only a very rough estimate for the quasielastic line which is
only valid for small energy transfers. As we will see later, protein dynamics is
characterized by a large spectrum of relaxation rates and not by a single one.
Fig. 7 shows an application of a Lorentzian fit to scattering data from lysozyme
in solution [21] at qel = 1.5 Å−1 (for elastic scattering). The instrumental res-
olution window is represented by a Gaussian. The data have been obtained
with Mibemol spectrometer of the Laboratoire Leon Brillouin in Saclay. The ex-
perimental resolution was 48µeV HWHM. Assuming a diffusion constant of
10−6 cm2/s (see [20] and Fig. 2) as an order of magnitude yields a HWHM of
Dq2 ≈ 15µeV , which is still below the resolution of the Mibemol spectrometer
for the given experiment. This does, however, not mean that the quasielastic
scattering profile is not influenced by global diffusion. The reason is that a
Lorentz-profile decreases only ∝ ω−2 for large frequencies.





CHAPTER 3

MD simulations and neutron scattering

As mentioned in the introduction, Molecular Dynamics (MD) simulations
and neutron scattering experiments are probing the same length and time
scales. Both methods can be considered as complementary experimental tech-
niques. In this chapter it will be shown how MD simulations can be used to
help understanding neutron scattering spectra.

1. The concept of MD simulations

The fundamental approximation of MD simulations is that the dynamics
of the atoms in condensed matter systems can be described by Newton’s laws
of classical mechanics,

mαR̈α = − ∂U

∂Rα

(115)

Here each atom is represented by a mass point. The second approximation
is that electronic degrees of freedom can be replaced by an empirical force
field, U({Rα}), in which electronic degrees of freedom are not considered
explicitly. The force field U({Rα}) depends on the positions of all atoms
and describes the atomic interactions. During the last 20 years several force
fields for biomolecular simulations have been developed (see e.g. references
[38, 39, 40, 41]). The generic form is always similar:

U =
∑

bondsαβ
kαβ

(
rαβ − r(0)

αβ

)2

+
∑

angles αβγ

kαβγ

(
φαβγ − φ(0)

αβγ

)2

+
∑

dihedralsαβγδ
kαβγδ cos (nαβγδθαβγδ − δαβγδ)

+
∑

pairs αβ
4εαβ

([σαβ
r

]12 −
[σαβ

r

]6)
+

∑
pairs αβ

qαqβ
4πε0rαβ

 non-
bonded (116)

The first three lines contain the terms describing “bonded interactions” due
to covalent bonds in a macromolecule (bond-stretching vibrations, bond-angle

39
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FIGURE 1. Left Protein backbone of myoglobin. Right: 31 se-
lected side chains.

vibrations, and torsion angle dynamics). The last two lines describe “non-
bonded interactions” due to excluded volume forces, dispersion forces, and
electrostatic forces. The parameters are usually fitted to ab initio calculations
of molecular fragments. The principle of an MD simulation is very simple.
First Newton’s equation of motion (115) is discretized. Using e.g. the Verlet
algorithm [42] one obtains

Rα(n+ 1) = 2Rα(n)−Rα(n− 1) +
∆2

M

∂U

∂Rα

, (117)

where ∆ is the integration time step which is of the order of one fs (10−15s). In
this integration scheme the velocities are obtained by the central difference

Ṙα(n) ≈ Rα(n+ 1)−Rα(n− 1)

2∆
. (118)

In order to obtain a trajectory of one ns (10−9s) one therefore has to perform
106 integration steps!

Once an MD trajectory has been generated, one can calculate correlation
functions of dynamics variables A and B via

〈A(0)B(m)〉 =
1

Nt −m

Nt−m−1∑
k=0

A(k)B(k +m). (119)

Here Nt is the total number of configurations (“frames”) in the stored trajec-
tory. Note that static averages, such as the EISF, are obtained by putting m = 0
in (119).
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FIGURE 2. EISF of myoglobin from simulation [43] (solid line
and dashed line) and experiment [15]. The solid line shows the
result obtained from straightforward analysis of the MD trajec-
tory and the dashed line has been obtained by filtering out inter-
nal motions of the protein side-chains.

