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Probe the structure and dynamics of condensed 
matter systems with neutrons - Introduction



Properties of the neutron

Elementary properties

Mass mn = 1.675⇥ 10�27 kg
Electric charge 0C
Spin 1

2~
Magnetic moment -1.913 nuclear magnetons

De Broglie Relations

Momentum p = ~k = h

�nk
Energy E = |p|2

2mn
= 1

2mn

h
2

�2

The “good relation” between energy and momentum:

For E ⇡ kBT and T = 293K the wave length is comparable to
interatomic distances, � = 1.8 Å. This enables the investigation of
structural and dynamical properties of condensed matter systems
on the atomic level.
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SLOW NEUTRON SPECTROSCOPY AND THE
GRAND ATLAS OF THE PHYSICAL WORLD

Nobel Lecture, December 8, 1994

by

Bertram N. Brockhouse

Department of Physics, McMaster University, Hamilton, ONT, L8S 4M1,
Canada

On October 12, 1994, telephone communications from Stockholm ensured
that I would have the privilege of giving a Nobel Lecture, for which I must
thank all those involved in arranging for this great and surprising event of
my life. But I had to go back some thirty to forty-five years, first in memory
and then in the entropy of my files and library. The lecture was given on
December 8, 1994 (and subsequently on several occasions). This written ver-
sion covers the same ground, though sometimes in different order, with a litt-
le additional material from my preparations, which time prevented including
in the spoken lecture.

In August 1950, when I joined the Physics Division of the Chalk River
Nuclear Laboratory, it was 18 years since the identification of the neutron as
being emitted in some radioactive processes and 14 years since verification
of the supposition that neutrons would exhibit wave-particle duality. A con-
siderable body of theory was available in the open literature - which was still
small enough so that one person could have read all that was then available.
There had been significant measurements of total cross sections using neu-
tron beams produced by cyclotrons. Self-sustaining reactors employing the
neutron-induced fission of uranium had been demonstrated and full-scale
models which emitted potent beams of both fast and slow neutrons had been
constructed. Slow neutron beams from reactors were already in use at seve-
ral laboratories (including Chalk River) for studies of crystals and other
forms of matter. The works of E.O. Wollan and C.G. Shull at the Oak Ridge
National Laboratory were particularly significant because they included the
first studies of a number of phenomena and because they already presented
values of scattering power for neutrons of a substantial number of elements.
This history is discussed in the lecture of my senior colleague and co-winner
of the 1994 Nobel Prize in Physics, Clifford Shull.

To 1951, some studies had been made of the elastic scattering of mono-
chromatic slow neutrons by specimens in the form of powdered crystals (the
neutron analog of Debye-Scherrer patterns for X-rays), which led to impro-
ved crystallographic understanding of the substances involved. And there

EARLY DEVELOPMENT OF NEUTRON
SCATTERING

Nobel Lecture, December 8, 1994

by

CLIFFORD G. SHULL.

Department of Physics, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

Neutrons were discovered by Chadwick in 1932 when he observed a pene-
trating form of radiation emanating from beryllium metal when activated by
alpha-particles from a radium source. Further study showed this to be neu-
tral particle radiation which could be degraded in kinetic energy to thermal
energy upon successive inelastic scattering by light atoms in a medium. With
this Fermi thermalization, it was realized that thermal neutrons, because of
the wave-particle duality principle, should exhibit a wave character with
DeBroglie wavelength comparable to the atom spacing in solids. Thus dif-
fraction effects should be expected in the scattering of neutrons by crystals,
just as with x-radiation, and early experiments in 1936 showed in a crude way
that this was true.

At this time, x-ray diffraction had been developed to become an important
tool in establishing the structure and atomic interactions in materials and it
seemed unlikely that neutron diffraction would develop as a useful tool
because of very low source intensity. This limitation changed dramatically in
the early war years of 1939 - 1943 with the discovery of nuclear fission by
Hahn and Meitner and the subsequent demonstration by Fermi of a self-sus-
taining, neutron chain-reacting assembly. Following this Fermi demonstra-
tion, immediate design and construction of a full scale nuclear reactor, or
“pile” as it was called then, was effected at Oak Ridge, Tennessee.

This reactor, then called the Clinton Pile, was meant to produce the first
measurable quantities of plutonium and to serve as a pilot plant for the
much larger production reactors which were being designed for construc-
tion in the state of Washington. The Clinton Pile was a graphite moderated,
air-cooled assembly which operated at a power level of about 3.5 megawatts,
thereby producing a slow neutron flux density of about 1012 neutrons/cm’
sec. During this same period, another assembly was designed and construc-
ted at Chicago with the feature of heavy water moderation, the CP-3 assem-
bly. I show in Fig. (1) the start-up dates of these early and post-war reactors.
Both the Clinton and the CP-3 pile assemblies operated through the war
years producing man-made elements and isotopes and to a limited extent
their neutron radiation was used to obtain some critically needed cross sec-
tion data.

Fig. (2) shows an early photograph of the loading face of the Clinton Pile

Nobel prize in physics 1994

B.N. Brockhouse

C.G. Shull
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Van Hove function for self-scattering

Consider one “representative atom” (index omitted)
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8 1. INFORMATION FROM NEUTRON SCATTERING
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FIGURE 1. Sketch of a neutron scattering experiment. The neu-
trons hit the sample with an energy E0 = !2k2

0/2m and leave it
with E = !2k2/2m after the collision. The vectors k0 et k are the
corresponding momenta in units of !.

where I(q, t) is the intermediate scattering function. I(q, t) can be split into a
coherent and an incoherent part,

I(q, t) = Icoh(q, t) + Iinc(q, t) , (10)

where Icoh(q, t) and Iinc(q, t) are defined as

Icoh(q, t) =
∑
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respectively. The symbol ⟨. . .⟩ denotes a quantum statistical average over a
thermodynamic ensemble, and Rα is the position operator of atom α. The
quantities bα,coh et bα,inc are the coherent and incoherent scattering length, re-
spectively, of atom α. They have values of the order of a fm (1 fm = 10−15 m),
which is about the size of an atomic nucleus. The total scattering cross section of
atom α is given by

σα,tot = 4π
(
b2
α,coh + b2

α,inc

)
, (13)

and refers to a bound atom.

Probing atomic motions in complex systems by quasielastic neutron 
scattering (QENS)

Neutron scattering from hydrogen-rich 
(bio)polymers probes the self-correlated motions of 
the hydrogen atoms on the ps-ns time scale

Dynamic structure factor

Neutron scattering functions

Hydrogen-rich samples

Self-scattering from hydrogen dominates
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Intermediate scattering function

Elastic Incoherent Structure Factor

Neutron scattering functions

Hydrogen-rich samples - representative atom representation

Self-scattering from hydrogen dominates
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Neutron scattering functions

Hydrogen-rich samples - representative atom representation

Self-scattering from hydrogen dominates
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Franck-Condon picture of neutron scattering
Detailed balance

pmn(q) = pnm(�q)

Fs(q, t) = Fs(�q,�t + i�~)
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Detailed Balance relations

Recoil moment 

Franck-Condon picture of neutron scattering
Detailed balance

pmn(q) = pnm(�q)

Fs(q, t) = Fs(�q,�t + i�~)
Ss(q,!) = e
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The ISF is a quantum correlation function
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Correlations in Space and Time and Born Approximation Scattering in Systems
of Interacting Particles

LEON VAN HOVE
Iustitufe for Adoarsced Study, Pr&ucetol, New Jersey

(Received March 16, 1954)

A natural time-dependent generalization is given for the well-known pair distribution function g(r) of
systems of interacting particles. The pair distribution in space and time thus defined, denoted by G(r, t),
gives rise to a very simple and entirely general expression for the angular and energy distribution of Born
approximation scattering by the system. This expression is the natural extension of the familiar Zernike-
Prins formula to scattering in which the energy transfers are not negligible compared to the energy of the
scattered particle. It is therefore of particular interest for scattering of slow neutrons by general systems of
interacting particles: G is then the proper function in terms of which to analyze the scattering data.
After defining the G function and expressing the Born approximation scattering formula in terms of it,

the paper studies its general properties and indicates its role for neutron scattering. The qualitative behavior
of G for liquids and dense gases is then described and the long-range part exhibited by the function near the
critical point is calculated. The explicit expression of G for crystals and for ideal quantum gases is brieRy
derived and discussed.

I. INTRODUCTION
" 'N two special cases, the 6rst Born approximation for
~ - the scattering of x-rays or particles by a system S
of interacting particles is known to express the differ-
ential cross section in terms of simple density distribu-
tion functions for the particles of S.
(i) If S is in a pure quantum state and if this state

does not change in the scattering process, the latter is
elastic and the differential cross section is expressible in
terms of the density distribution p(r) for one particle
of the system (supposed for simplicity to be composed of
identical particles). This applies for example to the
elastic scattering of x-rays or electrons by the electrons
of an atom''
(ii) If the energy transfers occurring in the scattering

process are negligible compared to the energy of the
scattered photon or particle, the momentum transfer is
essentially unique for each scattering angle and the dif-
ferential cross section per unit angle is expressible in
terms of the pair distribution function g(r) of 8, which
describes the average density distribution as seen from
a particle of the system. This is the so-called static ap-
proximation which applies, for example, to the sum of
elastic and inelastic scatteririg of x-rays and electrons
by the electrons of an atom, '4 as well as to that part of
the scattering of x-rays by solids, liquids, and gases
which leaves the atomic quantum states unchanged. ' '
The purpose of the present paper is to show that in

Born approximation the scattering cross section is
always expressible in terms of a suitably generalized
pair distribution function G(r, t) depending on a space
vector r and a time interval t, and to study this function

' I. Wailer, Z. Physik 51, 213 (1928).
s N. F. Mott, Proc. Roy. Soc. (London) A127, 658 (1930).
e I. Wailer and D. R. Hartree, Proc. Roy. Soc. (London) A124,

119 (1929).' P. M. Morse, Physik. Z. 33, 443 (1932).'I. Wailer, dissertation, Uppsala, 1925 (unpublished).
6 F.Zernike and J.Prins, Z. Physik 41, 184 (1927);P. Debye and

H. Memke, Ergeb. Tech. Rontgenk. II (1931).

in some detail for a number of systems. For scattering
theory this would be of rather academic interest in
connection with x-ray scattering, for which the condi-
tions of case (ii) above are usually well fulfilled. The
same hoMs for electrons, for which, however, the Born
approximation is of much more limited applicability
than for x-rays, For slow neutrons, on the contrary,
(wavelength &1A) now used in a rapidly growing
variety of scattering experiments, ~ the energy transfers
are usually comparable to or larger than the incident
energy, whereas the first Born approximation holds
quite well provided the neutron-nucleus interaction is
described by means of the Fermi pseudopotential. The
need has thus arisen for an improvement of the static
approximation for scattering by general systems, and
correction terms valid at relatively high neutron ener-
gies have been calculated by Placzek and by Kick.' We
present here a general solution to this problem, ap-
plicable at all neutron energies, by describing the Born
approximation scattering in terms of the time-de-
pendent pair-distribution function G.
Furthermore, the fact that 6 has often, even for

complicated systems, a number of qualitative properties
which are easy to visualize, makes it in many cases a
practical tool for the discussion of scattering experi-
ments. Its use for the analysis and interpretation of
experimental data has been illustrated elsewhere on
the case of slow neutron scattering by ferromagnetic
crystals. 9
The generalized pair-distribution function G(r, t), to

which neutron scattering gives direct experimental
access, turns out to be a very natural extension of the
conventional g(r) function. Independently of its use in
scattering theory, it is of genuine interest from the
general standpoint of statistical mechanics. Its physical
r See, e.g., D. J. Hughes, Pde Neutrou Research (Addison-

Wesley Publishing Company Cambridge, 1953).
e G. Placzek, Phys. Rev. 86, 377 (1952);G. C.Wick, Phys. Rev.

94, 1228 (1954).' L. Van Hove, Phys. Rev. 93, 268 (1954).
249
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A R E M A R K  O N  T H E  T I M E - D E P E N D E N T  
P A I R  D I S T R I B U T I O N  

by L~;ON VAN HOVE 
Instituut voor theoretische fysiea der Rijksuniversiteit, Utrecht, Nederland 

Synopsis 
Afte r  recal l ing the  classical work  of Z e r n i k e  and P r i n s  on the  pair  d is t r ibut ion  

funct ion  of a l iquid or  gas and its role in X- r ay  sca t ter ing  theory,  one brief ly discusses 
the  t ime-dependen t  general izat ion of this  d is t r ibut ion  function,  which is of special 
in teres t  for neu t ron  scat ter ing.  In  line wi th  an earlier resul t  of F a n o ,  one shows t h a t  
the  imag ina ry  pa r t  of the  t ime-dependen t  pair  d is t r ibut ion  .directly describes the  local 
dens i ty  change produced in a l iquid or  gas by  the  presence of a neutron.  

1. The time-dependent pair distribution. In a classical paper of 1927 
entitled: "Die Beugung von R5ntgenstrahlen in Fliissigkeiten als Effekt 
tier Molekiilanordnung", Z e r n i k e  and P r in s  introduced the concept of 
pair distribution function in a liquid or gas and showed that this function 
gives an exhaustive description of the influence of molecular order on X-ray 
scattering by the system 1). 

The pair distribution function for a system of N identical particles is 
defined by 

~. g(r) -:  N-1 < X j ~  ~(r + rz - rj)> (1) 

where rl  . . . .  fly are the position vectors of the particles and <...> desig- 
nates the average value for the statistical ensemble representing the state 
of the system. If the scattering by individual atoms or molecules is known, 
the function g(r) completely determines the differential cross section for 
X-ray scattering by the system and, conversely, it is entirely determined 
by it (with the obvious limitations following from the inaccuracy of the 
measurements). These facts, established by Z e r n i k e  and Prins ,  are valid 
under two important conditions, which are both very well fulfilled for X-ray 
scattering: the scattering must be describable by the first Born approxima- 
tion, and the frequency change of the radiation (i.e. the energy change of 
the photons) must be negligible compared to the incident frequency (or 
photon energy). 

An actual calculation of the pair distribution is only possible for very 
special systems like one-dimensional models, already considered as illus- 

- -  404 - -  

Physica, vol. 24, no. 1, pp. 404–408, 1958.

Van Hove’s theory of neutron scattering



Van Hove quantum (self) correlation function

Relate the (q,ω)-description of a scattering experiment to a (x,t) 
description, in which atomic motions in space and time are considered.1

[1] L. Van Hove, “Correlations in space and time and Born approximation scattering in systems of interacting particles,” 
Physical Review, vol. 95, no. 1, p. 249, 1954.
[2] L. Van Hove, “A remark on the time-dependent pair distribution,” Physica, vol. 24, no. 1, pp. 404–408, 1958.

The quantum Van Hove correlation function is difficult to 
interpret. In a rarely cited paper2 Van Hove showed that its 
imaginary part is related to the local density perturbation of 
the system by the scattered neutrons. 
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Easy interpretation of G(x,t) in the “mathematical” ħ→0 
limit of the scattering functions

Classical Van Hove correlation function

Diffusion models (“spatial motion models”) for QENS

Here x(t) are classical 
trajectories and G(x,t) 
becomes a classical 
probability density for a 
displacement x in time t

Modelling classical di↵usion

For a freely and normally di↵using particle

@tGs(x, t) = D�Gs(x, t)

Example: free, normal diffusion

Gaussian approximation in the classical limit

In the classical limit
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Dynamic structure factor
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Van Hove function for self-scattering

Definition
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where x1 is the position of the scattering atom.

Symmetry

Gs(x, t) = G
⇤
s (x, t + i�~)

Classical limit

Gs(x, t)
~!0
= h�(x� (x1(t)� x1(0)))icl



Challenges and limitations of classical spatial 
motion models

The ħ→0 limit concerns the scattering system, but also the 
“kick” ħq from the neutron to the scattering atom. 

The impact of the scattered neutrons on the dynamics of 
the scattering atoms is by construction neglected. The 
neutron is a passive probe.

“Impactless scattering” — vanishing recoil moment

Classical diffusion models for atomic motions do not capture 
the multiscale dynamics of the atoms in complex systems.

Z +1

�1
d! !Ss(q,!) =

~|q|2
2meff

~!0
= 0
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Quantum trajectory approach - Integrate the neutron kick 
into a trajectory-based description of neutron scattering 

G. Kneller, Mol. Phys., vol. 83, no. 1, pp. 63–87, 1994.

Describe the neutron as an active probe in a 
trajectory-based scenario.

Define the “physical classical limit” of the 
scattering functions.



Wick’s form of the intermediate scattering function

Emphasize the “neutron kick” in the intermediate scattering
function, 1
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1G.C. Wick, Phys. Rev. vol. 94, p. 1228, (1954)

“Positionless” representation of F(q,t)Wick’s form of the intermediate scattering function

Emphasize the “neutron kick” in the intermediate scattering
function, 1

Fs(q, t) =
D
e
�iq·x̂1(0)e iq·x̂1(t)

E
=

D
e
itĤ
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�itĤ/~

E

where
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0(q) =

(p̂1 + ~q)2
2M1

+ V (r̂1) .

Proof. With Z = tr{e��Ĥ}
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1G.C. Wick, Phys. Rev. vol. 94, p. 1228, (1954)

Kicked Hamiltonian

Wick’s form of the intermediate scattering function

Emphasize the “neutron kick” in the intermediate scattering
function, 1
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1G.C. Wick, Phys. Rev. vol. 94, p. 1228, (1954)

G. C. Wick, “The scattering of 
neutrons by systems containing 
light nuclei,” Physical Review, 
vol. 94, no. 5, pp. 1228–1242, 
1954.

GC Wick

Gerald Kneller
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Propagator form for the intermediate scattering function

Fs(q, t) =
1

Z

Z Z Z
dxdx

0
dx

00

hx |e��Ĥ |x 0i| {z }
K(x ,x 0,�i�~)
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Kq(x 0,x 00,�t)
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K(x 00,x ,t)

Propagator form of the intermediate 
scattering function

Retrieve trajectories through a path integral 
representation of the propagators
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Real time propagator
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Time-slicing/real time path integrals
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K (xb, xa, t) = hxb|e�itĤ/~|xai = hxb|
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“Kicked” real time propagator

“Kicked” path action integral

Kicked real time propagator
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Coupling to the neutron



Imaginary time propagator
Time-slicing/imaginary path integrals
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Propagator form for the intermediate scattering function

continuation
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The red path corresponds to the classical 
limit, where the total real time action is 
minimized and the high temperature/short 
time limit is used for the propagation in 
imaginary time. The “neutron kick” is taken 
into account.
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Classical limit of the intermediate scattering function

Expressing the density matrix through the classical limit of the
Wigner function and retaining only the classical path (A � ~)
yields
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• The intermediate scattering function F(q,t) can be written as a 
path integral over closed paths, one of which is the classical path.

• The classical path minimizes the total action in real time and is 
ballistic in imaginary time (short time apprixmation).

• The “physical classical limit” of F(q,t) corresponds to retaining 
only the total classical path, which preserves the scattering 
kinematics and the impact of the neutron on the scattering 
system. 

• The complexity of calculating the scattering function is though 
increased compared to the mathematical classical limit ħ→0, 
where the neutron is a passive probe.



Classical mechanical energy landscape description of 
neutron scattering  — integrate multiscale dynamics



x

E(x)

Energy landscapes - a kinetic picture of protein 
dynamics and kinetics

“Conformational substates”

The protein jumps between different minima of the highly multidimensional 
(free) energy landscape which correspond to similar “conformational 
substates” (H. Frauenfelder et al, Science 254, 1598 (1991)). 

Protein dynamics through jump kinetics



Conformational substates

Non-exponential 
rebinding kinetics of CO

 22



Relaxation and time correlation functions have a multi-
exponential form: 

For complex systems these functions decay for long times slowly 
with a power law and exhibit thus self-similarity:

Multiexponential relaxation
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Protein dynamics displays self-similarity
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and establish a fractional differential equation for cuu(t), whose solution is
found to be [33]
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Here, the mean square position fluctuation is given by
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↵
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E�(z) denotes the Mittag–Leffler function [16], and the time scale ⌧ is defined
by the relation

⌧ =

✓
nD�

h|u|2i

◆�1/�

. (25)

The Mittag–Leffler function is an entire function in the complex plane,
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z
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and can be considered as a generalization of a normal exponential function.
For � = 1, the latter is retrieved, E1(z) = exp(z). According to (15), the
MSD takes the form
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and two regimes can be distinguished:

(a) The short time regime, where t ⌧ ⌧ . Here, one may use just the first
two terms of the series (26), such that
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Since lim�!1 � (1 � �) = +1, the long-time tail vanishes for normal
diffusion. Here, the Mittag–Leffler function becomes a normal expo-
nential function, E1(z) = exp(z), and one retrieves the exponentially
relaxing DACF of the normal Ornstein–Uhlenbeck process.
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“Stretched” ML function and relaxation spectrum
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The distribution barrier heights corresponds to a distribution of 
rates for kinetic processes and conformational relaxation.  

Relating relaxation rates to the 
“roughness” of the energy landscape 
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To relate barrier heights and relaxation rates, one needs a model.
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ABSTRACT Diffusion in a spatially rough one-dimension-
al potential is treated by analysis of the mean first passage
time. A general expression is found for the effective diffusion
coefficient, which can become very small at low temperatures.

This paper deals with diffusion in a rough potential. The
work was motivated in part by ideas of Frauenfelder and co-
workers concerning the dynamical behavior of proteins (for
a good summary with figures, see ref. 1). They suggest that
the potential surface of a protein might have a hierarchical
structure, with potential minima within potential minima,
etc. That is, the potential surface might be rough.
The treatment reported here of diffusion in a rough poten-

tial is restricted to one-dimensional systems and may not
have any immediate relevance to multidimensional protein
dynamics. However, the one-dimensional results seem inter-
esting in themselves. In particular, the roughness of a poten-
tial gives rise to a dramatic slowing down of diffusion at low
temperatures, especially when fluctuations in the potential
have a Gaussian distribution.
An example of what is meant by "rough" is shown in Fig.

1. This particular one-dimensional potential was constructed
from the arbitrarily chosen function

U(x) = x2 + 0.02(cos 167x + sin 73x).

x

FIG. 1. An example of a rough potential is shown. The potential
is given in Eq. 1 of the text.

tion determines the time (t) dependence of the probability
distribution p(x,t). It has the form

ap/at = -al/ax,

J = -De-U(x)a/axegu(x)p[1]

The general parabolic shape of the first term is clearly visi-
ble, but superimposed on it are many small potential barriers
distributed in a more or less random way. The amplitude E =
0.02 of the second term is a measure of the "roughness" of
the potential, a term which will be used here generally to
denote the characteristic energy scale E of the potential bar-
riers.
One expects that at very high temperatures, compared

with E, diffusion is essentially unaffected by the many small
barriers. But at temperatures that are small compared with E,
diffusion will be seriously hampered by having to cross over
the barriers. This is an important point made by Frauen-
felder and co-workers.
A rough potential U(x) has in general a smooth back-

ground U0(x) on which a rapidly, and perhaps randomly, os-
cillating perturbation Uj(x) is superimposed. The perturba-
tion has a typical amplitude E and a typical length scale Ax.
When U(x) is spatially averaged over Ax, the perturbation is
eliminated and only the smooth background remains. In the
given example, the length scale Ax is of the order of 0.1.
We are concerned only with diffusion on a much larger

length scale than Ax. This separation of the length scale of
roughness and the length scale of observed motion is essen-
tial to the following discussion. The results make sense only
if many fluctuations in roughness take place in the distance
of interest.
Brownian motion or diffusion of a system in a potential
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in which J is a current density, D is a diffusion coefficient,
and /3 = 1/kBT, where T is the temperature.
When the potential U is smooth, solution of the Smolu-

chowski equation is straightforward (although numerical
methods may be required). But when the potential is rough,
standard procedures are not so useful. This paper presents
an approximate treatment of diffusion in a rough one-dimen-
sional potential. The approach taken is an extension of some
old work of Lifson and Jackson (2). It makes use of an ana-
lytic expression for the mean first passage time (mfpt) to
move from one position to another. The main result is that
the original diffusion coefficient D is replaced by an effec-
tive diffusion coefficient D*, and the original potential U(x)
is replaced by an effective smooth potential U*(x). D* and
U* may depend very strongly on temperature, and D* may
be very much smaller than D. Illustrations will be given lat-
er.
We start with a familiar expression (2, 3) for the mean time

required for a system starting out at x0 to reach x for the first
time. This is the mfpt and is denoted by (t,x). For technical
reasons that are not relevant to the present discussion, we
assume that there is a reflecting barrier at some location x =
a. For convenience we consider only a <xO < x. The argu-
ment that follows does not depend critically on the values xo,
x, and a as long as all distances involved are large compared
with the length scale of the roughness. The mfpt is found by
solving the differential equation

e1u(x)a/axDe-&1u(x)a/ax(tx) = -1

Abbreviation: mfpt, mean first passage time.
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tial is restricted to one-dimensional systems and may not
have any immediate relevance to multidimensional protein
dynamics. However, the one-dimensional results seem inter-
esting in themselves. In particular, the roughness of a poten-
tial gives rise to a dramatic slowing down of diffusion at low
temperatures, especially when fluctuations in the potential
have a Gaussian distribution.
An example of what is meant by "rough" is shown in Fig.

1. This particular one-dimensional potential was constructed
from the arbitrarily chosen function

U(x) = x2 + 0.02(cos 167x + sin 73x).

x

FIG. 1. An example of a rough potential is shown. The potential
is given in Eq. 1 of the text.
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with an absorbing boundary condition at x = x0. The solution
is

t x dy
(t,x) = dy eQu(y) (1/D) Jdz e- u(z). [5]

amount q-/p. Also, the effective diffusion coefficient is in-
dependent of coordinate, D* = De-+ e-

If, for example, the perturbation is simply Ul(x) = Ecos(qx),
then by integration over one period we obtain

Observe that the integrations in this formula have the effect
of spatial averages. That is, the integral over a small dis-
tance Ax may be approximated by

f dz e-PU(z) f dz e-PU(z)(e-PU(z)) [6]

in which ( ) denotes the spatial average used to smooth the
potential. The average of the exponential can still be a func-
tion of the coordinate z, if the amplitude of the fluctuations
in U1 varies with z. For this reason, we denote the average
by

(ePU(z)) = e*l(Z). [7]

Exactly the same approximation may be applied to the inte-
gration over y, with the definition

en = enI = Io(13E) [14]

in which Io(P8 e) is the modified Bessel function. This leads to
a well-known result (4) in the case where the background
potential is completely flat. At low temperatures, where
e/kBTis very large, the Bessel function grows exponentially,
so that D* is proportional to exp(-2E/kBT). This Arrhenius
behavior is due to slow hopping between the many minima in
the rough potential.

In another quite interesting example, suppose that the am-
plitude of the roughness is random and independent of x. In
particular, suppose that it has a Gaussian distribution, with a
probability proportional to exp(- U1/2E2) in which E is the
root-mean-squared roughness, E2 = (U2). Then by direct in-
tegration one finds

e = e = eP2E2/2 [15]

and the effective diffusion coefficient is

D* = D exp[-(e/kBT)2].
The result of the smoothing is the modified mfpt given by~~~~~~~~~~Y

(t~x)- dy euo(y)+*+(Y) (1/D) Idz e-PU° (z)+* (Z). [9xo ~~~~~~~~~a
But by working backwards, we can see that this result is
actually the mfpt for Brownian motion in the effective poten-
tial

U*(x) = Uo(x) - qf(x)/p, [10]

with the effective diffusion coefficient given by

1/D*(x) = ehI+(X)(1/D)e*J(x). [11]

The corresponding effective Smoluchowski equation, valid
only for distances much larger than the characteristic length
scale of the fluctuations in U, is expected to be

ap/at = -a/ax, [12]
J =-D*(x)e-U*(x)a/axeP]*(x)p. [13]

However, this is only a conjecture; there is no direct deriva-
tion of the effective Smoluchowski equation for a rough po-
tential. All that we can say is that the mfpt predicted by this
effective Smoluchowski equation agrees with the mfpt ob-
tained by the spatial averaging process. (Actually, a similar
argument can be made for higher moments of the first pas-
sage time distribution. They also are determined by D* and
U*. So the conjecture is likely to be true.)

If the amplitude of the roughness does not depend on the
coordinate, then U* is U0 shifted by an irrelevant constant

This quadratic temperature dependence is significantly
stronger than in the case of periodic roughness.

All of the preceding discussion was for one-dimensional
diffusion. Unfortunately, there seems to be no generaliza-
tion to higher dimensionalities of the approach used here
(however, see ref. 5 for an attempt in this direction). This is
especially sad because the potential surface of a protein mol-
ecule is surely multidimensional. One may conjecture that
something like what is seen in one dimension will also be
seen in higher dimensions; but this calls for further theoreti-
cal treatment.
The procedure followed here is a simple extension of the

one used by Lifson and Jackson (2). A treatment due to De
Gennes (6) of diffusion in a particular kind of random poten-
tial is similar to this one.
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FIG. 3: EISF obtained from the fit of Expression (8),
with �(+)(t) defined by Eq. (9), for free and HupA-inhibited
hAChE (blue and red dots, respectively). The fits are supple-
mented by estimated here almost invisible error bars.

FIG. 4: Parameters ↵ and ⌧ for free and HupA-inhibited
hAChE as a function of q (blue and red, respectively). Points
correspond to fitted parameters ans solid lines to linear fits.
The fits are supplemented by estimated error bars.

decay with q, where the one for inhibited hAChE dis-
plays larger values as the one for the free counterpart.
The decrease of ⌧ with q, which is seen for both free
and inhibited hAChE, reflects the fact that localized mo-
tions are faster than large scale motions, whereas the
general increase of ⌧ upon inhibition of hAChE indicates
slower relaxation of the inhibited variant. In contrast to
the scale parameter ⌧ , the form parameter ↵ of the re-
laxation function exhibits a much weaker q-dependence,
where the values for the inhibited variant of hAChE are
slightly smaller than those of the free one. Noting that
↵ = 1 corresponds to exponential relaxation, this means
that the corresponding relaxation dynamics is less expo-
nential for the inhibited variant. In order to understand

FIG. 5: Left panel: Sketch of a rough harmonic potential,
where the minima are separated by a fixed energy barrier.
Right panel: Model energy barrier spectrum for free and
inhibited hAChE (blueish and reddish curves, respectively)
from top to bottom for q = 0.5, 0.6, . . . 1.6/Å.

the physical meaning of the ↵-parameter, we write the
stretched Mittag-Le✏er function as a continuous super-
position of exponential functions,

E↵(�t↵) =

Z 1

0

p(�) exp(��t) d�, (13)

which expresses the dynamical heterogeneity in a system
that is composed of a large number of atoms and where
each atom contributes exponentially with a di↵erent re-
laxation constant, �. Here both t and � are dimensionless
and

p(�) =
1

⇡

sin(⇡↵)

�(�↵ + ��↵ + 2 cos(⇡↵))
(14)

is a normalized relaxation rate spectrum fulfillingR1
0

p(�) d� = 1. Higher moments of p(�) do not exist.
The relaxation rate spectrum, p(�), may be related to

an energy barrier spectrum by assuming that the classi-
cal Fourier transformed single particle density, �⇢(q, t) =
exp(iq · r(t))�hexp(iq · r(0))i, di↵uses in a “rough” har-
monic potential. Abbreviating x(t) ⌘ �⇢(q, t), we write
V (x) = V0(x)+ �V (x), where V0(x) = Kx2/2 and �V (x)
define, respectively, its smooth and rough component (see
left panel of Fig. 5). The smooth component, V0(x),
tends to bring x ⌘ �⇢ to zero, while the rough com-
ponent, �V (x), hinders this process by trapping x in
one of the local minima which are separated by a fixed
energy barrier, �E. The di↵usion in the smooth po-
tential is described by an Ornstein-Uhlenbeck process,
where the displacement autocorrelation function relaxes
exponentially, hx(t)x(0)i = hx2i exp(�⌘0t), and where
the relaxation constant and the di↵usion constant are
related through D0 = hx2i⌘0. We use now Zwanzig’s
model16 for the e↵ective di↵usion in an arbitrary rough
potential, D = D0 exp(�[��E]2), where � = 1/(kBT ),
which translates thus for an harmonic potential into
⌘ = ⌘0 exp(�[��E]2) for the relaxation constant. In-
troducing the dimensionless energy barrier ✏ = ��E and
defining � = ⌘/⌘0, we may write

� = exp(�✏2), (15)

which leads to

P (✏) =
1

⇡

2✏ sin(⇡↵)

exp(↵✏2) + exp(�↵✏2) + 2 cos(⇡↵)
(16)

for the distribution of the dimensionless energy barri-
ers, ✏. The right panel of Fig. 5 shows the resulting en-
ergy barrier distributions for free and inhibited hAChE
(blueish and reddish curves) as a function of q, which in-
dicate that binding of the HupA ligand shifts the energy
barriers to slightly higher values and leads at the same
time to a slight broadening. Ligand binding thus leads to
a “roughening” of the e↵ective potential energy surface.
For both series of energy barriers one observes a shift of
the distribution to higher values with increasing q, which
corresponds to looking at increasingly localized motions.
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• The problem with energy landscapes models is that they 
refer only to the ω/time domain and are not q/space-
resolved. They are thus a priori not relevant for modeling 
neutron scattering.  

• They can though be related to neutron scattering within 
the Gaussian approximation of F(q,t).



Gaussian approximation of Fs(q,t) and diffusive motions 

Gaussian approximation (moderate momentum transfers, q)

 A. Rahman, K. Singwi, and A. Sjölander, Physical Review 126, 986 (1962).
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where Z = tr
n
e
��Ĥ

o
is the partition function. Using now the standard form of the Hamiltonian

Ĥ =
p̂2

2M
+ V (x̂), (6)

and that for any function g(p̂) of the momentum (operator)
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where Ĥ
0(q) is the “kicked Hamiltonian”
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The intermediate scattering function may thus be written in the equivalent form
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3 Rahman’s cumulant expansion
For the following considerations we start from (10) and write the intermediate scattering function
in a still different form,
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and v̂q is the projection of the velocity of the scattering atom onto q,

v̂q = nq ·
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M
= nq · v̂. (13)

A series expansion of f(q, t) in q is then found by writing
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where it has been used that �̂(q, 0) = 1. Repeated application of (16) leads then to
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and f(q, t) has thus the series expansion [2]
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in the momentum transfer variable, q. Here hv̂q(t1) . . . v̂q(tn)i are n-point time correlation functions
of the projected velocity, v̂q , which are by definition stationary, i.e.

hv̂q(t1) . . . v̂q(tn)i = hv̂q(t1 + ⌧) = . . . v̂q(tn + ⌧)i, (19)

for any ⌧ 2 R. It should be emphasized that the convergence of the series (18) imposes conditions
on the n-point correlation functions which have not yet been discussed. In his article [2], Rahman
points out that in a system in thermal equilibrium only even orders in q contribute to the series (18),
and defining the moments
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the series expansion (18) for the function f(q, t) may be written in the compact form
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More interesting for practical applications is the corresponding cumulant expansion
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!
, (22)

from which approximation can be obtained by cutting the cumulant expansion at odd powers
of k. Cutting at k = 1 leads in particular to the Gaussian approximation. The cumulants are
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obtained by comparing the Taylor series of log(f(q, t)) with f(q, t) given by Expression (21) and
(22), respectively. Ceci donne pour les premiers cumulants
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3 � µ4(t)µ2(t) + µ6(t), (25)

...

4 Gaussian approximation

4.1 General form
If follows from (12) and (22) the the intermediate scattering function in the Gaussian approxima-
tion is given by
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2( ~t
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on account of (19), we introduce the abbreviation
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for the two-point correlation function, which is referred to as velocity autocorrelation function
(VACF). Making now the variable change

u = t1 � t2, (30)
v = t2, (31)
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itĤ/~

v̂qe
�itĤ/~
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Cumulant expansion in q 

In the classical limit 
F(q,t) is completely 
determined by the 
MSD of the 
diffusing scattering 
atom

G.R. Kneller, The Journal of Chemical Physics 145, 044103. Communication.



Motions in proteins are confined in space (α=0) and the atomic 
positions can be referred to a well-defined mean positions,

The MSD for confined motions can be expressed in terms of the 
displacement autocorrelation function.

Confined di↵usion

x(t) = u(t) + hxi.

W (t) =
⌦
(u(t)� u(0))2

↵
= 2 (cuu(0)� cuu(t))

cuu(t) = hu(t)u(0)i

Confined di↵usion

x(t) = u(t) + hxi

W (t) =
⌦
(u(t)� u(0))2

↵
= 2 (cuu(0)� cuu(t))

cuu(t) = hu(t)u(0)i

The displacement autocorrelation function has a multiexponential 
decay.

Confined di↵usion
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FIGURE IV.9. Left: Harmonic potential driving the OU process.
Right: Sketch of the corresponding “rugged” potential energy
surface leading to fractional Brownian motion.

proposed long time ago by Frauenfelder et al. [56]. It must be emphasised that
such an effective harmonic model can only describe protein dynamics close to
the equilibrium state, which is here characterised by a single global minimum
of the potential.