2. Simple applications

2.1. Rigid-body motions in myoglobin. A simple application which gives
an idea how MD simulations and neutron scattering experiments can be com-
bined in a useful way has been published in [43]. The basic question addressed
in this article is which type of motion contributes most to the quasielastic scat-
tering spectrum of neutrons from myoglobin at room temperature – see again
Fig. 5. The experimental data from DOSTER et al. [15] have been used in [43]
to show that elastic and quasielastic neutron scattering from myoglobin (and
quite probably from all globular proteins) is essentially produced by rigid-
body motions of whole residues/side chains (see Fig. 1). Internal motions on
the residue scale do almost not contribute to quasielastic and elastic neutron
scattering (see Figs. 2 and 3). The rigid body trajectories have been produced
by fitting to each side chain and each time frame a respective reference struc-
ture.
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FIGURE 3. Results for the quasielastic spectrum correesponding
to Fig. 2. In the experimental spectrum the vibrational contribu-
tions have been subtracted using a harmonic model [15]. This
explains the disagreement between simulation and experiment
for ω > 0.2meV .

2.2. Testing the Gaussian approximation. It is obvious that the theoretical
modeling of I(q, t) can be considerably simplified if the GA is a reasonable
approximation. Computer simulations allow to verify this in a very direct way.
In contrast to “real” experiments, they allow quite easily to study arbitrary
sub-ensembles and motion types of a given system. Let us consider lysozyme,
which is a globular protein like myoglobin (see Fig. 4). To get an impression
of the validity of the GA we consider first two sub-ensembles

• All (hydrogen) atoms

• The Cα atoms following only the backbone motion

For both ensembles we compute IH(q, t) and the corresponding GA. Figures 5
and 6 show the comparison for both ensembles. It is important to mention
that the GA has here been applied to each atom separately, i.e. we average
over the expressions (50) for all selected atoms. The results show the the GA
gives almost perfect agreement for the Cα-atoms and is still very reasonable
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FIGURE 4. Left: The lysozyme molecule. Each atom is repre-
sented by a sphere with the corresponding van der Waals radius.
Right: The backbone of the protein.

for the hydrogen atoms. According to (52) one would expect a straight line if
ln(EISF ) is plotted as a function of q2.

Fig. 7 shows, however, that this is not the case, neither for theH-atoms, nor
for the Cα-atoms, although the curve is clearly more linear in the latter case.
To further discuss this point one needs to be aware that the non-linearity of
ln(EISF ) can have two reasons:

(1) Truly non-gaussian behavior, which can for example result from rota-
tional motions of the side-chains.

(2) Apparent non-gaussian behavior due to motional heterogenity. Even
if the GA is valid for each atom separately the EISF would not have
the simple form (52) anymore. The reason is simply that a sum of two
Gaussians (here in q) with different widths is not a Gaussian anymore.

Fig. 7 shows a decomposition of the EISF:

(1) The EISF from all atoms
(2) The EISF from the Cα-atoms
(3) The EISF from purely rotational side-chain motions. The latter have

been obtained from the MD trajectory by rigid-body fits of reference
structures for the side-chains (see [43] and references herein).

(4) The product of contributions 2) and 3).

The rotational side-chain motions give a strictly non-gaussian contribution.
The fact that 1) and 4) are different shows that translational side-chain motions,
which are given by the motions of the Cα atoms, and rotational side-chain
motions are correlated.
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FIGURE 5. IH(q, t) for the hydrogen atoms in lysozyme by direct
calculation (solid line) and by Gaussian approximation (dashed
line).

3. Simulation-based modelling

In the following we discuss some applications of computer simulation
which show how computer simulations can be used to develop dynamical
models for protein dynamics.