Using the general considerations concerning FFPEs made in Section 3.1 of
this chapter we can immediately write down the solution of the FFPE describ-
ing the fractional OU process. For this purpose we use expression (IV.57) and
insert the eigenfunctions of the Fokker-Planck operator (II.161) associated with
the standard OU process which are given in Eqs. (II.163) and (II.165). Defining
again the scaled positions ⇤ = x/

⌥
⇧x2⌃ and the scaled relaxation constant

⇥� = ⇧̃ 1��⇥ (IV.65)

one obtains from (IV.57) [49, 50]

P (⇤, t|⇤0, 0) =
exp

�
� ⇥2

2

⇥

�
2⌅

⇥⌃

n=0

1

2nn!
Hn

⇤
⇤�
2

⌅
Hn

⇤
⇤0�
2

⌅
E� (�n⇥�t�) (IV.66)

Here E�(·) is the Mittag-Leffler function defined in Eq. (IV.53).

4.2. Autocorrelation function and its spectrum. The autocorrelation func-
tion of the scaled variable ⇤ is obtained from the general expression (IV.59),
using that here y ⌅ ⇤ and

⇧
d⇤ ⇤Pn(⇤) = �n,1. Noting that the autocorrelation

function of ⇤ equals the normalised autocorrelation function of x, ⌃(t) ⇤ c⇥⇥(t),
one obtains

⌃(t) = E� (�⇥�t�) (IV.67)

Normal Ornstein-
Uhlenbeck process: 
Diffusion in a “smooth” 
harmonic potential

Uhlenbeck, G. E. & 
Ornstein, L. S.  
Physical Review 36, 
823 (1930).

1. Shao, Y.  Physica D: Nonlinear 
Phenomena 83, 461–477 
(1995).

2. R. Metzler, J. H. Jeon, and A. G. 
Cherstvy, Physical Chemistry 
Chemical Physics, vol. 16, pp. 
24128–24164, 2014.

Fractional Ornstein-Uhlenbeck process — a model for 
self-similar single-atom dynamics in proteins

Fractional Ornstein-
Uhlenbeck process: 
Anomalous Diffusion in 
a “rugged” harmonic 
potential



Fractional Fokker-Planck equation for conditional probability

Time evolution operator
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position space. Knowing that limt!1 cuu(t) = 0 and that cuu(0) = h|u|2i is
the is the mean square position fluctuation, it follows from (15) that

lim
t!1

W (t) = 2h|u|2i. (17)

2.4.2. The model

A simple example for a concrete dynamical model is the fractional
Ornstein-Uhlenbeck (fOU) process [3, 32, 33] which describes anomalous
di↵usion of a Brownian particle in a harmonic potential,

V (u) =
K

2
|u|2 (K > 0). (18)

The corresponding transition probability density is described by the fFPE

@

@t
p(u, t|u0, 0) = @

1��
t L p(u, t|u0, 0), 0 < �  1, (19)

where the Fokker-Planck operator reads

L = D�
@

@u
·
⇢

@

@u
+

Ku

kBT

�
. (20)

Here kB and T denote, respectively, the Boltzmann constant and the abso-
lute temperature. Due to the Hookean force, F (u) = �Ku, the equilibrium
probability density tends for long times to a Gaussian function of finite
width,

peq(u) =

r
K

2⇡kBT

n

exp

✓
�K|u|2

2kBT

◆
. (21)

With these definitions the DACF for the fOU process is obtained via

cuu(t) ⌘
Z 1

�1

Z 1

�1
d
n
u0d

n
uu · u0 p(u, t|u0, 0)peq(u0), (22)

but the full solution p(u, t|u0, 0) is not required for its computation. One
can, in fact, apply a similar trick as for the MSD of anomalous free di↵usion
and establish a fractional di↵erential equation for cuu(t), whose solution is
found to be [33]

cuu(t) = h|u|2iE�(�[t/⌧ ]�). (23)

Here the the mean square position fluctuation is given by

h|u|2i = nkBT/K, (24)

Fractional time derivative 
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Harmonic potential
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Application 2 for ns dynamics : neutron scattering

Experimental dynamic structure factor of 
lysozyme under pressure for q=20 nm−1 
(dots).  

[1]" V. Calandrini  et al, Chem. Phys., vol. 345, pp. 289–297, 2008.
[2]" G. Kneller and V. Calandrini,  Biochimica et Biophysica Acta, vol. 1804, pp. 56–62, 2010.
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Mean square displacement <[x(t)-x(0)]2> of the H 
atoms in lysozyme MD simulation 

Lysozyme

QENS dynamic structure factor 
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The convolution product (17) for the measured dynam-
ics structure factor can be written in the following form,
using S as the model (14),

Smðq ;xÞ ¼ expð$q 2hx2iÞ

% ðl & rÞ þ
X1

n¼1

q 2n hx2in

n !2p
ðLD

a;sn & rÞðxÞ

( )

: ð21Þ

Here LD
a;sn ðxÞ ¼ ðLa;sn & lÞðxÞ is the convolution of a gener-

alized Lorentzian with a normal Lorentzian, for which an
analytical form can be given. Defining

~x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðDq 2Þ2

q
; / ¼ argðDq 2 þ ixÞ; ð22Þ

one obtains [33]

LD
a;sðxÞ ¼

2 ð~xsÞa cos/ þ cosð½a$ 1)/Þf g
~x ð~xsÞa þ 2 cos a/ þ ð~xsÞ$af g

: ð23Þ

In contrast to La,s, its convolution with a normal Lorentz-
ian stays finite at x = 0 if D > 0. This point is important if
one aims at evaluating the convolutions in (21) by the effi-
cient Fast Fourier Transform technique [34], as we did for
the fits presented in this article. With this method singular
functions cannot be treated and we refer to [33] to handle
the case of D = 0. It is worthwhile mentioning that the lat-
ter method can be easily generalized to include also global
diffusion, but the FFT technique is more efficient.

4.3. Results

We start the presentation of the results with the analysis
of the MD simulations. The most basic quantity to con-
sider is the time-dependent mean-square displacement.
Fig. 3 shows the neutron-weighted average atomic MSD
of lysozyme and the fit of the model function (3). The
atomic weights are chosen to be the squared incoherent

scattering lengths. We note that the MSD computed from
MD is the sum of the MSDs in the x-, y- and z-direction,
and expression (3) must thus be multiplied by 3 for the
fit. In the latter only two of the three parameters of the
model, s and a, were used and the mean square position
fluctuation hx2i has been fixed by a separate analysis of
the MD trajectory. The resulting fit parameters can be read
off from Table 3. It is important to emphasize that the
model parameters are quite strongly correlated, in particu-
lar hx2i and s. Therefore a good estimation of hx2i is crucial
even to estimate tendencies of s with pressure. In this con-
text we found that the direct calculation of hx2i from the
MD trajectories is less reliable than the calculation from
the EISF via expression (13) in the limit q! 0. For ambi-
ent pressure this procedure gives a very similar result as the
direct calculation, but for p= 300 MPa the direct calcula-
tion yields a value which is about 10% smaller than the
one obtained from the EISF. This small difference leads
even to a slight shortening of s with pressure instead to
the lengthening seen in Table 3, and the fit is clearly less
good. If all parameters are left free in the fit, one also finds
a lengthening of s with pressure, and the resulting para-
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Fig. 3. Average atomic mean-square displacement of lysozyme in solution obtained fromMD simulation at p= 0.1 MPa and at p= 300 MPa (solid lines).
The broken lines correspond to a fit of the model according to expression (3). See Table 3 for the resulting parameters. More explanations are given in the
text.

Table 3
Parameters for the fractional Ornstein–Uhlenbeck process obtained from
fits to the simulated MSDs and to the simulated intermediate scattering
functions

0.1 MPa 300 MPa

hx2i (nm2) a s (ps) hx2i (nm2) a s (ps)

MSD 6.17 · 10$3 0.54 31.75 4.74 · 10$3 0.54 39.08

Finc(6 nm, t) 4.68 · 10$3 0.53 13.48 3.94 · 10$3 0.50 19.43
Finc(10 nm, t) 3.96 · 10$3 0.51 8.86 3.28 · 10$3 0.49 13.58
Finc(20 nm, t) 2.57 · 10$3 0.52 2.53 2.21 · 10$3 0.45 4.39
Finc(22 nm, t) 2.41 · 10$3 0.50 2.3 2.08 · 10$3 0.44 3.64

The value of hx2i is fixed according to Eq. (13).

294 V. Calandrini et al. / Chemical Physics 345 (2008) 289–297

1 bar

3 kbar

1 bar

3 kbar
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The convolution product (17) for the measured dynam-
ics structure factor can be written in the following form,
using S as the model (14),

Smðq ;xÞ ¼ expð$q 2hx2iÞ

% ðl & rÞ þ
X1

n¼1

q 2n hx2in

n !2p
ðLD

a;sn
& rÞðxÞ

( )

: ð21Þ

Here LD
a;sn
ðxÞ ¼ ðLa;sn & lÞðxÞ is the convolution of a gener-

alized Lorentzian with a normal Lorentzian, for which an
analytical form can be given. Defining

~x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðDq 2Þ2

q
; / ¼ argðDq 2 þ ixÞ; ð22Þ

one obtains [33]

LD
a;sðxÞ ¼

2 ð~xsÞa cos /þ cosð½a$ 1)/Þf g
~x ð~xsÞa þ 2 cos a/þ ð~xsÞ$af g

: ð23Þ

In contrast to La,s, its convolution with a normal Lorentz-
ian stays finite at x = 0 if D > 0. This point is important if
one aims at evaluating the convolutions in (21) by the effi-
cient Fast Fourier Transform technique [34], as we did for
the fits presented in this article. With this method singular
functions cannot be treated and we refer to [33] to handle
the case of D = 0. It is worthwhile mentioning that the lat-
ter method can be easily generalized to include also global
diffusion, but the FFT technique is more efficient.

4.3. Results

We start the presentation of the results with the analysis
of the MD simulations. The most basic quantity to con-
sider is the time-dependent mean-square displacement.
Fig. 3 shows the neutron-weighted average atomic MSD
of lysozyme and the fit of the model function (3). The
atomic weights are chosen to be the squared incoherent

scattering lengths. We note that the MSD computed from
MD is the sum of the MSDs in the x-, y- and z-direction,
and expression (3) must thus be multiplied by 3 for the
fit. In the latter only two of the three parameters of the
model, s and a, were used and the mean square position
fluctuation hx2i has been fixed by a separate analysis of
the MD trajectory. The resulting fit parameters can be read
off from Table 3. It is important to emphasize that the
model parameters are quite strongly correlated, in particu-
lar hx2i and s. Therefore a good estimation of hx2i is crucial
even to estimate tendencies of s with pressure. In this con-
text we found that the direct calculation of hx2i from the
MD trajectories is less reliable than the calculation from
the EISF via expression (13) in the limit q! 0. For ambi-
ent pressure this procedure gives a very similar result as the
direct calculation, but for p = 300 MPa the direct calcula-
tion yields a value which is about 10% smaller than the
one obtained from the EISF. This small difference leads
even to a slight shortening of s with pressure instead to
the lengthening seen in Table 3, and the fit is clearly less
good. If all parameters are left free in the fit, one also finds
a lengthening of s with pressure, and the resulting para-

0 20 40 60 80 100 120 140
0

0.005

0.01

0.015

0.02

0.025

0.03
MD
fit

m
.s

.d
. [

nm
2 ]

t [ps]

300 MPa

0.1 MPa

Fig. 3. Average atomic mean-square displacement of lysozyme in solution obtained from MD simulation at p = 0.1 MPa and at p = 300 MPa (solid lines).
The broken lines correspond to a fit of the model according to expression (3). See Table 3 for the resulting parameters. More explanations are given in the
text.

Table 3
Parameters for the fractional Ornstein–Uhlenbeck process obtained from
fits to the simulated MSDs and to the simulated intermediate scattering
functions

0.1 MPa 300 MPa

hx2i (nm2) a s (ps) hx2i (nm2) a s (ps)

MSD 6.17 · 10$3 0.54 31.75 4.74 · 10$3 0.54 39.08

Finc(6 nm, t) 4.68 · 10$3 0.53 13.48 3.94 · 10$3 0.50 19.43
Finc(10 nm, t) 3.96 · 10$3 0.51 8.86 3.28 · 10$3 0.49 13.58
Finc(20 nm, t) 2.57 · 10$3 0.52 2.53 2.21 · 10$3 0.45 4.39
Finc(22 nm, t) 2.41 · 10$3 0.50 2.3 2.08 · 10$3 0.44 3.64

The value of hx2i is fixed according to Eq. (13).
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Application 1: Lysozyme under pressure by QENS and 
MD simulations (notation: β→α)
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The form of the energy 
landscape does not change 

under pressure.
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We propose a fractional Brownian dynamics model for time correlation functions characterizing the
internal dynamics of proteins probed by NMR relaxation spectroscopy. The time correlation
functions are represented by a broad distribution of exponential functions which are characterized
by two parameters. We show that the model describes well the restricted rotational motion of N–H
vectors in the amide groups of lysozyme obtained from molecular dynamics simulation and that
reliable predictions of experimental relaxation rates can be obtained on that basis. © 2010 American
Institute of Physics. #doi:10.1063/1.3486195$

I. INTRODUCTION

NMR relaxation spectroscopy has proven to be a unique
approach for a site-specific investigation of both global tum-
bling and internal motions of proteins. The molecular mo-
tions modulate the magnetic interactions between the nuclear
spins and lead for each nuclear spin to a relaxation behavior
which reflects its environment. Since its first applications to
the study of protein dynamics, a variety of techniques has
been proposed for the investigation of both backbone and
side chain dynamics. Among them, relaxation measurements
of backbone amide 15N nuclei, which are routinely studied
by NMR, are most widespread.

The relationship between microscopic motions and spin
relaxation rates is provided by Redfield’s theory.1 In the case
of backbone amide 15N, relaxation primarily occurs through
fluctuations of the 15N– 1H-dipole-dipole interactions with
the directly bonded amide proton and of the 15N chemical
shift anisotropy tensor, which is commonly assumed to be
axially symmetric with its axis parallel to the NH bond !for a
general reference, see Ref. 2". The relaxation rates of the 15N
nuclei are determined by time correlation functions !TCFs"
of the form

Cii!t" = %P2!!i!t" · !i!0""& , !1"

where !i!t" is a unit vector pointing along the NH bond of
residue i and P2! . " is the second order Legendre polynomial.
Longitudinal and transverse 15N relaxation rates !R1i and
R2i", and 15N'1H( heteronuclear Overhauser enhancement
!!NHi" are expressed as linear combinations of the spectral
density functions Jii!"", the Fourier transforms of the Cii!t",
which are evaluated at the Larmor frequencies 0, "H, "N,
and "H# N)"H# "N

!NHi = 1 +
$H

$N

d2

R1
!6Jii!"H+N" − Jii!"H−N"" , !2a"

R1i = d2!3Jii!"N" + Jii!"H−N" + 6Jii!"H+N"" + 2c2Jii!"N" ,

!2b"

R2i = d2*2Jii!0" +
3
2

Jii!"N" +
1
2

Jii!"H−N" + 3Jii!"H"

+ 3Jii!"H+N"+ + c2*4
3

Jii!0" + Jii!"N"+ . !2c"

Here d=%0&$H$N /4,10'%rNH
3 & and c=$NB0()N /,15. The

parameters $H and $N are the gyromagnetic ratios of 15N and
1H atoms, respectively, %0 is the vacuum magnetic suscepti-
bility, & is the reduced Planck constant, and ()N is the 15N
chemical shift anisotropy. The NH distance is considered
constant and is fixed to its average value %rNH&.

The Redfield equations show that relaxation measure-
ments probe the relaxation dynamics of a selected nuclear
spin at only five selected frequencies. It is therefore not pos-
sible in practice to obtain a detailed picture about the internal
and global dynamics of proteins by a numerical reconstruc-
tion of Jii!"" from NMR data. In the model-free !MF" ap-
proach by Lipari and Szabo3 the assumption is made that the
internal reorientational correlation function decays exponen-
tially. Various studies of protein dynamics, spanning time
scales from picoseconds to hours4–10 give, however, evidence
that internal protein dynamics is characterized by strongly
nonexponential TCFs which may be described by non-
Markovian stochastic models, such as fractional Brownian
dynamics !fBD" and the continuous time random walk
!CTRW".11 The TCFs resulting from such models are char-
acterized by a superposition of exponential functions, with a
broad spectrum of decay rates. In the context of NMR spec-
troscopy we have recently shown12 that these relaxation
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b"Electronic mail: daniel.abergel@ens.fr.
c"Electronic mail: gerald.kneller@cnrs-orleans.fr.
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Quantum mechanical energy landscape concept 
for neutron scattering

Describe the neutron as an active probe in 
an energy-landscape oriented interpretation 
of neutron scattering.



emits a γ-ray with energy EMö = 14.412497 keV and a mean life
τMö = 141 ns corresponding to a rate coefficient k Mö = 1/τMö =
7.1 × 107 s−1 and a natural line width ΓMö = 4.66 neV. Usually,
the 57Fe nucleus recoils; the emitted gamma ray loses the recoil
energy and shifts out of resonance with the 14.4-keV transition.
However, if the 57Fe atom is embedded in a solid, some of the
atoms do not recoil so that the emitted gamma rays carry the full
energy EMö and have the natural line width ΓMö. The Mössbauer
spectrum is measured by the transmission of γ-rays from a 57Fe
source moving with a velocity v through a stationary sample
containing 57Fe embedded for instance in a protein and kept at
the temperature T. A fraction f(T) of the incoming recoilless

Mössbauer photons elastically excites the 14.4-keV level. In
the thin-absorber limit the transmission Tr(ΔE) is related to the
scattering amplitude S(ΔE) by Tr (ΔE) = 1 − const. S(ΔE),
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Fig. 1. (A) Conventionally the elastic line and the quasielastic band in
neutron scattering are treated as separate phenomena. (B) The broad
band is usually assumed to be composed of Lorentzians of different widths
and amplitudes, centered at ΔE = 0 (black curves). The sum is shown in red.
(C) The proposed model (ELM) is composed of a very large number of
narrow, shifted Lorentzians and has no separate elastic line. B and C
adapted from ref. 4.
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Fig. 2. (A) Energy spectrum of perdeuterated metmyoglobin measured
with QENS (red circles). The resolution function R(E) is scaled to maximum at
zero energy and assumed to be approximately Gaussian (blue lines). The
spectrum involves 72% H atoms from hydration water and 28% from the
protein. Adapted from Achterhold et al. (6). (B) Mössbauer spectrum for car-
bonmonoxy–myoglobin at low temperature. Adapted from ref. 9. (C) The
spectrum measured using the Mössbauer effect for hydrated metmyoglobin at
295 K. Adapted from ref. 10. Hydration is 0.4 for A and C. Note the different
energy scales in A and B.
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emits a γ-ray with energy EMö = 14.412497 keV and a mean life
τMö = 141 ns corresponding to a rate coefficient k Mö = 1/τMö =
7.1 × 107 s−1 and a natural line width ΓMö = 4.66 neV. Usually,
the 57Fe nucleus recoils; the emitted gamma ray loses the recoil
energy and shifts out of resonance with the 14.4-keV transition.
However, if the 57Fe atom is embedded in a solid, some of the
atoms do not recoil so that the emitted gamma rays carry the full
energy EMö and have the natural line width ΓMö. The Mössbauer
spectrum is measured by the transmission of γ-rays from a 57Fe
source moving with a velocity v through a stationary sample
containing 57Fe embedded for instance in a protein and kept at
the temperature T. A fraction f(T) of the incoming recoilless

Mössbauer photons elastically excites the 14.4-keV level. In
the thin-absorber limit the transmission Tr(ΔE) is related to the
scattering amplitude S(ΔE) by Tr (ΔE) = 1 − const. S(ΔE),
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band is usually assumed to be composed of Lorentzians of different widths
and amplitudes, centered at ΔE = 0 (black curves). The sum is shown in red.
(C) The proposed model (ELM) is composed of a very large number of
narrow, shifted Lorentzians and has no separate elastic line. B and C
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Fig. 2. (A) Energy spectrum of perdeuterated metmyoglobin measured
with QENS (red circles). The resolution function R(E) is scaled to maximum at
zero energy and assumed to be approximately Gaussian (blue lines). The
spectrum involves 72% H atoms from hydration water and 28% from the
protein. Adapted from Achterhold et al. (6). (B) Mössbauer spectrum for car-
bonmonoxy–myoglobin at low temperature. Adapted from ref. 9. (C) The
spectrum measured using the Mössbauer effect for hydrated metmyoglobin at
295 K. Adapted from ref. 10. Hydration is 0.4 for A and C. Note the different
energy scales in A and B.
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No qualitative distinction between elastic 
and inelastic scattering



where ΔE = EMö v/c. Mössbauer spectra are evaluated by plot-
ting Tr(ΔE) versus ΔE or versus the corresponding source ve-
locity v in mm/s, where 1 mm/s corresponds to 48.8 neV. Fig. 2 B
and C displays Mössbauer spectra (9, 10). At 80 K, the spectrum
can be fit with a single Lorentzian with about twice the natural
line width ΓMö. At 295 K the spectrum is broad and can be fit
either with a sharp line and a broad band (SMM) or with a broad
spectrum consisting of a very large number of Mössbauer lines
without a central narrow line (ELM).

ELM
The Mössbauer photons emitted by a stationary 57Fe source al-
ways have the energy EMö = 14.4 keV, the lifetime τMö = 141 ns,
and the natural line width ΓMö = 4.66 neV. The resonance levels
in the 57Fe absorber have the same energy and line width. In
each observed event, a Mössbauer photon is resonantly absorbed
by a 57Fe atom in the target. At low temperatures the spectrum
shows a narrow line with a width of about 2ΓMö as in Fig. 2B. If
the target 57Fe atom is in a protein and observed at ambient
temperature, the spectrum shows broad wings as in Fig. 2C. In
the ELM we do not introduce a separate sharp central line, but
interpret the observed spectrum as being smooth, composed of
lines with width 2ΓMö (Fig. 1C). Each 57Fe atom has a different
resonance energy owing to the protein being in a different con-
formational substate. An incoming quantum with energy EMö can
only be absorbed by a transition with the same energy EMö. If the
absorption spectrum does not show the line at EMö, but at EMö +
ΔE, the target must have provided the energy ΔE during the
lifetime τMö. We propose that the energy fluctuations in the
protein–solvent system are responsible for the energy shifts. A
protein can assume a large number of different conformations
with energies up to a few eV (11–14). The 57Fe atom is coupled
to the protein–solvent system and its FEL. At very low temper-
atures, transitions between substates are too slow to be observed.
A protein in a given substate remains in that substate, and the
Mössbauer spectrum consists of a single narrow line. At high
temperatures, however, a protein fluctuates rapidly among sub-
states. The Mössbauer photon is a wave packet (15) that
exchanges energy with the 57Fe atom during the passage time
given by the Mössbauer lifetime τMö. During this time the protein
makes a random walk in the energy landscape as shown in Fig. 3
(3). When the Mössbauer quantum is registered the spectrometer
records the absorption line at EMö + ΔE. ΔE does not depend on

the energy of the initial substate and can be positive or negative.
The result is a broad band. If ΔE << kBT, the band is symmetric
with the center set at ΔE = 0 as in Figs. 1 and 2. The energy for the
random walk is provided by the heat bath in which the protein
lives (16). The transitions in the FEL are driven by three types of
fluctuations known from the physics of solids, glasses, and super-
cooled liquids (17). They are the α-fluctuations in the bulk solvent
(13, 18), the βh-fluctuations in the hydration shell (19–21), and
vibrations (22). The α-processes are structural fluctuations in the
solvent; they modulate the shape of the protein and can thereby
induce transitions among the substates. Their rate coefficient
kα(T) is inversely proportional to the solvent viscosity; the
α-fluctuations are unobservable in solids. The βh-fluctuations are
dielectric fluctuations in the hydration shell. Their rate coefficient
kβ(T) depends on the degree of hydration and they are absent in
dehydrated proteins (23, 24). Here we use experimental data
from systems where the α-fluctuations are absent. We have
treated the effect of thermal vibration previously (3). Thus, we
restrict the treatment on the effect of the βh-fluctuations.
The exploration of the ELM starts with the elastic fraction f(T),

the primary result of most experiments. Unfortunately many papers
do not report f(T), but invert the Lamb–Mössbauer relation

f ðTÞ= exp
!
-q2

D
x2 ðTÞ

E"
[1]

and publish the mean-squared displacement (msd), <x2 (T)>.
Here q is the momentum transfer. This relation is only valid in

the Gaussian approximation, which can be wrong in complex
systems (25). This leaves us in a quandary. We can either use Eq.
1 to extract f(T) or we can use the msd despite its limited validity.
We select the second route and plot in Fig. 4 the msd from three
Mössbauer experiments (26–28) and three QENS experiments
(29, 30). The figure shows four striking features: (i) The curves
are all similar despite the fact that they involve very different
targets, techniques, samples, and times. (ii) The msd increases
nearly linearly from about 10 K to a temperature TD ∼ 180 K.
The slope is similar for the Mössbauer experiments and the QENS.
TD is approximately the same for QENS and the Mössbauer effect.
(iii) At TD, the slope of the msd in hydrated proteins increases
dramatically. This effect is called “protein dynamical transition,” or
PDT (29). (iv) In dehydrated proteins, the PDT is absent and the
nearly linear T dependence of the msd continues to at least 300 K.
We now compare the two models in their ability to explicate these
features. The SMM can explain feature (ii) as being caused by
vibrations (31), but has little to say for the rest. The ELM explains
all features: (i) The similarity implies underlying general mecha-
nisms. The principal features of the ELM, namely the existence of
the FEL and the control through fluctuations, are similar in all
systems in Fig. 4. (ii) The approximately linear increase with
temperature of the msd below about 180 K is explained in both
models as being caused by the thermal vibrations (3). (iii) The
ELM quantitatively explains the PDT: The change in slope is due
to the kinetic onset of the βh-fluctuations in the hydration shell
(3, 18, 19, 32). Fig. 3 implies that sizable shifts can only be observed
if the βh-fluctuations are faster than the characteristic Mössbauer
rate or if

τβ < τM€o: [2]

This simple relation is significant because it pinpoints the
temperature TD where the protein dynamics changes from vibra-
tion-dominated to external-fluctuation controlled. Below TD
thermal vibrations dominate and proteins are essentially non-
functional. Above TD the external fluctuations are crucial; they
shift the lines from the center thereby decreasing f(T), increasing
the msd, and producing the broad spectrum. (iv) In the absence
of the external fluctuations no dynamical transition occurs.

Fig. 3. Random walk of a protein in the energy landscape. In the Mössbauer
effect, the incoming photon hits a protein in a specific substate. During the
lifetime τMö, the protein makes a random walk in the energy landscape,
gaining or losing the energy ΔE. The jumps in the FEL are caused by the βh-
fluctuations in the hydration shell. The time for one jump of magnitude ±δE
is τβ. The total energy shift is approximately given by ΔE ∼ ± δE(τMö/τβ)1/2. The
model is assumed to apply also to QENS.

12766 | www.pnas.org/cgi/doi/10.1073/pnas.1411781111 Frauenfelder et al.

During its flight through the sample, the neutron wave packet 
records the net energy transition of the system from the 
initial energy level E to the final level E+ΔE. 

• The description is essentially qualitative
• The neutron is considered as a passive probe
• Momentum transfer is not considered



The role of momentum transfer during incoherent
neutron scattering is explained by the energy
landscape model
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We recently introduced a model of incoherent quasielastic neu-
tron scattering (QENS) that treats the neutrons as wave pack-
ets of finite length and the protein as a random walker in the
free energy landscape. We call the model ELM for “energy land-
scape model.” In ELM, the interaction of the wave packet with
a proton in a protein provides the dynamic information. During
the scattering event, the momentum Q(t) is transferred by the
wave packet to the struck proton and its moiety, exerting the
force F(t) = dQ(t)/dt. The resultant energy E? is stored elastically
and returned to the neutron as it exits. The energy is given by
E? = kB(T0 + �Q), where T0 is the ambient temperature and �
(⇡ 91 K Å) is a new elastobaric coefficient. Experiments yield the
scattering intensity (dynamic structure factor) S(Q; T) as a func-
tion of Q and T . To test our model, we use published data on
proteins where only thermal vibrations are active. ELM competes
with the currently accepted theory, here called the spatial motion
model (SMM), which explains S(Q, T) by motions in real space.
ELM is superior to SMM: It can explain the experimental angular
and temperature dependence, whereas SMM cannot do so.

QENS | de Broglie neutron wave packet | pressure-temperature
equivalence | transient energy transfer

Incoherent quasielastic neutron scattering (QENS) is used to
study, for instance, the dynamics of complex systems (1, 2).

In these experiments, the scattering intensity S(Q ,!,T ) is mea-
sured as function of temperature T , momentum transfer Q , and
energy transfer ~!. “Incoherent” essentially means that the neu-
tron scatters from only one proton, and thus interference from
different protons does not contribute. To extract the informa-
tion from the data, a model is needed. The currently accepted
model, used for > 50 y, assumes that the observed effects are due
to spatial motions. We call it the spatial motion model (SMM).
We recently introduced a model in which S(Q ,!,T ) is based on
motions in the conformational free energy landscape (FEL) (3,
4). We call the model ELM, for energy landscape model. ELM
assumes that the effects observed in QENS are predominantly
due to changes in the population of the FEL. ELM as intro-
duced in ref. 4 explained the neutron scattering from proteins,
but left the role of the momentum transfer Q in limbo. The
Q dependence is noteworthy because, although the physics of
n-p scattering at low energies is s-wave (isotropic), the observed
scattering from proteins is Q-dependent (see Fig. 3A), meaning
anisotropic. We have now found that Q plays an important role:
It creates an inhomogeneity in the target during the passage of
the neutron.

Consider a neutron with wave vector q that hits a proton in a
protein. S(Q ,!,T ) is measured as a function of the tempera-
ture T at different scattering angles, characterized by their wave
vectors q0. The wave vectors q and q0 determine the transferred
wave vector, Q= q0�q. Q is related to the momentum by P= ~Q.
E = ~! is the energy change of the neutron when it has com-
pleted its scattering event. To simplify notation, we omit Q or !
from S(T ) when Q =0 or !=0. In elastic scattering, ! is zero.

In quasielastic scattering, E = ~! is nonzero, but much smaller
than the energy of the incoming neutron. Fig. 1 shows character-
istic features of the QENS. At low temperatures, only a narrow
line is observed as in Fig. 1A. Its spectral shape is determined by
the resolution function of the system. With increasing tempera-
ture, S(0, 0;T )⌘S(T ) decreases, and a broad band emerges. In
SMM, the elastic line and the broad band are assigned to sep-
arate processes. The broad band is taken to be homogeneous
and is ascribed to spatial motions. In contrast, ELM assumes
that the broadening is caused by fluctuations in the energy land-
scape that shift lines, as indicated in Fig. 1B, where the bars
represent the shifted lines. The broad spectrum is therefore
inhomogeneous, composed of lines with narrow widths. This
explanation has been proven with the Mössbauer effect (3, 5) and
for neutron scattering (6) when the samples experience driven
vibrations.

The Woes of the SMM
The simplest version of the SMM assumes that the scatter-
ing intensity for elastic processes can be described by a single
Gaussian of the form,

S(Q , 0,T ) = A exp{�Q2hr2i/3}. [1]

This form is often generalized to include a summation over
several Gaussians. The spatially averaged mean-square displace-
ment (MSD) of the hydrogen atoms in the target is given by hr2i,
and A is a normalization coefficient. The SMM has several short-
comings. (i) Low-energy n-p scattering is isotropic. In addition,

Significance

Quasielastic neutron scattering (QENS) has been used for
> 40 y to study complex systems. Fascinating questions
remain. The neutron has to be a de Broglie wave packet to
obtain dynamics information on biological systems. During its
interaction with a proton in a protein, the wave packet puts
pressure on the proton and its environment. The protein acts
like an ideal spring and by Hooke’s law transiently stores the
energy produced by the pressure. On leaving, the wave packet
regains essentially the full energy. However, during the pas-
sage, fluctuations in the sample change the neutron energy
slightly and broaden the energy spectrum. The results call for
a reexamination of the theory of quasielastic neutron scatter-
ing from complex systems.
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• The neutron is an active probe : “Local 
heating” of the sample due to the momentum 
transfer.

• But: Momentum and energy transfer are not 
connected through scattering kinematics.

PNAS 114, 5130 (2017).
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A spectroscopic interpretation of incoherent neutron scattering

experiments is presented which is based on Franck–Condon-type

probabilities for scattering-induced transitions between quantum

states of the target. The resulting expressions for the scattering

functions enable an energy landscape-oriented analysis of neu-

tron scattering spectra as well as a physical interpretation of Van

Hove’s space–time correlation functions in the quantum regime

that accounts for the scattering kinematics. They suggest more-

over a combined analysis of quasi- and inelastic scattering that

becomes inseparable for complex systems with slow power-law

relaxation.

neutron scattering theory | quasielastic neutron scattering | energy
landscapes | complex systems | Van Hove theory

I
ncoherent thermal neutron scattering is an established tech-
nique for studying the average single-atom dynamics in molec-

ular systems. As far as the stochastic, diffusive dynamics is
concerned, one usually speaks of quasielastic neutron scattering
(QENS) (1–3). The accessible time scales for QENS experiments
are roughly between 0.001 and 100 ns and the accessible length
scales between 1 and 100 Å. QENS is in particular increasingly
used to study the internal dynamics of complex molecular sys-
tems, such as proteins, which is characterized by self-similarity.
Such a behavior can be qualitatively explained by viewing the
dynamics of the target system as a thermally activated hopping
process between the many energetically almost equivalent min-
ima (“conformational substates”) of a fractal free energy land-
scape (FEL). This idea has been introduced by Frauenfelder (4)
in the context of protein dynamics, but the concept applies to any
complex physical system with a broad spectrum of (free) energy
levels. It is, however, not a trivial task to integrate the FEL
picture into a quantitative analysis of neutron scattering exper-
iments. In a series of recent papers, Frauenfelder, Fenimore,
and Young proposed a corresponding approach (“energy land-
scape model”), which is inspired by Mößbauer spectroscopy
(5–7). The widely used analysis of QENS in terms of “spatial
motion models” (3, 8, 9), which is based on Van Hove’s the-
ory of neutron scattering (10), is claimed to give the wrong
picture of QENS. This has led to controversial discussions (11,
12), and here only a few remarks are added that are meant to
motivate the approach to modeling QENS and incoherent neu-
tron scattering in general that will be presented in this paper. In
the energy landscape model by Frauenfelder and coworkers, the
effects of momentum and energy transfer are essentially treated
in the framework of classical mechanics, using physically plau-
sible arguments for proteins but not a systematic approach on
the basis of quantum mechanical scattering theory. The criticized
classical QENS models are identified with the underlying neu-
tron scattering theory developed by Van Hove (10), overlooking,
however, that nothing is wrong with his space–time interpre-
tation of neutron scattering experiments, as long as one does
not consider the classical limit “~! 0” of the scattering func-
tions. In this limit, which is indeed used in most QENS models,
not only are quantum properties of the scattering system dis-
regarded but so is the scattering kinematics—that is, the local
perturbation of the sample by the incident neutrons (13, 14).
The corresponding classical scattering functions do not fulfill the
detailed balance symmetry relation of quantum time correlation

functions, which is reflected in QENS spectra from molecular
systems if the energy transfer becomes a noticeable fraction of
the thermal energy, kBT . In Frauenfelder’s QENS model, the
perturbation of the sample by the scattered neutrons is repre-
sented in the form of a transient local pressure the incident
neutron exerts on the environment of the scattering atom, but
the scattering kinematics is not completely accounted for, since
momentum and energy change of the scattered neutrons are
not connected and energy changes just are Doppler-type passive
recordings of the scattering system’s “hops” on the FEL.

The idea of this paper is to develop a spectroscopic analy-
sis of incoherent neutron scattering experiments on the basis of
quantum mechanical scattering theory, which fully integrates the
scattering kinematics and facilitates the interpretation of neu-
tron scattering spectra from complex systems within the energy
landscape picture. The paper attempts moreover to give a new
physical interpretation of Van Hove’s space–time correlation
functions in the quantum case and to establish a physically
intuitive relation to their classical counterparts.