3.1. “Non-gaussian” EISF from a gaussian model. The first application
addresses the problem of motional heterogeneity which creates an apparent
non-gaussian behaviour even if a gaussian model is valid for an individual
atom. Fig. 9 shows the EISF of the Cα-atoms computed directly from MD data
(solid line), as compared to the corresponding EISF obtained from an effective
harmonic model allowing for motional heterogeneity (dashed line), and a fit
of

EISF (q) = exp(−q2u2) (120)

to the EISF obtained from the effective harmonic model. Here u is a fit param-
eter which has been optimized for small values of q. The plot illustrates nicely
that a non-linear EISF in a plot of ln(EISF ) as a function of q2 does not imply
that the underlying dynamical model is really non-gaussian. It should be no-
ticed that the EISF obtained from the effective harmonic model is much closer
to the “real” EISF than to the fit (120).
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FIGURE 6. IH(q, t) for the Cα atoms in lysozyme by direct calcu-
lation (solid line) and by Gaussian approximation (dashed line).

To compute the EISF shown in Fig. 9 the model of coupled harmonic os-
cillators has been used. Each residue is represented by an “effective” Cα-atom
whose mass is the total mass of the residue and whose scattering length is
the average scattering length of all atoms in the residue (see Fig. 8). Such a
model necessitates the construction of a “coarse-grained” force constant ma-
trix from an all-atom force field used for protein simulations. This procesure
is described in [44]. In generalization of (111) one obtains [35]

EISF (q) =
N∑
α=1

wα exp

(
−

3N∑
k=1

kBT

ω̃2
η,j

(qT · djα)2

)
(121)

where the vectors djα are three-dimensional subvectors of the eigenvectors
(normal modes) dj of the mass-weighted force constant matrix, and wα are
weights with wα ∝ b2

j,inc, where j runs over all atoms in residue α, and∑N
α=1 wα = 1. The force constant matrix is defined as

K = M−1/2 ·
(

∂2U

∂xi∂xj

)∣∣∣∣
min.

·M−1/2 (122)
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FIGURE 7. Decomposition of the EISF. Shown are the EISF for all
atoms (solid line), the EISF for the Cα-atoms (long dashes), EISF
from rigid side-chain motions (dashes and dots), and the product
of the last two components.

where M is a diagonal mass matrix whose entries contain the total masses of
the different residues. The normal modes are given by 1

K · dj = ω̃2
jdj (123)

and the subvectors djα are defined through djα = (dj,3α−2, dj,3α−1, dj,3α)T . The
quantities ω̃η,j appearing in (121) are scaled frequencies,

ω̃η,j = ηω̃j , (124)

where η < 1 is a global scaling parameter which is chosen to fit the “real” EISF.
The frequencies ω̃η,j are thus the characteristic frequencies of an effec-

tive harmonic potential. This idea is motivated by Frauenfelders view of a
“rugged” multidimensional energy landscape of proteins [18] Fig. 10 shows
this idea schematically. On a coarse-grained scale only one or a few minima
exist. This envelope potential is perturbed by an enormous number of local
subminima (conformational substates). At sufficiently high temperatures the
system explores the full envelope potential. In our model [44] we make the ap-
proximation that the envelope potential has just one minimum, describing the

1The ω̃2
j have the dimension of a force constant, i.e. kg/s2 in SI units.
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FIGURE 8. Coarse-grained harmonic model for lysozyme. Each
residue is represented by an “effective Cα-atom”.

native state of the protein, and that this global potential has a parabolic form.
The second approximation is that this multidimensional parabola can be ob-
tained from a normal mode expansion of one of the subminima, just scaling all
eigenfrequencies to smaller values. This is equivalent to saying that the local
minima and the minimum of the envelope potential are all similar in shape.
Within this model above the glass transition temperature a protein would still
move in an harmonic potential, which has just a smaller curvature. Going
back to Figs. 7 and 8 shows that the evolution of the mean square fluctuations
of myoglobin and bacteriorhodopsin in a purple membrane is consistent with
this model. In the hydrated membrane the BR protein undergoes a dynamic
transition and the mean square fluctuation of the hydrogen atoms increases
still linearly, but with a steeper slope than below the transition temperature.

4. Brownian modes and multi-scale relaxation

The simplest way to extend the above model to account for dynamic prop-
erties is to introduce the notion of friction, accounting for frequent collisions
between residues due to the “rugged” protein energy landscape [44]. Such a
model should not be used on an atomic scale, where rapid side-chain motions
contribute a non-gaussian, truly anharmonic component to protein dynamics
(see Fig. 7). The motion of the residues in the envelope potential is described
by strongly overdamped, purely diffusional motion. We recall that in the sim-
plest case of one-dimensional motion of one single oscillator the intermediate
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FIGURE 9. EISF for the Cα atoms from MD simulation (solid
line), the corresponding EISF from an effective harmonic model
with motional heterogeneity (dashed line), and an idealized EISF
of the form EISF = exp(−q2u2) which has been fitted to the
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scattering function is given by expression (113). In case of coupled oscillators
one obtains [35]

IBD(q, t) =

N∑
α=1

wα exp

[
−

3N∑
k=1

(
kBT
′̃ω2
j

(qT · djα)2 − exp(−λkt)y(k)
αα(q)

)]
, (125)

where the weights wα are defined as in (121). The quantities y(k)
αα(q) are qua-

dratic forms in q,

y(k)
αα(q) = kBT

(qT · ukα)2

uTk ·K · uk
. (126)

Here the vectors uk are the Brownian modes, which are defined through

γ−1K · uk = λkuk (127)

where γ is a positive definite mass-weighted friction matrix. As for the vectors
djα, one has here ujα = (uj,3α−2, uj,3α−1, uj,3α)T . In [44] the friction matrix was
assumed diagonal.
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FIGURE 10. Frauenfelder’s schematic view of a “protein energy
landscape”. See text for more explanations.

Eq. (125) shows that the dynamical behavior of IBD(q, t) is determined by
a spectrum of relaxation times,

τk = λ−1
k (128)

The above considerations show that multi-scale relaxation processes can be
described by coupling harmonic degrees of freedom in presence of fric-
tion. Fig. 11 shows a comparison of the incoherent scattering function of C-
phycocyanin on the residue level as computed from MD simulation and from
Brownian modes [44]. The very fast drop-off at t = 0 has been modeled by an
independent vibrational contribution, writing

ICα(q, t) = IBD(q, t)Ivib(q, t). (129)

Here Ivib(q, t) is computed using a standard normal mode calculation on the
basis of an effective force constant matrix for the coarse-grained description
on the residue level. It describes fast vibrations in local minima, and a small
damping constant accounts for a finite life time of these oscillations.

4.1. Memory functions. A completely different approach to multi-scale
relaxation is to describe the time evolution of intermediate scattering function
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by a so-called memory function equation. The concept of memory functions
has been introduced by Robert Zwanzig in the 1960’s to describe the dynam-
ics of liquids on a rigorous theoretical basis [45, 16]. The concept is, however,
quite general. It applies to the time correlation function of any dynamical vari-
able of a Hamiltonian system. The result is a formal equation of motion for the
correlation function. For the intermediate scattering function one would write

∂tI(q, t) = −
∫ t

0

dτ ξ(q, t− τ)I(q, τ) (130)

Here ξ(q, t) is the memory function. It can be interpreted as a generalized fric-
tion coefficient. In case of confined motion the memory function equation (130)
is applied to I ′(q, t) = I(q, t)− EISF (q).
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FIGURE 12. Simulated incoherent intermediate scattering func-
tion, I ′(q, t), of lysozyme, averaged over 30 momentum transfer
vectors with qel = 1.5 Å−1. The corresponding dynamic structure
factor, S ′(q, ω), is shown in the inset.

If we set2

ξ(q, t) = Dq2δ(t) (131)

equation (130) reduces to a simple differential equation

∂tI(q, t) = −Dq2I(q, t). (132)

The solution is a simple exponential,

I(q, t) = exp(−Dq2t) (133)

which is known to describe free diffusion (see Eq. (67)).
These simple considerations show that random motion, such as free dif-

fusion, is characterised by short-ranged memory functions and correspond-
ing simple exponential correlation functions. Such models are adequate to
describe global protein dynamics, such as translational motion of whole pro-
tein molecules, but they are inadequate to describe internal protein dynam-
ics. “Short-ranged” means here short-ranged with respect to the characteristic
time scale of the corresponding correlation function, and not short-ranged on
an absolute time scale.