Wick’s Interpretation of Plane Wave Neutron Scattering
In 1954, when Van Hove (10) presented his famous paper on
neutron scattering theory, Gian-Carlo Wick (15) presented a
completely different but equivalent form, which is the starting
point for the description of neutron scattering experiments pre-
sented in this paper. Similar to Van Hove, Wick starts from
standard scattering theory, where neutron scattering experi-
ments are described within the Born approximation, using the
Fermi pseudopotential to model the short-ranged interactions
between the neutron and the atomic nuclei in the sample under
consideration (2). The incident neutrons are described by plane
waves, with a well-defined initial momentum, p0 = ~k0, and leave
the sample again with a well-defined momentum p= ~k. In this
case, the differential scattering cross-section per atom is given by
the relation

Significance

Despite the long history of neutron scattering studies on com-

plex condensed matter systems, there is still a need for appro-

priate analysis concepts beyond the classical Van Hove theory,

which is commonly used to interpret the experimental spectra

in terms of trajectory-based dynamical models. The approach

presented in this paper, which is based on quantum mechan-

ical transition rather than on classical displacement probabil-

ities, accounts by construction for the scattering kinematics

and opens perspectives for the interpretation of quasielastic

neutron scattering experiments from complex systems.
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Based on Wick’s “kicked” Hamiltonian, obtain an energy 
landscape formulation of neutron scattering that is based 
on quantum mechanical scattering theory

Energy-landscape representation of the intermediate

scattering function

Use the complete sets of energy eigenstates of Ĥ and Ĥ
0(q) to

obtain a spectral representation of the intermediate scattering
function,
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Eigenvalues and eigenfunctions for the Hamiltonians

Line spectrum for the dynamic structure factor

Momentum transfer dependent probabilities for 
neutron scattering induced energy transitions

Franck-Condon picture of neutron scattering
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Franck-Condon picture of neutron scattering

Ĥ�n(p) = En�n(p)
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H’ : same energies, but 
shifted wave functions

“Energy landscape”=energy spectrum

Franck-Condon form



“Mößbauer” line spectrum for S(q,ω)
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where r̂↵ are the position operators of the atomic nuclei and
q = (p0 � p)/~ and ! = (E0 � E)/~ denote, respectively,
the momentum and energy transfer from the neutron to the
sample in units of ~. The weighted sum of time correlation
functions, F(q, t), is the intermediate scattering function and
the weighting factors are related to the coherent and inco-
herent scattering lengths of the atoms, �↵� = b

⇤
↵,cohb�,coh +

�↵� |b↵,inc|2. The latter are in general complex and deter-
mine the corresponding total neutron scattering cross sections
through �↵ = 4⇡(|b↵,coh|2 + |b↵,inc|2).

In the following it will be for simplicity assumed that the
sample under consideration contains a large amount of hy-
drogen atoms, which is typical for proteins and soft matter
systems in general. It will also be assumed that the hydrogen
atoms in the system under consideration are physically equiva-
lent. Since incoherent scattering from hydrogen dominates by
far all other contributions [8, 9], the intermediate scattering
function can then be approximated by

F(q, t) ⇡ |bH,inc|2Fs(q, t), [4]

where Fs(q, t) is the self-part of one “representative” scatter-
ing atom (arbitrarily chosen to be ↵ = 1),

Fs(q, t) =
D
e
�iq·r̂1(0)

e
iq·r̂1(t)

E
. [5]

Analogously to [2] we introduce the corresponding dynamic
structure factor through

Ss(q,!) =
1
2⇡

Z +1

�1
dt e

�i!t
Fs(q, t), [6]

and the rest of the paper will be devoted to the discussion of
Fs(q, t) and Ss(q,!).

Wick’s form of the intermediate scattering function. In an
early paper on neutron scattering theory, GC Wick used an
elegant trick to cast the intermediate scattering function into
a form which emphasizes the kinematics of the scattering pro-
cess [10]. The trick is based on the fact that position operators
are generators for translations in momentum space (and vice
versa). Applied to the intermediate scattering function it leads
to the identity

Fs(q, t) =
1
Z
tr
n
e
��Ĥ

e
�iq·r̂

e
itĤ/~

e
iq·r̂

e
�itĤ/~

o

=
1
Z
tr
n
e
��Ĥ

e
itĤ

0(q)/~
e
�itĤ/~

o
, [7]

where Ĥ is the Hamilton operator of the sample and Ĥ
0(q)

is obtained by shifting the momentum of the scattering atom
by ~q,

Ĥ =
NX

↵=1

p̂2
↵

2m↵

+ V (r̂1, . . . , r̂N ) , [8]

Ĥ
0(q) =

NX

↵=1

(p̂↵ + �1↵~q)2
2m↵

+ V (r̂1, . . . , r̂N ) . [9]

As usual, V (.) denotes the potential energy and

Z = tr{e��Ĥ} [10]

is the partition function. Here � = (kBT )
�1, with kB being

the Boltzmann constant and T the absoute temperature. The
Hamilton operator Ĥ

0(q) carries thus the “kick” which the
scattering atom receives from the scattered neutron.

ω

S(q,ω)

Fig. 1. Sketch of a Franck-Condon type line spectrum for neutron scattering.

The slight asymmetry indicates the detailed balance relation.

Recoil e↵ects.Defining the frequency moments of the dynamic
structure factor through

h!ni ⌘
Z +1

�1
d! !

n
Ss(q,!) = (�i)n @

n

t Fs(q, t)|t=0 , [11]

it follows directly from Wick’s form of the intermediate scat-
tering function that

h!i = ~|q|2
2M

. [12]

The short time behavior of the intermediate scattering func-
tion is thus entirely determined by the scattering kinematics
and Expression (12) is the so-called recoil moment.

Franck-Condon principle for discrete energy spectra
Formalism.Suppose now that the eigenvalue spectrum of Ĥ

is discrete, such that Ĥ|�ni = En|�ni (n = 0, 1, 2, . . .) and
|�ni form a basis in a corresponding Hilbert space of square-
integrable functions. The eigenstates of the perturbed Hamil-
tonian, Ĥ 0(q), here denoted as |�0

n(q)i, constitute another ba-
sis and it follows from the completeness of the two bases that
the intermediate scattering function can be formally expressed
as

Fs(q, t) =
1
Z

X

m,n

e
��Em

e
i(E0

n�Em)/~ |amn(q)|2 , [13]

where
amn(q) = h�0

n(q)|�mi [14]

are the projections of the perturbed eigenstates onto the un-
perturbed ones.

The transition amplitudes amn(q) take a particularly sim-
ple form if one works in momentum space representation,
where momentum operators are replaced by normal vectors,
p̂↵ ! p↵, and position operators by di↵erential operators,
x̂↵ ! i~@/@p↵. The Hamiltonian takes here the form

Ĥ =
NX

↵=1

|p|2↵
2m↵

+ V (i~@/@p1, . . . i~@/@pN ) [15]

and one sees immediately that the eigenfunctions of the shifted
version have the same functional form as those of the original
one. Defining �m(p) ⌘ hp|�mi to be the the eigenfunctions of
the unperturbed Hamiltonian in momentum space, we have

Ĥ�n(p) = En�n(p), [16]

Ĥ
0(q)�n(p+ ~Q) = En�n(p+ ~Q). [17]

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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SLOW NEUTRON SPECTROMETRY

Theories of the physics of condensed matter involve the most basic aspects
of modern physics: the principles of conservation (energy, linear momen-
tum etc.), the chemical elements in various ionic forms, electrons, neutrons,
quantum mechanics. Implementations for a particular substance in a parti-
cular setting, usually involve drastic approximations if the required quantum
statistical calculations are to be possible. Happily, because the nuclear and
magnetic interactions between the neutron and atom are (in some sense)
weak, the very good "first Born approximation ” is applicable, and the neu-
trons are effectively “decoupled” from the dynamics of the scattering system
which can be considered in isolation. The neutron, in being scattered,
“causes” transitions between the quantum states of the scattering system but
does not change the states.

In general the scattering system is modelled, with assistance of experi-
mental information about it. For example, the chemical constitution would
be taken as given. An aluminium crystal would be taken to have the face-cen-
tred cubic (FCC) structure indicated from X-ray or neutron diffraction; the-
oretical calculation would be unlikely to produce this ab initio. The dynamics
of the so-defined system could be studied a priori by simple models, or could
be studied using a phenomenological theory with numerous parameters to
be fitted. The Born-von Kármán theory [O] of crystal lattice vibrations can
host either approach, at least to some degree. From the model, macroscopic
properties (optical, thermodynamic and the like) can be calculated and
compared with experiment. Until the advent of neutron spectroscopy, only
qualitative comparison was normally possible - the “distance” between the
concepts at the atomic level and the percepts at the macroscopic level was
simply too great.

Normally neutron energies (with their associated momenta) are inferred
from their wavelengths as determined by diffraction from a single crystal
through the Bragg Law, or from their times of flight over a known distance.
In each case the energy is proportional to the inverse square of the measured
quantity. Thus, at the theoretical level, spectrometers based on the two met-
hods have the same law of dispersion. (Any measurement of the same spec-
trum by the two methods is implicitly a test of quantum mechanics.) However,
crystal spectrometers have additional dispersion from the Bragg transforma-
tion from angle of reflection to wavelength. The two methods are very diff-
erent in their technical aspects and the associated experimental problems.

The first method considered at Chalk River (in 1951) and (I think) else-
where, was to employ time-of-flight to measure both incoming and outgoing
neutrons. The “Double-Chopper” method was to employ electrically phased
choppers to select the energy of the incoming neutrons and the time-of-
flight from the second chopper to the detector to infer the energy of the scat-
tered neutrons. (Bernard Jacrot, at Saclay, built and employed for a time
[26] a double-chopper consisting of two large wheels on a rotating shaft.) It
was soon apparent that development of a competent Double-Chopper instru-



Detailed balance and recoil
It follows from the symmetry properties of the transition 
properties

Franck-Condon picture of neutron scattering
Detailed balance
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that the detailed balance relations are fulfilled

The scattering kinematics is reflected in the recoil moment 
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Re-interpretation of the Van Hove function

Gs(r, t) =
1

(2⇡)3

Z
d3q e�iq·rFs(q, t)

=

Z
d3r0 h�(r� r0 + r̂1(0))�(r

0 � r̂1(t))i
<latexit sha1_base64="FmC0L8E7A/VZHc24wGajtYIT+3I="></latexit>

The standard form
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1

Z

X

m,n

e��EmGm!n(r, t)
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The Franck-Condon form

Defining the overlap integrals

Gm!n(r, t) =

Z
d3r Tm!n(r+ r0, t)T ⇤

m!n(r
0, 0)

<latexit sha1_base64="b2+gRArAiVKVtB73nnsJGVZHh7s="></latexit>

The G-coefficients are given by the correlation integrals

Tm!n(r, t) =

Z
d3r2 . . . d

3rN  ⇤
n(r, r2, . . . , rN , t) m(r, r2, . . . , rN , t).

<latexit sha1_base64="Wh7buKKoftYJTGl4KX2298Duxuw="></latexit>

 m(R, t) = �m(R)e�iEmt/~
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G(cl)
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Again the classical limit

The double sum

translates into the single phase space average

where 

are transition “certainties”, since the transition 
�(0) ! �(t)

<latexit sha1_base64="q7eA8eC4irplOHZdz+FpTaiPGO4="></latexit>

is deterministic. 
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The vector p comprises here the Cartesian coordinates of all
atomic momenta and the components of Q are defined such
that the operation p + ~Q shifts only the momentum of the
scattering atom, i.e. Q1 = qx, Q2 = qy, Q3 = qz, and
Qj = 0 for 3 < j  3N . It follows then from [17] that
�
0
n(p;q) = �n(p+ ~Q), such that the coe�cients amn(q) can

be expressed as overlap integrals involving the shifted and un-
shifted energy eigenfunctions of the unperturbed Hamiltonian
in momentum space,

amn(q) =

Z
d
3N

p�
⇤
n(p+ ~Q)�m(p). [18]

The squared transition amplitudes,

pmn(q) ⌘ |amn(q)|2 , [19]

fulfill the relations
X

m

pmn(q) =
X

n

pmn(q) = 1, [20]

pmn(0) = �mn, [21]

and can thus be interpreted as probabilities for the neutron
scattering-induced transitions |�mi ! |�ni of the sample dur-
ing the scattering event. Using the notation (19), the inter-
mediate scattering function and the corresponding dynamic
structure factor take the form

Fs(q, t) =
1
Z

X

m,n

e
��Em

e
it(En�Em)/~

pmn(q), [22]

Ss(q,!) =
1
Z

X

m,n

e
��Em

pmn(q)� (! � [En � Em]/~) , [23]

where the partition function is given by

Z =
X

m

e
��Em

. [24]

The symmetry property

pmn(q) = pnm(�q) [25]

leads to the detailed balance relations

Fs(q, t) = Fs(�q,�t+ i�~), [26]

Ss(q,!) = e
�~!

Ss(�q,�!), [27]

which reflect the fact that energy loss of the scattered neutrons
more likely than energy gain [8].

The Dirac distributions in the double sum (23) express en-
ergy conservation for the transition Em ! En and Fig. 1
shows a sketch of a such a line spectrum. Each Dirac distri-
bution is here slightly broadened to make it visible. Splitting
the double sum in Expression (23) into terms with m 6= n and
m = n, one obtains, respectively, a decomposition into an in-
elastic and an elastic component of the spectrum. The latter
is usually written as

S
(el)
s (q,!) = EISF (q)�(!), [28]

where

EISF (q) =
1
Z

X

m

e
��Em

pmm(q) [29]

is the Elastic Incoherent Structure Factor.

The construction of the transition probabilities re-
minds the Franck-Condon theory of vibronic transitions in

p
~q

~�

0

1

2

3

4

0�
1�

2�
3�

4�

E
TT �

Fig. 2. Neutron scattering in the Franck-Condon representation. The model

system is here the harmonic oscillator and one considers the 0 ! 3 excitation. T
and T 0

are the kinetic energies, respectively, before and after the collision with the

neutron and T 0(p) = T (p+ ~q).

molecules [11, 12]. In the latter case one considers, however,
overlap integrals of energy eigenfunctions in coordinate space,
which correspond to the molecular electronic spectra before
and after the absorption or emission of a photon. The absorp-
tion/emission of the photon changes here the potential energy
of the molecule and this change entails a shift of its minimum
in space, i.e. a shift of the atomic equilibrium configuration.
In the case of neutron scattering it is instead the kinetic en-
ergy of the atomic nuclei in the sample which is shifted due to
the momentum transfer ~q of the neutron. Fig. 2 illustrates
this point for the harmonic oscillator which will be discussed
in the following.

Harmonic oscillator.The harmonic oscillator is the simplest
spectroscopic model system with a discrete spectrum of eigen-
values. The potential energy function is here a quadratic func-
tion of the displacement coordinate, x,

V (x) =
1
2
M⌦2

x
2
,

where M is the mass of the oscillator and ⌦ its (angular) fre-
quency. Since both the potential and the kinetic energy are
quadratic functions in time, the stationary Schrödinger equa-
tion in momentum and position space have the same form if
appropriate dimensionless variables are introduced,

�
00(⇠) +

✓
✏� ⇠

2

4

◆
�(⇠) = 0.

Here ✏ = E/~⌦ is the energy in units of ~⌦ and in the following
⇠ =

p
2/(~M⌦)p. The solution of the stationary Schrödinger

equation for an oscillator leads to the well-known equidistant
eigenvalue spectrum, En = (n + 1/2)~⌦, and the associated
eigenfunctions have the form

�m(⇠) = exp(�⇠
2
/4)Hem (⇠) /

p
m!,

where Hem(x) = Hm

�
x/

p
2
�
/
p
2m and Hm(x) are the Her-

mite polynomials [13].

The transition amplitudes and probabilities for the har-
monic oscillator can be computed analytically. Introducing
the dimensionless momentum transfer

y(q) =

r
2~
M⌦

q, [30]
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they are found to be (details are skipped here)

amn(q) = e
� y2

8 2m�n

r
m!
n!

y
n�m

L
(n�m)
m

✓
y
2

4

◆
, [31]

pmn(q) = e
� y2

4 (�1)m+n
L

(n�m)
m

✓
y
2

4

◆
L

(m�n)
n

✓
y
2

4

◆
, [32]

where L
(↵)
m (.) denote the generalized Laguerre polynomi-

als [13]. Relation [32] follows from the symmetry property

L
(n�m)
m (x) = L

(m�n)
n (x)(�x)m�n(n!/m!). A few examples for

the transition probabilities are given in Fig. 3.

With the above definitions, the intermediate scattering func-
tion takes the form

Fs(q, t) =
1
Z

X

m,n

e
��~⌦(m+1/2)

e
i(n�m)⌦t

pmn(q), [33]

and the partition function is given by Z = e
1
2�~⌦

/(e�~⌦ � 1).
The double series [33] can be summed up to (details are omit-
ted)

Fs(q, t) = e
i
y(q)2

4 (sin(⌦t)+i(1�cos(⌦t)) coth( �⌦~
2 ))

, [34]

which is equivalent with the formula stated in the classical
textbook by Lovesey [8].

It follows from (33) that the dynamic structure factor can
be written as a weighted double sum of Dirac distributions,
each corresponding to a transition Em ! En,

Ss(q,!) =
1
Z

X

m,n

e
��~⌦(m+1/2)

�
�
! � [n�m]⌦

�
pmn(q). [35]

Note that the usual form found in textbooks (see e.g. Ref. [8])
is derived from Expression (34), which leads to a weighted
single sum of Dirac lines.

Franck-Condon principle for continuous energy spectra
Formalism.We consider now the situation that the scattering
system under consideration has a continuous energy spectrum
and that its energy eigenstates |�(X)i are described by a set of
continuous real-valued variables X ⌘ {x1, . . . , xf}. It follows
then that

Ĥ|�(X)i = E(X)|�(X)i, [36]

where E(X) expresses the energy in the variables X. We as-
sume further that the eigenstates are normalized such that

h�(X 0)|�(X)i =
(
1 if X = X

0
,

0 otherwise.
[37]

The quantum states are counted via an appropriate density of
states, ⇢(X), such that m ! dm = ⇢(X)dfX etc., and it is
convenient to work with probability densities instead of prob-
abilities. The transition probability density is in particular
defined as

P (X 0|X,q) = ⇢(X 0)|a(X 0|X,q)|2, [38]

with

a(X 0|X,q) =

Z
d
3N

p�
⇤(p+ ~Q;X 0)�(p;X), [39]

and �(p;X) ⌘ hp|�(X)i, and it must fulfill the condition

P (X 0|X,0) = �(X �X
0). [40]
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Fig. 3. Probabilities pmn(y) for the transition m ! n of the harmonic oscil-

lator. The definition of y is given by Eq. [30].

Similarly, we define the equilibrium probability density

Peq(X) = ⇢(X)
e
��E(X)

Z
[41]

where Z =
R
d
f
X ⇢(X) exp(��E(X)). With these prerequi-

sites the intermediate scattering function takes the form

Fs(q, t) =

Z Z
d
f
Xd

f
X

0
Peq(X)

⇥ e
i(E(X0)�E(X))t/~

P (X 0|X,q), [42]

and the resulting dynamic structure factor reads

Ss(q,!) =

Z Z
d
f
Xd

f
X

0
Peq(X)P (X 0|X,q)

⇥ �(! � [E(X 0)� E(X)]/~), [43]

in analogy with [23]. The integration overX 0 can be performed
formally and yields

Ss(q,!) = ~
X

k

Z
dX Peq(X)

P (X 0
k(X,!)|X,q)

|rXE(Xk)|
, [44]

where X 0
k(.) denotes the ensemble of all roots solving the equa-

tion E(X 0) = E(X)+~! and rX is the gradient with respect
to X.