2δ(t) is the Dirac delta distribution defined in Eq. (33). Its essential properties are∫ +∞
−∞ dx δ(x) = 1 and

∫ +∞
−∞ dy δ(x− y)f(y) = f(x).
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FIGURE 13. Memory function corresponding to I ′(q, t) depicted
in Fig. 12.

It is well known that internal protein dynamics exhibits an enormous range
of time scales, ranging from sub-picoseconds to seconds. Due to the high
atomic density within a protein all these motions are coupled. This means
that there is no characteristic time scale for I ′(q, t). The corresponding mem-
ory function is “long-ranged”, in the sense that is decays not exponentially,
but with a power law in time. Although the accessible time scale of MD sim-
ulations is limited to the ns range, they can show a fingerprint of long-ranged
memory functions [46]. Fig. 12 shows the simulated intermediate function,
I ′(q, t), of lysozyme and the corresponding dynamic structure factor S ′(q, ω).
The memory function is shown in in Fig. 13. All functions have been computed
using an autoregressive model for the underlying time series exp[iqT · Rα(t)]
for each atom [9, 47] and each q-vector. Fig. 13 shows that ξ(q, t) has an alge-
braic long-time tail of the form

ξ(q, t) ∝ (β − 1)

(
t

τ

)β−2

(134)

where τ > 0 and 0 < β < 1. The form (134) is characteristic for stochastic
processes with long-time memory [48, 49]. We note that the short-time behav-
ior of ξ(q, t) is not well resolved since a coarse-grained autoregressive model
with a sampling interval of ∆t = 0.4 ps has been used. The fact that internal
protein dynamics is chartacterised by multi-timescale relaxation, and can thus
not be described by exponential correlation functions, is illustrated in fig. 14.
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FIGURE 14. Simulated incoherent dynamic structure factor for
lysozyme in solution at q = 0.4 Å−1 (solid line) and fit by a Loren-
zian (dashed line).

The latter shows a log-log plot of the incoherent dynamic structure factor for
lysozyme in solution, which has been obtained from MD simulation in the
same way as the functions shown in fig. 12. For comparison a least squares fit
of a Lorentzian profile to the data shown. Clearly the simulation data cannot
be described by such a function. In this context we refer to fig. 7 in which a
Lorentzian has been used to fit the quasielastic line. As already mentioned,
the fit is only good for smaller energy transfers, which is less visible since the
data are not shown in a log-log representation. We remark that the simulation
data are well described by the model of fractional Brownian dynamics [49] to
which a memory function of the form (134). The associated dynamic structure
factor has the form [46] (the q-dependence is dropped)

SfBD(ω) =
2τ sin(βπ/2)

|ωτ | (|ωτ |β + 2 cos(βπ/2) + |ωτ |−β)
, 0 < β ≤ 1 (135)

where τ and β are the parameters of the model. In the above form SfBD(ω) is
normalised to one. One recognises that SfBD(ω) −→ 2τ/(1 + [ωτ ]2) for β → 1.
In this case one retrieves exponential relaxation.

Let us now see how the internal protein dynamics is reflected in an ex-
perimental quasi-elastic spectrum. For this purpose we use the quasielastic
scattering data for lysozyme in solution which have already been shown in
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FIGURE 15. Experimental data from lysozyme in solution (solid
line) confronted to the corresponding simulated spectrum
(dashed line) and a theoretical scattering law for resolution
broadened diffusion of whole molecules (dot-dashed) line. The
experimental data are the same as in Fig. 9 of Chapter 1 for
qel = 4nm−1 (qel = 0.4 Å−1).

Fig. 9 of Chapter 1 (see refs. [19, 21]). The solid line shows the experimen-
tal spectrum for qel = 0.4 Å−1. For comparison with the experimental data
the simulated spectrum (dashed line) has been treated using expression (56).
The scattering law for global diffusion was modelled by free diffusion with a
diffusion coefficient of 7.2 · 10−7 cm2/s which is the valued measured in [20].
The resulting scattering law was finally convoluted with a Gaussian resolution
function with a width of σ = 7µeV , which corresponds to the resolution of the
IN5 spectrometer at the Institut Laue Langevin. The plot illustrates nicely that
above about 0.2 eV really internal protein dynamics is seen, which is not com-
pletely masked by the global diffusion of the lysozyme molecules. It should
be noted that for higher energy transfers the comparison between experimen-
tal and simulated could be even more perfect if one takes into account that
the simulation data are obtained at constant q, whereas the experimental data
are obtained at constant scattering angle θ, corresponding to qel(θ) = 4 Å−1.
Multiple scattering effects, which are not accounted for, may also play a role.



CHAPTER 4

Appendix

I(q, t) for rotational diffusion

To derive the differential equation for P (Ω, t|Ω′, t′) we proceed as follows.
As for translational diffusion, we can assume that P (Ω, t|Ω′, t′) depends only
on time differences t − t′, since equilibrium is assumed. We can then put
t′ = 0. One starts from a multidimensional diffusion equation like (63), where
r = (rT1 , . . . , r

T
N)T now comprises all particle positions. The next step is to make

a coordinate transformation from the coordinates r to the generalized coordi-
nates Ω, using (73). Using the tools of Riemannian differential geometry, one
can derive a diffusion equation for an arbitrary set of generalized coordinates,
Ω = (Ω1, . . . ,Ωf )1 [50]. Introducing the Jacobian J =

(
∂ri

∂Ωj

)
and the metric

matrix g ≡ (gik) = JT · J, we obtain

∂tP =
D
√
g

∂

∂Ωi

{
√
ggik

∂

∂Ωk

}
P. (136)

Here g = det(g), (gik) ≡ g−1, and summation over pairwise upper and lower
indices is implicitly assumed. If the generalized coordinates are Euler angles,
i.e. Ω ≡ (α, β, γ)T , and the molecule under consideration is spherically sym-
metric, (136) takes the form

∂P

∂t
= γrL̂ΩP (137)

where L̂Ω is the differential operator

L̂Ω =
∂2

∂β2
+ cot β

∂

∂β
+

1

sin2 β

(
∂2

∂α2
+

∂2

∂γ2

)
− 2

cot β

sin β

∂2

∂α∂γ
, (138)

and γr is the rotational diffusion constant. It has the dimension 1/s in SI units.
Eq. (137) has to be solved with the initial condition

P (Ω, 0|Ω′, 0) = δ(Ω− Ω′), (139)

1In the literature on differential geometry the generalized variables are indexed as Ωi and
not as Ωi.
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where δ(Ω−Ω′) is the Dirac δ distribution in angular space. Any well-behaved
function, f(Ω), in angular space can be developed in the basis of Wigner func-
tions, Dl

mn(Ω) [25, 26]. The latter are eigenfunctions of L̂Ω,

L̂ΩD
l
mn(Ω) = −l(l + 1)Dl

mn(Ω), (140)

and fulfill the orthogonality relation∫
dΩDl

mn(Ω)Dl′∗
m′n′(Ω) =

8π2

2l + 1
δll′δmm′δnn′ , (141)

where dΩ = sin β dα dβ dγ. The angular δ-function can be written in the form

δ(Ω− Ω′) =
∞∑
l=0

+l∑
m,n=−l

2l + 1

8π2
Dl
mn(Ω)Dl ∗

mn(Ω′). (142)

Using the above definitions, P (Ω, t|Ω′, 0) may be expanded as

P (Ω, t|Ω′, 0) =
∞∑
l=0

l∑
m,n=−l

l′∑
m′,n′=−l′

p lmn(t)ql
′

m′n′Dl
mn(Ω)Dl′,∗

m′n′(Ω
′), (143)

where p lmn(t) are functions of time and ql′m′n′ are constants. To satisfy the initial
condition (139) we have the constraint

p lmn(0)ql
′

m′n′ =
2l + 1

8π2
δll′δmm′δnn′ . (144)

If (143) is inserted into the rotational diffusion equation (137), one obtains a
simple differential equation for p lmn(t) by using the eigenvalue equation (140),

∂p lmn
∂t

= −γrl(l + 1)p lmn. (145)

The solutions are simple exponentials which depend only on l:

p lmn(t) = p lmn(0) exp
(
−γrl(l + 1)t

)
. (146)