Ideal gas.The ideal gas is the simplest model system for a
system with a continuous distribution of quantum states. Be-
tween collisions individual molecules move freely, without the
influence of forces. The quantum state of a freely moving par-
ticle is characterized by the three components of its sharply
defined momentum, p0. The corresponding wave functions in
position space are plane waves, hx|�(p0)i / exp(ip0 · x) and
lead to a momentum representation of the form hp|�(p0)i =
�(p�p0). These wave functions have, however, the unpleasant
feature of being not square-normalizable and they are there-
fore not suited for the calculation of Franck-Condon type of
overlap integrals. For this reason the state of the scatter-
ing atom is described by a square-normalized Gaussian wave
packet of very small but finite width ✏ > 0,

�(p;p0) =
1

(2⇡✏2)3/4
e
� (p�p0)2

4✏2 , [45]

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author

Some transition probabilities as a 
function of momentum transfer



Intermediate scattering function

Franck-Condon picture of neutron scattering
Harmoic oscillator

E =
p
2

2m
+

1

2
m⌦2

x
2

Fs(q, t) =
1

Z

X

m,n

e
��~⌦(m+1/2)

e
i(n�m)⌦t

pmn(q)

pmn(q) = e
� y2

4 (�1)m+n
L
(n�m)
m

✓
y
2

4

◆
L
(m�n)
n

✓
y
2

4

◆

y(q) =

r
2~
M⌦

q

Franck-Condon picture of neutron scattering
Harmoic oscillator

E =
p
2

2m
+

1

2
m⌦2

x
2

Fs(q, t) =
1

Z

X

m,n

e
��~⌦(m+1/2)

e
i(n�m)⌦t

pmn(q)

pmn(q) = e
� y2

4 (�1)m+n
L
(n�m)
m

✓
y
2

4

◆
L
(m�n)
n

✓
y
2

4

◆

y(q) =

r
2~
M⌦

q

Fs(q, t) = e
i y(q)

2

4 (sin(⌦t)+i(1�cos(⌦t)) coth(�⌦~
2 ))

Textbook result (c.f. Lovesey)

Dynamic structure factor

Franck-Condon picture of neutron scattering
Harmonic oscillator

E =
p
2

2m
+

1

2
m⌦2

x
2

Fs(q, t) =
1

Z

X

m,n

e
��~⌦(m+1/2)

e
i(n�m)⌦t

pmn(q)

Ss(q,!) =
1

Z

X

m,n

e
��~⌦(m+1/2)�

�
! � [n �m]⌦

�
pmn(q)

pmn(q) = e
� y2

4 (�1)m+n
L
(n�m)
m

✓
y
2

4

◆
L
(m�n)
n

✓
y
2

4

◆

y(q) =

r
2~
M⌦

q



Ccntinuous energy spectra

Ĥ|�(X )i = E (X )|�(X )i h�(X 0)|�(X )i =
(
1 if X = X

0,

0 otherwise

Complex systems

Ccntinuous energy spectra

Ĥ|�(X )i = E (X )|�(X )i

Continuous counting 

Ccntinuous energy spectra

Ĥ|�(X )i = E (X )|�(X )i h�(X 0)|�(X )i =
(
1 if X = X

0,

0 otherwise

m ! dm = ⇢(X )d f
X

X is a set of variables describing 
the state of the system

The quantum state variables of complex 
systems are quasi-continuously distributed.

ρ(X) is the density of (quantum) states of the system.

For X=E ρ(E) is the (quantum) “energy landscape”.
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Reinterpreting the Van Hove function
Van Hove introduced the spatial Fourier transform of the in-

termediate (self) scattering function,

Gs(r, t) = 1(2⇡)3 � d
3
q e
−iq⋅r

Fs(q, t),
= � d

3
r
′ ��(r − r′ + r̂1(0))�(r′ − r̂1(t))� [43]

in order to relate the (r, t)-space of spatial motions to the(q,!)-space of neutron scattering spectra,

Ss(q,!) = 1

2⇡
� +∞
−∞ dt� d

3
r e

i(q⋅r−!t)
Gs(r, t). [44]

The Van Hove function takes the convenient form of a condi-

tional probability density for displacements r within time t if

one considers the classical approximation

Gs(r, t) ≈ ��(r − [r1(t) − r1(0)])�cl [45]

which is the standard assumption in modelling QENS spec-

tra. As mentioned earlier, this approximation corresponds to

considering the limit �h→ 0 and not only implies that the scat-

tering system can be treated in the classical approximation,

but also that the momentum transfer �p = �hq does not per-

turb the dynamics of the scattering system.

The spectroscopic picture of neutron scattering introduced

in this paper gives more insight into the physical meaning of

the quantum Van Hove correlation function. If expression (55)

is inserted into the definition (43) of the Van Hove (self) cor-

relation function one obtains

Gs(r, t) = 1

Z
�
m,n

e
−�Em

e
it(En−Em)��h

gm→n(r), [46]

where the functions gm→n(r) are the Fourier transforms of the

transition probabilities,

gm→n(r) = 1(2⇡)3 � d
3
q e
−iq⋅r

wm→n(q). [47]

For simplicity, we consider here only the discrete energy spec-

tra. Since wm→n(q) = �am→n(q)�2, it follows from the correla-

tion theorem of the Fourier transform that

gm→n(r) = � d
3
r
′
Am→n(r + r′)A∗m→n(r′), [48]

with Am→n(r) = 1(2⇡)3 � d
3
q e
−iq⋅r

am→n(q). [49]

Noting that the transition amplitudes can be written as

am→n(q) = � d
3N

Re
iQ⋅R

�
∗
n(R)�m(R), [50]

the functions Am→n(r) can be expressed as partial overlap

integrals

Am→n(r) =
� d

3
r2 . . . d

3
rN �

∗
n(r, r2, . . . , rN)�m(r, r2, . . . , rN) [51]

of the energy eigenfunctions �n(R) in position space. For

m = n we have in particular

Am→m(r) = � d
3
r2 . . . d

3
rN ��m(r, r2, . . . , rN)�2 . [52]

This is the marginal probability density to find the scattering

atom at position r for the case that the system is before and

Fig. 4. Left: Dynamic structure factor corresponding to the intermediate scat-

tering function (59), with R(t) = E�(−(t�⌧)�) for ⌧ = 1, ✏ = 0.01, and two

di↵erent values for the form parameter, �. Right: The same figure for ✏ = 0.001.

after the scattering process in the same energy eigenstate ��m�.
For m ≠ n the Fourier transformed transition amplitudes

An→m(r) cannot be considered as probability densities, since

they are generally complex. They verify the symmetry relation

A
∗
m→n(r) = An→m(r), which leads to g

∗
m→n(r) = gn→m(−r).

The time variable can be straightforwardly integrated into

the formalism by introducing the time-dependent wave func-

tions

 m(R, t) = �m(R)e−iEnt��h [53]

and the corresponding time-dependent transition overlap in-

tegrals

Tm→n(r, t) =
� d

3
r2 . . . d

3
rN  

∗
n(r, r2, . . . , rN , t) m(r, r2, . . . , rN , t). [54]

With these definitions the Van Hove self function is given by

Gs(r, t) = 1

Z
�
m,n

e
−�Em

Gm→n(r, t), [55]

and each coe�cient

Gm→n(r, t) = � d
3
r Tm→n(r + r′, t)T ∗m→n(r′,0) [56]

corresponds to the neutron scattering-induced energy transi-

tion m→ n.

In this context it is instructive to come back to the classical

limit of the Van Hove correlation function, which is defined by

Eq. (45). In this case

G
(cl)
�(0)→�(t)(r, t) = �(r − [r1(t) − r1(0)]) [57]

corresponds to the coe�cient Gm→n(r, t), where �(0) is a

point in phase space describing the state of the system at time

t = 0 and �(t) is the point in phase space to which the system

evolves in time t. This final point is exactly determined by the

laws of classical Hamiltonian mechanics and one can formally

write r(t) ≡ r(�(t)) and r(0) ≡ r(�(0)). Therefore, there is

no integral over the final points in phase space, which would

correspond to the sum over the energy levels n in the quantum

case, and only the thermal average over the initial points in

phase space is needed to compute G
(cl)(r, t).

QENS from complex systems
We consider now QENS from complex systems, where the dis-

tribution of energy levels is quasi-continuous in the range of

accessible energy transfers. Choosing the energy to specify the

quantum state of the scattering system, the dynamic structure

factor takes a particularly simple form. Setting X ≡ E in Ex-

pression (32), the integral over X
′ ≡ E

′
can be performed to

yield

Ss(q,!) = �h� dEWeq(E)W (E + �h!�E;q). [58]

Footline Author PNAS Issue Date Volume Issue Number 5

a(E0|E;q) =

Z
d3Np�⇤(p+ ~Q, E0)�(p, E)
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W (E0|E;q) = ⇢(E0)|a(E0|E;q)|2
<latexit sha1_base64="F68JXwA8gc/f/gAZ+zw1eVMP2PE="></latexit>

Scattering function and energy landscape



The scattering functions are determined by the 
transition probabilities and the density of states, ρ(E).
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Reinterpreting the Van Hove function
Van Hove introduced the spatial Fourier transform of the in-

termediate (self) scattering function,

Gs(r, t) = 1(2⇡)3 � d
3
q e
−iq⋅r

Fs(q, t),
= � d

3
r
′ ��(r − r′ + r̂1(0))�(r′ − r̂1(t))� [43]

in order to relate the (r, t)-space of spatial motions to the(q,!)-space of neutron scattering spectra,

Ss(q,!) = 1

2⇡
� +∞
−∞ dt� d

3
r e

i(q⋅r−!t)
Gs(r, t). [44]

The Van Hove function takes the convenient form of a condi-

tional probability density for displacements r within time t if

one considers the classical approximation

Gs(r, t) ≈ ��(r − [r1(t) − r1(0)])�cl [45]

which is the standard assumption in modelling QENS spec-

tra. As mentioned earlier, this approximation corresponds to

considering the limit �h→ 0 and not only implies that the scat-

tering system can be treated in the classical approximation,

but also that the momentum transfer �p = �hq does not per-

turb the dynamics of the scattering system.

The spectroscopic picture of neutron scattering introduced

in this paper gives more insight into the physical meaning of

the quantum Van Hove correlation function. If expression (55)

is inserted into the definition (43) of the Van Hove (self) cor-

relation function one obtains

Gs(r, t) = 1

Z
�
m,n

e
−�Em

e
it(En−Em)��h

gm→n(r), [46]

where the functions gm→n(r) are the Fourier transforms of the

transition probabilities,

gm→n(r) = 1(2⇡)3 � d
3
q e
−iq⋅r

wm→n(q). [47]

For simplicity, we consider here only the discrete energy spec-

tra. Since wm→n(q) = �am→n(q)�2, it follows from the correla-

tion theorem of the Fourier transform that

gm→n(r) = � d
3
r
′
Am→n(r + r′)A∗m→n(r′), [48]

with Am→n(r) = 1(2⇡)3 � d
3
q e
−iq⋅r

am→n(q). [49]

Noting that the transition amplitudes can be written as

am→n(q) = � d
3N

Re
iQ⋅R

�
∗
n(R)�m(R), [50]

the functions Am→n(r) can be expressed as partial overlap

integrals

Am→n(r) =
� d

3
r2 . . . d

3
rN �

∗
n(r, r2, . . . , rN)�m(r, r2, . . . , rN) [51]

of the energy eigenfunctions �n(R) in position space. For

m = n we have in particular

Am→m(r) = � d
3
r2 . . . d

3
rN ��m(r, r2, . . . , rN)�2 . [52]

This is the marginal probability density to find the scattering

atom at position r for the case that the system is before and

Fig. 4. Left: Dynamic structure factor corresponding to the intermediate scat-

tering function (59), with R(t) = E�(−(t�⌧)�) for ⌧ = 1, ✏ = 0.01, and two

di↵erent values for the form parameter, �. Right: The same figure for ✏ = 0.001.

after the scattering process in the same energy eigenstate ��m�.
For m ≠ n the Fourier transformed transition amplitudes

An→m(r) cannot be considered as probability densities, since

they are generally complex. They verify the symmetry relation

A
∗
m→n(r) = An→m(r), which leads to g

∗
m→n(r) = gn→m(−r).

The time variable can be straightforwardly integrated into

the formalism by introducing the time-dependent wave func-

tions

 m(R, t) = �m(R)e−iEnt��h [53]

and the corresponding time-dependent transition overlap in-

tegrals

Tm→n(r, t) =
� d

3
r2 . . . d

3
rN  

∗
n(r, r2, . . . , rN , t) m(r, r2, . . . , rN , t). [54]

With these definitions the Van Hove self function is given by

Gs(r, t) = 1

Z
�
m,n

e
−�Em

Gm→n(r, t), [55]

and each coe�cient

Gm→n(r, t) = � d
3
r Tm→n(r + r′, t)T ∗m→n(r′,0) [56]

corresponds to the neutron scattering-induced energy transi-

tion m→ n.

In this context it is instructive to come back to the classical

limit of the Van Hove correlation function, which is defined by

Eq. (45). In this case

G
(cl)
�(0)→�(t)(r, t) = �(r − [r1(t) − r1(0)]) [57]

corresponds to the coe�cient Gm→n(r, t), where �(0) is a

point in phase space describing the state of the system at time

t = 0 and �(t) is the point in phase space to which the system

evolves in time t. This final point is exactly determined by the

laws of classical Hamiltonian mechanics and one can formally

write r(t) ≡ r(�(t)) and r(0) ≡ r(�(0)). Therefore, there is

no integral over the final points in phase space, which would

correspond to the sum over the energy levels n in the quantum

case, and only the thermal average over the initial points in

phase space is needed to compute G
(cl)(r, t).

QENS from complex systems
We consider now QENS from complex systems, where the dis-

tribution of energy levels is quasi-continuous in the range of

accessible energy transfers. Choosing the energy to specify the

quantum state of the scattering system, the dynamic structure

factor takes a particularly simple form. Setting X ≡ E in Ex-

pression (32), the integral over X
′ ≡ E

′
can be performed to

yield

Ss(q,!) = �h� dEWeq(E)W (E + �h!�E;q). [58]
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Asymptotic analysis of QENS/ENS

distinction between elastic (!=0) and quasielastic scattering (!
in the vicinity of 0). This has also been suggested in ref. 6, and
in the following, it will be shown that elastic and quasielastic
scattering are practically not separable for complex systems with
slow power-law relaxation. For this purpose, we consider an
intermediate scattering function of the form (the q-dependence
is dropped)

Fs(t)=EISF +(1�EISF )R(t), [55]

where 0<EISF < 1 due to elastic scattering and R(t) is a
relaxation function fulfilling R(0)= 1 and limt!1 R(t)= 0. The
dynamic structure factor in the vicinity of !=0 can then be
obtained on the basis of purely mathematical arguments and is
directly determined by the asymptotic form of the intermediate
scattering function for long times (see SI Appendix),

Ss(!)
!!0⇠ lim

✏!0+

1
⇡
<
⇢
Fs(1/(i!+ ✏))

i!+ ✏

�
. [56]

The parameter ✏> 0 can be thought of as instrumental resolution.
It follows from Eq. 56 that the ratio of quasielastic and elastic
scattering at !=0 is increasingly smaller for exponential than for
power law relaxation, as ✏ tends to 0. This indicates that these
components can be well separated in the first case and not well
in the second. To investigate the separability of the elastic and
quasielastic components of a neutron scattering spectrum for a
concrete example, we consider a relaxation function of the form

R(t)=E�(�(|t |/⌧)�), 0<� 1, [57]

where E�(.) is the Mittag–Leffler function (18). With this defini-
tion, R(t) smoothly interpolates between exponential relaxation
(�=1) and an asymptotic power-law decay if |t |� ⌧ for 0<�<
1, where R(t)⇠ (t/⌧)��/�(1��) for t � ⌧ . Detailed balance
effects are here neglected—that is, �~⌧ ⌧ . Fig. 4, Left shows a
plot of the dynamic structure factors for �=1 (blue line) and
�=0.7 (orange line), where in both cases EISF =0.3, ⌧ =1, and
✏=0.01. For �=1—that is, for exponential relaxation—one rec-
ognizes that the elastic peak is well separated from the broader
quasielastic (Lorentzian) profile and that this distinction disap-
pears for �=0.7, where the decay is nonexponential. Fig. 4,
Right displays the corresponding plot with a resolution ✏=0.001
and shows that the nonseparability of elastic and quasielas-
tic scattering persists with higher resolution for �=0.7, while
these components are even more clearly separated for �=1.
The nonseparability for �=0.7 follows from the self-similarity
of the dynamic structure factor for !⌧ ⌧ 1, which is, in turn,
a consequence of the power law decay of R(t) for t � ⌧ . This
illustration shows that elastic and quasielastic scattering from

complex systems with slow power law relaxation cannot be sep-
arated in real-life experiments. Therefore, the EISF should here
be part of a global model for both elastic and quasielastic scatter-
ing, either for a resolution-broadened dynamic structure factor
or for the corresponding resolution-deconvolved intermediate
scattering function.

A point of practical importance in this context is the treat-
ment of the !-asymmetry in QENS spectra, which is due to the
detailed balance relation of quantum time correlation functions
(this effect has not been considered in the above discussion).
The results of a recent paper on a “model-free” description of
neutron scattering from diffusing quantum particles (19) sug-
gests that Schofield’s semiclassical correction (20) Ss(q ,!)/
exp(�~!/2)S (cl)

s (q ,!) or, equivalently, Fs(q , t)/F
(cl)
s (q , t �

i�~/2) may be applied for modeling QENS experiments, using as
input only the asymptotic form of the classical intermediate scat-
tering function. The scattering functions must here be normal-
ized to ensure the normalization condition

R +1
�1 d! Ss(q ,!)=

1=Fs(q , 0), which is imposed by the probabilistic interpretation
(Eq. 54) of the dynamic structure factor.