This form for p lmn(t) may now be inserted together with condition (144) into
the general form (143) for the conditional probability. One obtains

P (Ω, t|Ω′, 0) =
∞∑
l=0

+l∑
m,n=−l

2l + 1

8π2
exp
(
−γrl(l + 1)t

)
Dl
mn(Ω)Dl ∗

mn(Ω′). (147)

As the translational transition probability density P (R, t|R′, 0) depends only
on position differences, P (Ω, t|Ω′, 0) depends only on the relative orientation
Ωr relating Ω′ and Ω. For a rotation represented by a hermitean rotation ma-
trix D(Ω), such as a Wigner matrix, one can write D(Ω) = D(Ωr) · D(Ω′), or,
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equivalently, D(Ωr) = D(Ω) ·D†(Ω′), where † denotes the hermitean conjugate
(conjugate complex of the transposed matrix). We thus have in components

Dl
mk(Ωr) =

∑
k

Dl
mn(Ω)Dl ∗

kn(Ω′) (148)

which relates the corresponding Wigner matrices. On account of this expres-
sion one may thus write

P (Ωr, t|0, 0) =
∞∑
l=0

+<l∑
m=−l

2l + 1

8π2
exp
(
−γrl(l + 1)t

)
Dl
mm(Ωr). (149)

In the case of rotational motion the van Hove correlation function is not
of much interest, and we calculate only the intermediate scattering function.
Since the observed intermediate scattering function for a protein solution does
not depend on the direction of q, we write

I(q, t) =

∫
dΩ

∫
dΩ′ P (Ω, t; Ω′, 0)

〈
exp
(
iqT · [r(Ω)− r(Ω′)]

)〉
Ωq
, (150)

where 〈. . .〉Ωq denotes an average over all directions of q. Here r denotes the
position of a “representative” atom with respect to the center of mass. The joint
probability density is now decomposed as P (Ω, t; Ω′, 0) = P (Ωr, t|0, 0)Peq(Ω

′).
Since we assume the system to be isotropic, we have

Peq(Ω
′) =

1

8π2
. (151)

It is now convenient to perform a variable change Ω → Ωr and to use that
D(Ω) = D(Ωr) ·D(Ω′). This allows us to write

I(q, t) =

∫
dΩr P (Ωr, t|0, 0)

sin
(
q|r(Ωr)− r(0)|

)
q|r(Ωr)− r(0)|

. (152)

Denoting the spherical Bessel functions by jl(z), with j0(z) = sin z/z, one can
invoke the addition theorem for spherical Bessel functions [51, 52],

j0(kρ) =
∞∑
n=0

(2n+ 1)jn(kρ1)jn(kρ0)pn(cos β). (153)

Here ρ :=
√
ρ2

1 + ρ2
0 − 2ρ1ρ0 cos β, and pn(x) are the Legendre polynomials.

To evaluate formula (152) we set ρ1 = |r(Ω)| = R, ρ0 = |r(0)| = R, cos β =
rT1 (Ω) · r(0)/R2. Using pn(cos β) = Dn

00(α, β, γ) together with the orthogonality
of the Wigner functions yields

I(q, t) =
∞∑
l=0

(2l + 1)j2
l (qR) exp

(
−γrl(l + 1)t

)
. (154)

To verify that the incoherent intermediate scattering functions fulfills the initial
condition I(q, 0) = 1, one can invoke the theorem

∑∞
l=0(2l + 1)j2

l (z) = 1 [51].
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[49] W.G. Glöckle and T.F. Nonnenmacher. A fractional calculus approach to self-similar pro-

tein dynamics. Biophys. J., 68:46–53, 1995.
[50] J.G. Kirkwood. Macromolecules, chapter Statistical mechanics of irreversible processes in

polymer solutions, pages 56–64. John Gamble Kirkwood Collected Works. Gordon and
Breach Science Publishers, 1967.

[51] M. Abramowitz and I.A. Stegun (eds.). Handbook of Mathematical Functions. Dover Publi-
cations, New York, 1972.

[52] A. Sommerfeld. Partielle Differentialgleichungen in der Physik. Verlag Harry Deutsch, Thun,
Frankfurt/M., 1978.