Conclusions
In this paper, an interpretation of incoherent neutron scatter-
ing spectra has been presented in which probabilities for neutron
scattering-induced transitions between different quantum states
of the sample play a central role. The transition probabilities are
expressed as squared Franck–Condon-type overlap integrals of
corresponding eigenfunctions in momentum space, whose argu-
ments are shifted by the momentum transfer from the neutron
to the sample. A particular simple form of the dynamic struc-
ture factor is obtained if the quantum states are described by
a (quasi)continuous set of energy eigenvalues. In this case, the
dynamic structure factor is simply the thermally averaged tran-
sition probability density for energy transitions E !E + ~! and
a momentum transfer ~q. Corresponding consequences for the
interpretation of QENS data have been discussed, in particu-
lar the smooth transition from elastic to quasielastic scattering
for complex systems where the intermediate scattering function
slowly decays with a power law. The elastic and quasielastic
component of the scattering spectrum appear here as fused.

The theory connects Frauenfelder’s idea of an energy
landscape-based interpretation of neutron scattering experi-
ments, in particular the decomposition of QENS spectra into
“Mößbauer lines,” with standard scattering theory. It provides
moreover a physical interpretation for the complex quantum
version of the Van Hove correlation functions and shows in
particular that there exists a physical meaningful and intuitively
understandable relation between the quantum and the classical
version of the Van Hove functions.

1. Springer T (1972) Quasielastic Neutron Scattering for the Investigation of Diffusive

Motions in Solids and Liquids, Springer Tracts in Modern Physics (Springer, Berlin ),
Vol 64.

2. Lovesey S (1984) Theory of Neutron Scattering from Condensed Matter (Clarendon
Press, Oxford), Vol 1.

3. Bée M (1988) Quasielastic Neutron Scattering: Principles and Applications in Solid

State Chemistry, Biology and Materials Science (Adam Hilger, Bristol, UK).
4. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of

proteins. Science 254:1598–1603.
5. Frauenfelder H, Young RD, Fenimore PW (2013) Dynamics and the free-energy

landscape of proteins, explored with the Mössbauer effect and quasi-elastic neutron
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distinction between elastic (!=0) and quasielastic scattering (!
in the vicinity of 0). This has also been suggested in ref. 6, and
in the following, it will be shown that elastic and quasielastic
scattering are practically not separable for complex systems with
slow power-law relaxation. For this purpose, we consider an
intermediate scattering function of the form (the q-dependence
is dropped)

Fs(t)=EISF +(1�EISF )R(t), [55]

where 0<EISF < 1 due to elastic scattering and R(t) is a
relaxation function fulfilling R(0)= 1 and limt!1 R(t)= 0. The
dynamic structure factor in the vicinity of !=0 can then be
obtained on the basis of purely mathematical arguments and is
directly determined by the asymptotic form of the intermediate
scattering function for long times (see SI Appendix),

Ss(!)
!!0⇠ lim
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⇡
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i!+ ✏

�
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The parameter ✏> 0 can be thought of as instrumental resolution.
It follows from Eq. 56 that the ratio of quasielastic and elastic
scattering at !=0 is increasingly smaller for exponential than for
power law relaxation, as ✏ tends to 0. This indicates that these
components can be well separated in the first case and not well
in the second. To investigate the separability of the elastic and
quasielastic components of a neutron scattering spectrum for a
concrete example, we consider a relaxation function of the form

R(t)=E�(�(|t |/⌧)�), 0<� 1, [57]

where E�(.) is the Mittag–Leffler function (18). With this defini-
tion, R(t) smoothly interpolates between exponential relaxation
(�=1) and an asymptotic power-law decay if |t |� ⌧ for 0<�<
1, where R(t)⇠ (t/⌧)��/�(1��) for t � ⌧ . Detailed balance
effects are here neglected—that is, �~⌧ ⌧ . Fig. 4, Left shows a
plot of the dynamic structure factors for �=1 (blue line) and
�=0.7 (orange line), where in both cases EISF =0.3, ⌧ =1, and
✏=0.01. For �=1—that is, for exponential relaxation—one rec-
ognizes that the elastic peak is well separated from the broader
quasielastic (Lorentzian) profile and that this distinction disap-
pears for �=0.7, where the decay is nonexponential. Fig. 4,
Right displays the corresponding plot with a resolution ✏=0.001
and shows that the nonseparability of elastic and quasielas-
tic scattering persists with higher resolution for �=0.7, while
these components are even more clearly separated for �=1.
The nonseparability for �=0.7 follows from the self-similarity
of the dynamic structure factor for !⌧ ⌧ 1, which is, in turn,
a consequence of the power law decay of R(t) for t � ⌧ . This
illustration shows that elastic and quasielastic scattering from

complex systems with slow power law relaxation cannot be sep-
arated in real-life experiments. Therefore, the EISF should here
be part of a global model for both elastic and quasielastic scatter-
ing, either for a resolution-broadened dynamic structure factor
or for the corresponding resolution-deconvolved intermediate
scattering function.

A point of practical importance in this context is the treat-
ment of the !-asymmetry in QENS spectra, which is due to the
detailed balance relation of quantum time correlation functions
(this effect has not been considered in the above discussion).
The results of a recent paper on a “model-free” description of
neutron scattering from diffusing quantum particles (19) sug-
gests that Schofield’s semiclassical correction (20) Ss(q ,!)/
exp(�~!/2)S (cl)

s (q ,!) or, equivalently, Fs(q , t)/F
(cl)
s (q , t �

i�~/2) may be applied for modeling QENS experiments, using as
input only the asymptotic form of the classical intermediate scat-
tering function. The scattering functions must here be normal-
ized to ensure the normalization condition

R +1
�1 d! Ss(q ,!)=

1=Fs(q , 0), which is imposed by the probabilistic interpretation
(Eq. 54) of the dynamic structure factor.

Conclusions
In this paper, an interpretation of incoherent neutron scatter-
ing spectra has been presented in which probabilities for neutron
scattering-induced transitions between different quantum states
of the sample play a central role. The transition probabilities are
expressed as squared Franck–Condon-type overlap integrals of
corresponding eigenfunctions in momentum space, whose argu-
ments are shifted by the momentum transfer from the neutron
to the sample. A particular simple form of the dynamic struc-
ture factor is obtained if the quantum states are described by
a (quasi)continuous set of energy eigenvalues. In this case, the
dynamic structure factor is simply the thermally averaged tran-
sition probability density for energy transitions E !E + ~! and
a momentum transfer ~q. Corresponding consequences for the
interpretation of QENS data have been discussed, in particu-
lar the smooth transition from elastic to quasielastic scattering
for complex systems where the intermediate scattering function
slowly decays with a power law. The elastic and quasielastic
component of the scattering spectrum appear here as fused.

The theory connects Frauenfelder’s idea of an energy
landscape-based interpretation of neutron scattering experi-
ments, in particular the decomposition of QENS spectra into
“Mößbauer lines,” with standard scattering theory. It provides
moreover a physical interpretation for the complex quantum
version of the Van Hove correlation functions and shows in
particular that there exists a physical meaningful and intuitively
understandable relation between the quantum and the classical
version of the Van Hove functions.
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lim
t!1

F (�t)

F (t)
= 1 (� > 0) ) F̂ (s)

s!0⇠ F (1/s)/s.
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F̂ (s) =

Z 1

0
dt e�stF (t)
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Laplace transform of F(t)

Resulting form for the dynamic structure factor

Application of 
a Tauberian 
theorem 
(Hardy-
Littlewood & 
Karamata)

Mathematical argument for a combined description of 
elastic and quasielastic scattering (e.g. protein in powders)

Here ε 
denotes finite 
instrumental 
resolution
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The Van Hove function takes the convenient form of a probabil-
ity density for displacements r within time t if one considers the
classical approximation

Gs(r, t)⇡h�(r� [r1(t)� r1(0)])icl, [42]

which is the standard assumption in modeling QENS spec-
tra. The index “cl” indicates a classical phase space ensemble
average.

The spectroscopic picture of neutron scattering in this paper
gives more insight into the physical meaning of the quantum
Van Hove correlation function. If Eq. 15 for the intermediate
scattering function is inserted into the definition (Eq. 40) of the
Van Hove (self)-correlation function, one obtains

Gs(r, t)=
1
Z

X

m,n

e
��Em

e
it(En�Em )/~

gm!n(r), [43]

where the functions gm!n(r) are the Fourier transforms of the
transition probabilities,

gm!n(r)=
1

(2⇡)3

Z
d
3
q e

�iq·r
wm!n(q). [44]

For simplicity, we consider here only discrete energy spectra.
Since wm!n(q)= |am!n(q)|2, it follows from the correlation
theorem of the Fourier transform that

gm!n(r)=
Z

d
3
r
0
Am!n(r+ r0)A⇤

m!n(r
0), [45]

with Am!n(r)=
1

(2⇡)3

Z
d
3
q e

�iq·r
am!n(q). [46]

Noting that the transition amplitudes can be written as
am!n(q)=

R
d
3N

R e
iQ·R�⇤

n(R)�m(R), the functions Am!n(r)
can be expressed as partial overlap integrals

Am!n(r)=Z
d
3
r2 . . . d

3
rN �

⇤
n(r, r2, . . . , rN )�m(r, r2, . . . , rN ) [47]

of the energy eigenfunctions �n(R) in position space. For m =n ,
we have in particular

Am!m(r)=
Z

d
3
r2 . . . d

3
rN |�m(r, r2, . . . , rN )|2 . [48]

This is the marginal probability density to find the scattering
atom at position r for the case that the system is before and after
the scattering process in the same energy eigenstate |�m

↵
. For

m 6=n , the Fourier transformed transition amplitudes An!m(r)
cannot be considered as probability densities, since they are gen-
erally complex. They verify the symmetry relation A

⇤
m!n(r)=

An!m(r), such that g⇤
m!n(r)= gn!m(r).

The time variable can be straightforwardly integrated into the
formalism by introducing the time-dependent wave functions

 m(R, t)=�m(R)e�iEmt/~ [49]

and the corresponding time-dependent transition overlap
integrals

Tm!n(r, t)=
Z

d
3
r2 . . . d

3
rN  

⇤
n(r, r2, . . . , rN , t)

⇥ m(r, r2, . . . , rN , t). [50]

With these definitions, the Van Hove self-function is given by

Gs(r, t)=
1
Z

X

m,n

e
��Em

Gm!n(r, t), [51]

and each coefficient

Gm!n(r, t)=
Z

d
3
r Tm!n(r+ r0, t)T ⇤

m!n(r
0, 0) [52]

corresponds to the neutron scattering-induced energy transition
m !n .

In this context, it is instructive to come back to the classical
limit of the Van Hove correlation function, which is defined by
Eq. 42. In this case,

G
(cl)
�(0)!�(t)(r, t)= �(r� [r1(t)� r1(0)]) [53]

corresponds to the coefficient Gm!n(r, t), where �(0) is a point
in phase space describing the state of the system at time t =0
and �(t) is the point in phase space to which the system evolves
in time t . This final point is exactly determined by the laws
of classical Hamiltonian mechanics, and one can formally write
r(t)⌘ r(�(t)) and r(0)⌘ r(�(0)). Therefore, there is no integral
over the final points in phase space, which would correspond
to the sum over the energy levels n in the quantum case, and
only the thermal average over the initial points in phase space is
performed to compute G

(cl)(r, t). The fact that the phase space
point �(t) is entirely determined by �(0) and t is equivalent to
saying that the trajectory of the scattering atom is not deviated
by the impact of the neutron. In the classical Van Hove theory,
quantum transition probabilities are thus replaced by classical
“transition certainties,” and the masses of the scattering atoms
are considered infinite as far as the scattering kinematics is
concerned. Such a description is, for example, appropriate for
neutron scattering from large molecules performing rigid body
motions.

QENS from Complex Systems
We consider now QENS from complex systems, where the
distribution of energy levels is quasi-continuous in the range
of accessible energy transfers. In the case of macromolecules
like proteins, we are looking in the first place at their internal
dynamics, which is characterized by a vast spectrum of time scales
and corresponding motion types. The physical model for neutron
scattering is here a scattering atom that receives a momentum
transfer ~q by the incoming neutrons and that transmits this kick
to a macromolecular matrix with quantum mechanical degrees
of freedom. Choosing the energy to specify the quantum state
of the scattering system, the dynamic structure factor takes a
particularly simple form. Setting X ⌘E in Eq. 29, the integral
over X 0 ⌘E

0 can be performed to yield

Ss(q,!)= ~
Z

dE Weq(E)W (E + ~!|E ; q). [54]

The incoherent dynamic structure factor thus becomes a ther-
mally averaged probability density for energy transitions E !
E + ~!, which are induced by a momentum transfer q.

The direct calculation of Ss(q,!) via Eq. 54 will in general
not be possible, but the formula suggests that there is no a priori

Fig. 4. (Left) Dynamic structure factor corresponding to the intermediate
scattering function (Eq. 55), with R(t) given by Eq. 57. Here ⌧ = 1, EISF = 0.3,
and ✏= 0.01. (Right) The same figure for ✏= 0.001.

Kneller PNAS Latest Articles | 5 of 6

distinction between elastic (!=0) and quasielastic scattering (!
in the vicinity of 0). This has also been suggested in ref. 6, and
in the following, it will be shown that elastic and quasielastic
scattering are practically not separable for complex systems with
slow power-law relaxation. For this purpose, we consider an
intermediate scattering function of the form (the q-dependence
is dropped)

Fs(t)=EISF +(1�EISF )R(t), [55]

where 0<EISF < 1 due to elastic scattering and R(t) is a
relaxation function fulfilling R(0)= 1 and limt!1 R(t)= 0. The
dynamic structure factor in the vicinity of !=0 can then be
obtained on the basis of purely mathematical arguments and is
directly determined by the asymptotic form of the intermediate
scattering function for long times (see SI Appendix),

Ss(!)
!!0⇠ lim

✏!0+

1
⇡
<
⇢
Fs(1/(i!+ ✏))

i!+ ✏

�
. [56]

The parameter ✏> 0 can be thought of as instrumental resolution.
It follows from Eq. 56 that the ratio of quasielastic and elastic
scattering at !=0 is increasingly smaller for exponential than for
power law relaxation, as ✏ tends to 0. This indicates that these
components can be well separated in the first case and not well
in the second. To investigate the separability of the elastic and
quasielastic components of a neutron scattering spectrum for a
concrete example, we consider a relaxation function of the form

R(t)=E�(�(|t |/⌧)�), 0<� 1, [57]

where E�(.) is the Mittag–Leffler function (18). With this defini-
tion, R(t) smoothly interpolates between exponential relaxation
(�=1) and an asymptotic power-law decay if |t |� ⌧ for 0<�<
1, where R(t)⇠ (t/⌧)��/�(1��) for t � ⌧ . Detailed balance
effects are here neglected—that is, �~⌧ ⌧ . Fig. 4, Left shows a
plot of the dynamic structure factors for �=1 (blue line) and
�=0.7 (orange line), where in both cases EISF =0.3, ⌧ =1, and
✏=0.01. For �=1—that is, for exponential relaxation—one rec-
ognizes that the elastic peak is well separated from the broader
quasielastic (Lorentzian) profile and that this distinction disap-
pears for �=0.7, where the decay is nonexponential. Fig. 4,
Right displays the corresponding plot with a resolution ✏=0.001
and shows that the nonseparability of elastic and quasielas-
tic scattering persists with higher resolution for �=0.7, while
these components are even more clearly separated for �=1.
The nonseparability for �=0.7 follows from the self-similarity
of the dynamic structure factor for !⌧ ⌧ 1, which is, in turn,
a consequence of the power law decay of R(t) for t � ⌧ . This
illustration shows that elastic and quasielastic scattering from

complex systems with slow power law relaxation cannot be sep-
arated in real-life experiments. Therefore, the EISF should here
be part of a global model for both elastic and quasielastic scatter-
ing, either for a resolution-broadened dynamic structure factor
or for the corresponding resolution-deconvolved intermediate
scattering function.

A point of practical importance in this context is the treat-
ment of the !-asymmetry in QENS spectra, which is due to the
detailed balance relation of quantum time correlation functions
(this effect has not been considered in the above discussion).
The results of a recent paper on a “model-free” description of
neutron scattering from diffusing quantum particles (19) sug-
gests that Schofield’s semiclassical correction (20) Ss(q ,!)/
exp(�~!/2)S (cl)

s (q ,!) or, equivalently, Fs(q , t)/F
(cl)
s (q , t �

i�~/2) may be applied for modeling QENS experiments, using as
input only the asymptotic form of the classical intermediate scat-
tering function. The scattering functions must here be normal-
ized to ensure the normalization condition

R +1
�1 d! Ss(q ,!)=

1=Fs(q , 0), which is imposed by the probabilistic interpretation
(Eq. 54) of the dynamic structure factor.

Conclusions
In this paper, an interpretation of incoherent neutron scatter-
ing spectra has been presented in which probabilities for neutron
scattering-induced transitions between different quantum states
of the sample play a central role. The transition probabilities are
expressed as squared Franck–Condon-type overlap integrals of
corresponding eigenfunctions in momentum space, whose argu-
ments are shifted by the momentum transfer from the neutron
to the sample. A particular simple form of the dynamic struc-
ture factor is obtained if the quantum states are described by
a (quasi)continuous set of energy eigenvalues. In this case, the
dynamic structure factor is simply the thermally averaged tran-
sition probability density for energy transitions E !E + ~! and
a momentum transfer ~q. Corresponding consequences for the
interpretation of QENS data have been discussed, in particu-
lar the smooth transition from elastic to quasielastic scattering
for complex systems where the intermediate scattering function
slowly decays with a power law. The elastic and quasielastic
component of the scattering spectrum appear here as fused.

The theory connects Frauenfelder’s idea of an energy
landscape-based interpretation of neutron scattering experi-
ments, in particular the decomposition of QENS spectra into
“Mößbauer lines,” with standard scattering theory. It provides
moreover a physical interpretation for the complex quantum
version of the Van Hove correlation functions and shows in
particular that there exists a physical meaningful and intuitively
understandable relation between the quantum and the classical
version of the Van Hove functions.
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Fusion of elastic and quasielastic line

Here ✏ is a resolution parameter and � = 1 corresponds to

exponential relaxation.
<latexit sha1_base64="mwrjgr7XOJoYqjVPSo64DjjUQXM="></latexit>

For slow power law relaxation / t�� , with 0 < � < 1, the
elastic and quasielastic line are fused and the EISF must be
fitted together with the parameters �, ⌧ of the R(t).
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Use here the symmetrized correlation function

F (t) ⇡ F (+)(t) =
F (t+ i�~/2)
F (i�~/2)
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since the real symmetric part of the ISF 
determines its asymptotic behavior:

F (I)(t) = � tan

✓
�~ d

dt

◆
F (R)(t)
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FIG. 1: F (q, t) obtained from the resolution-deconvolved
QENS spectra (points) and corresponding model fits (solid

lines) for q = 0.5, 0.9, 1.5 Å
�1

from top to bottom. Blue
and red correspond, respectively, to free and HupA-inhibited
hAChE.

The overwhelming part of QENS studies is and has been
interpreted by using the classical limit of Van Hove’s the-
ory,9 using classical di↵usion models to describe the dy-
namics of the hydrogen atoms. In this case F (+)(t) is
replaced by the classical limit of the intermediate scatter-
ing function, Fcl(t) = lim~!0 F (t). Besides the fact, that
recoil e↵ects are neglected, the use of such models be-
comes to some extent meaningless for complex molecular
systems, such as proteins, where each atom participates
in a large spectrum of motion types with an associated
large spectrum of time scales.10 Based on these insights
and on the fact that QENS probes di↵usion processes
and slow relaxation processes, which are to be consid-
ered as asymptotic dynamical regimes that are governed
by “universal” properties, such as self-similarity, rather
than by particular motion types,11,12 we propose a corre-
sponding analysis of QENS data on the basis of a simple
minimal model for the intermediate scattering function.
The relaxation function �(+)(t) is here represented by a
stretched Mittag-Le✏er (ML) function

�(+)(t) = E↵(�[t/⌧ ]↵), (0 < ↵  1), (9)

which behaves for large arguments as �(+)(t) ⇠P
M

k=1
(�1)k+1(t/⌧)�k↵/�(1� ↵k). M↵ > 1 assures that

all terms with a slow power law decay / t�� , with
0 < � < 1, are included. The Mittag-Le✏er function has
the series representation13 E↵(z) =

P1
n=0

zn/�(1 + ↵n)
and can be considered as a generalization of the expo-
nential function, which is retrieved for ↵ = 1.

Fig. (1) displays the intermediate scattering function
obtained from the resolution-deconvolved QENS spectra
for three di↵erent q-values and the corresponding fits of
Expression (8) with �(+)(t) according to (9). We define
here q ⌘ |q|. The extraction of the intermediate scatter-
ing function from the experimental QENS spectrum is de-
scribed in the Supplementary Material. Fig. 2 shows for
a selected q-value the resolution-broadened model (and
by definition noise-free) symmetrized dynamic structure
factor

S(+)

exp
(!) = R(!) ⇤ S(!) (10)

-2 -1 0 1 2

0.01

0.10

1

10

ω (meV)

S
(q
,ω

)

FIG. 2: Experimental QENS spectra for q = 1 Å
�1

(points)
and corresponding convolution-broadened model fits (solid
lines) in lin-log representation. Blue and red correspond, re-
spectively, to free and HupA-inhibited hAChE.

where “⇤” denotes a convolution integral, S(+)

exp (!) /
exp(��~!/2)Sexp(!) is the symmetrized experimental
dynamic structure factor14 which is normalized such that

such that F (+)

exp (0) = 1, and R(!) is the resolution func-
tion. The latter has been obtained from a vanadium run
and has approximately Gaussian shape, with a FWHM
of ⇡ 70µeV. With (8) it follows then that

S(!) = EISF �(!) + (1� EISF )�̃(+)(!), (11)

where15

�̃(+)(!) =
sin

�
⇡↵

2

�

⇡|!|
�
(⌧ |!|)�↵ + (⌧ |!|)↵ + 2 cos

�
⇡↵

2

�� . (12)

The model spectra shown in Fig. 2 have been computed
by discrete Fourier transform of Fexp(t) = r(t)F (t) for
the full accessible time range of IN6, which is here tmax =
206 ps, and r(t) denotes the resolution window in the time
domain.
Fig. 3 displays the fitted EISF for free and HupA-

inhibited hAChE. The results show that the EISF in the
latter case is slightly smaller than its counterpart for the
free variant. This reflects that the average motional am-
plitudes of the (hydrogen) atoms become slightly larger
in presence of the HupA ligand. This is compatible with
the results described in Peters et al.8 and the work by
Balog et al., who find by atomic detail normal mode anal-
ysis that binding of the cancer drug methotrexate softens
the low-frequency/large amplitude vibrations of its target
protein, dihydrofolate reductase5 and explain in this way
earlier neutron scattering results.16 The “softening” of
the low frequency modes leads, in fact, to smaller force
constants for the local harmonic potential of the (hy-
drogen) atoms and thus to larger motional amplitudes.
However, this result can not be generalized since inverse
cases are also reported in the literature. Examples can
be found in the following references [8,17].
While the EISF expresses the amplitudes of the atomic

motions, the parameters ⌧ and ↵ describe their relaxation
dynamics and thus truly dynamical properties of hAChE.
The q-dependence of ⌧ and ↵ is summarized in Fig. 4.

Experimental symmetrize dynamic structure factor for free and HupA-
inhibited hAChE (blue and red dots, respectively) and corresponding 
reconstruction from the models (blue and red dashed line). The differences 
between free and HupA-inhibited hAChE are almost invisible.
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The overwhelming part of QENS studies is and has been
interpreted by using the classical limit of Van Hove’s the-
ory,9 using classical di↵usion models to describe the dy-
namics of the hydrogen atoms. In this case F (+)(t) is
replaced by the classical limit of the intermediate scatter-
ing function, Fcl(t) = lim~!0 F (t). Besides the fact, that
recoil e↵ects are neglected, the use of such models be-
comes to some extent meaningless for complex molecular
systems, such as proteins, where each atom participates
in a large spectrum of motion types with an associated
large spectrum of time scales.10 Based on these insights
and on the fact that QENS probes di↵usion processes
and slow relaxation processes, which are to be consid-
ered as asymptotic dynamical regimes that are governed
by “universal” properties, such as self-similarity, rather
than by particular motion types,11,12 we propose a corre-
sponding analysis of QENS data on the basis of a simple
minimal model for the intermediate scattering function.
The relaxation function �(+)(t) is here represented by a
stretched Mittag-Le✏er (ML) function

�(+)(t) = E↵(�[t/⌧ ]↵), (0 < ↵  1), (9)

which behaves for large arguments as �(+)(t) ⇠P
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all terms with a slow power law decay / t�� , with
0 < � < 1, are included. The Mittag-Le✏er function has
the series representation13 E↵(z) =
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and can be considered as a generalization of the expo-
nential function, which is retrieved for ↵ = 1.

Fig. (1) displays the intermediate scattering function
obtained from the resolution-deconvolved QENS spectra
for three di↵erent q-values and the corresponding fits of
Expression (8) with �(+)(t) according to (9). We define
here q ⌘ |q|. The extraction of the intermediate scatter-
ing function from the experimental QENS spectrum is de-
scribed in the Supplementary Material. Fig. 2 shows for
a selected q-value the resolution-broadened model (and
by definition noise-free) symmetrized dynamic structure
factor

S(+)

exp
(!) = R(!) ⇤ S(!) (10)

FIG. 2: Experimental QENS spectra for q = 1 Å
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and corresponding convolution-broadened model fits (solid
lines) in lin-log representation. Blue and red correspond, re-
spectively, to free and HupA-inhibited hAChE.

where “⇤” denotes a convolution integral, S(+)

exp (!) /
exp(��~!/2)Sexp(!) is the symmetrized experimental
dynamic structure factor14 which is normalized such that

such that F (+)

exp (0) = 1, and R(!) is the resolution func-
tion. The latter has been obtained from a vanadium run
and has approximately Gaussian shape, with a FWHM
of ⇡ 70µeV. With (8) it follows then that

S(!) = EISF �(!) + (1� EISF )�̃(+)(!), (11)
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The model spectra shown in Fig. 2 have been computed
by discrete Fourier transform of Fexp(t) = r(t)F (t) for
the full accessible time range of IN6, which is here tmax =
206 ps, and r(t) denotes the resolution window in the time
domain.
Fig. 3 displays the fitted EISF for free and HupA-

inhibited hAChE. The results show that the EISF in the
latter case is slightly smaller than its counterpart for the
free variant. This reflects that the average motional am-
plitudes of the (hydrogen) atoms become slightly larger
in presence of the HupA ligand. This is compatible with
the results described in Peters et al.8 and the work by
Balog et al., who find by atomic detail normal mode anal-
ysis that binding of the cancer drug methotrexate softens
the low-frequency/large amplitude vibrations of its target
protein, dihydrofolate reductase5 and explain in this way
earlier neutron scattering results.16 The “softening” of
the low frequency modes leads, in fact, to smaller force
constants for the local harmonic potential of the (hy-
drogen) atoms and thus to larger motional amplitudes.
However, this result can not be generalized since inverse
cases are also reported in the literature. Examples can
be found in the following references [8,17].
While the EISF expresses the amplitudes of the atomic

motions, the parameters ⌧ and ↵ describe their relaxation
dynamics and thus truly dynamical properties of hAChE.
The q-dependence of ⌧ and ↵ is summarized in Fig. 4.

Blue : free hAChE 
Red : HupA-inhibited hAChE

distinction between elastic (!=0) and quasielastic scattering (!
in the vicinity of 0). This has also been suggested in ref. 6, and
in the following, it will be shown that elastic and quasielastic
scattering are practically not separable for complex systems with
slow power-law relaxation. For this purpose, we consider an
intermediate scattering function of the form (the q-dependence
is dropped)

Fs(t)=EISF +(1�EISF )R(t), [55]

where 0<EISF < 1 due to elastic scattering and R(t) is a
relaxation function fulfilling R(0)= 1 and limt!1 R(t)= 0. The
dynamic structure factor in the vicinity of !=0 can then be
obtained on the basis of purely mathematical arguments and is
directly determined by the asymptotic form of the intermediate
scattering function for long times (see SI Appendix),

Ss(!)
!!0⇠ lim

✏!0+

1
⇡
<
⇢
Fs(1/(i!+ ✏))

i!+ ✏

�
. [56]

The parameter ✏> 0 can be thought of as instrumental resolution.
It follows from Eq. 56 that the ratio of quasielastic and elastic
scattering at !=0 is increasingly smaller for exponential than for
power law relaxation, as ✏ tends to 0. This indicates that these
components can be well separated in the first case and not well
in the second. To investigate the separability of the elastic and
quasielastic components of a neutron scattering spectrum for a
concrete example, we consider a relaxation function of the form

R(t)=E�(�(|t |/⌧)�), 0<� 1, [57]

where E�(.) is the Mittag–Leffler function (18). With this defini-
tion, R(t) smoothly interpolates between exponential relaxation
(�=1) and an asymptotic power-law decay if |t |� ⌧ for 0<�<
1, where R(t)⇠ (t/⌧)��/�(1��) for t � ⌧ . Detailed balance
effects are here neglected—that is, �~⌧ ⌧ . Fig. 4, Left shows a
plot of the dynamic structure factors for �=1 (blue line) and
�=0.7 (orange line), where in both cases EISF =0.3, ⌧ =1, and
✏=0.01. For �=1—that is, for exponential relaxation—one rec-
ognizes that the elastic peak is well separated from the broader
quasielastic (Lorentzian) profile and that this distinction disap-
pears for �=0.7, where the decay is nonexponential. Fig. 4,
Right displays the corresponding plot with a resolution ✏=0.001
and shows that the nonseparability of elastic and quasielas-
tic scattering persists with higher resolution for �=0.7, while
these components are even more clearly separated for �=1.
The nonseparability for �=0.7 follows from the self-similarity
of the dynamic structure factor for !⌧ ⌧ 1, which is, in turn,
a consequence of the power law decay of R(t) for t � ⌧ . This
illustration shows that elastic and quasielastic scattering from

complex systems with slow power law relaxation cannot be sep-
arated in real-life experiments. Therefore, the EISF should here
be part of a global model for both elastic and quasielastic scatter-
ing, either for a resolution-broadened dynamic structure factor
or for the corresponding resolution-deconvolved intermediate
scattering function.

A point of practical importance in this context is the treat-
ment of the !-asymmetry in QENS spectra, which is due to the
detailed balance relation of quantum time correlation functions
(this effect has not been considered in the above discussion).
The results of a recent paper on a “model-free” description of
neutron scattering from diffusing quantum particles (19) sug-
gests that Schofield’s semiclassical correction (20) Ss(q ,!)/
exp(�~!/2)S (cl)

s (q ,!) or, equivalently, Fs(q , t)/F
(cl)
s (q , t �

i�~/2) may be applied for modeling QENS experiments, using as
input only the asymptotic form of the classical intermediate scat-
tering function. The scattering functions must here be normal-
ized to ensure the normalization condition

R +1
�1 d! Ss(q ,!)=

1=Fs(q , 0), which is imposed by the probabilistic interpretation
(Eq. 54) of the dynamic structure factor.

Conclusions
In this paper, an interpretation of incoherent neutron scatter-
ing spectra has been presented in which probabilities for neutron
scattering-induced transitions between different quantum states
of the sample play a central role. The transition probabilities are
expressed as squared Franck–Condon-type overlap integrals of
corresponding eigenfunctions in momentum space, whose argu-
ments are shifted by the momentum transfer from the neutron
to the sample. A particular simple form of the dynamic struc-
ture factor is obtained if the quantum states are described by
a (quasi)continuous set of energy eigenvalues. In this case, the
dynamic structure factor is simply the thermally averaged tran-
sition probability density for energy transitions E !E + ~! and
a momentum transfer ~q. Corresponding consequences for the
interpretation of QENS data have been discussed, in particu-
lar the smooth transition from elastic to quasielastic scattering
for complex systems where the intermediate scattering function
slowly decays with a power law. The elastic and quasielastic
component of the scattering spectrum appear here as fused.

The theory connects Frauenfelder’s idea of an energy
landscape-based interpretation of neutron scattering experi-
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Ss(!)
!!0⇠ lim

✏!0+

1
⇡
<
⇢
Fs(1/(i!+ ✏))

i!+ ✏

�
. [56]
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interpretation of QENS data have been discussed, in particu-
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for complex systems where the intermediate scattering function
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component of the scattering spectrum appear here as fused.
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understandable relation between the quantum and the classical
version of the Van Hove functions.

1. Springer T (1972) Quasielastic Neutron Scattering for the Investigation of Diffusive

Motions in Solids and Liquids, Springer Tracts in Modern Physics (Springer, Berlin ),
Vol 64.

2. Lovesey S (1984) Theory of Neutron Scattering from Condensed Matter (Clarendon
Press, Oxford), Vol 1.

3. Bée M (1988) Quasielastic Neutron Scattering: Principles and Applications in Solid

State Chemistry, Biology and Materials Science (Adam Hilger, Bristol, UK).
4. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of

proteins. Science 254:1598–1603.
5. Frauenfelder H, Young RD, Fenimore PW (2013) Dynamics and the free-energy

landscape of proteins, explored with the Mössbauer effect and quasi-elastic neutron
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The EISF is a fit 
parameter, as β and τ.

Fitted intermediate scattering functions of 
resolution-deconvolved spectra reveal differences 
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and the corresponding solid lines correspond to linear
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decay with q, where the one for inhibited hAChE dis-
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and inhibited hAChE, reflects the fact that localized mo-
tions are faster than large scale motions, whereas the
general increase of ⌧ upon inhibition of hAChE indicates
slower relaxation of the inhibited variant. In contrast to
the scale parameter ⌧ , the form parameter ↵ of the re-
laxation function exhibits a much weaker q-dependence,
where the values for the inhibited variant of hAChE are
slightly smaller than those of the free one. Noting that
↵ = 1 corresponds to exponential relaxation, this means
that the corresponding relaxation dynamics is less expo-
nential for the inhibited variant. In order to understand
the physical meaning of the ↵-parameter, we write the
stretched Mittag-Le✏er function as a continuous super-
position of exponential functions,

E↵(�t↵) =
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which expresses the dynamical heterogeneity in a system
that is composed of a large number of atoms and where
each atom contributes exponentially with a di↵erent re-
laxation constant, �. Here both t and � are dimensionless
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an energy barrier spectrum by assuming that the classi-
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V (x) = V0(x)+ �V (x), where V0(x) = Kx2/2 and �V (x)
define, respectively, its smooth and rough component (see
left panel of Fig. 5). The smooth component, V0(x),
tends to bring x ⌘ �⇢ to zero, while the rough com-
ponent, �V (x), hinders this process by trapping x in
one of the local minima which are separated by a fixed
energy barrier, �E. The di↵usion in the smooth po-
tential is described by an Ornstein-Uhlenbeck process,
where the displacement autocorrelation function relaxes
exponentially, hx(t)x(0)i = hx2i exp(�⌘0t), and where
the relaxation constant and the di↵usion constant are
related through D0 = hx2i⌘0. We use now Zwanzig’s
model18 for the e↵ective di↵usion in an arbitrary rough
potential, D = D0 exp(�[��E]2), where � = 1/(kBT ),
which translates thus for an harmonic potential into
⌘ = ⌘0 exp(�[��E]2) for the relaxation constant. In-
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which leads to
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for the distribution of the dimensionless energy barri-
ers, ✏. The right panel of Fig. 5 shows the resulting en-
ergy barrier distributions for free and inhibited hAChE
(blueish and reddish curves) as a function of q, which in-
dicate that binding of the HupA ligand shifts the energy
barriers to slightly higher values and leads at the same
time to a slight broadening. Ligand binding thus leads to
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Q-dependent, semiclassical model for QENS
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Introduce the q-dependent dynamical variable

which diffuses in a “rough’ harmonic potential. 
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FIG. 6: Sketch of the e↵ective energy landscapes for free and
HupA inhibited hAChE (blue and red curves, respectively).
More explanations are given in the text.

This means that localized motions take place in a rougher
potential than those involving the whole protein, and
we note that the energy barrier shift upon fixing of the
HupA ligand is more pronounced. We also note that the
q-dependence of the ↵-parameter is here obtained by us-
ing the linear fits for ↵(q) shown in the right panel of
Fig. 4. Fig. 6 resumes the analysis of the QENS experi-
ments on free and HupA-inhibited hAChE in one single
sketch. The blue and the red curve correspond here, re-
spectively, to the potential energy surface for free and
inhibited hAChE, where the irregularity of the energy
barriers correspond to the motional heterogeneity of the
dynamics. The reduced curvature in the case of inhibited
hAChE (red curve) reflects the above-mentioned vibra-

tional mode softening and explains the observed reduc-
tion of the EISF. The corresponding increased roughness
of the energy surface indicates the energy barrier shift to
higher values upon ligand binding.

The present work shows that a careful data analysis
with an appropriate model for the intermediate scatter-
ing function, which essentially reflects its asymptotic slow
power law relaxation, allows for an observation of subtle
but systematic changes of the enzyme dynamics upon
ligand binding. The intuitive interpretation of the re-
sults has been obtained by employing Zwanzig’s phys-
ical model of di↵usion in a rough quadratic potential,
which translates relaxation rate spectra into energy bar-
rier spectra. It is also worth noting that the typical bar-
rier heights we find in our study are of the same order of
magnitude as those given in Frauenfelder’s paper on pro-
tein energy landscapes,17 although the latter have been
obtained from flash photolysis experiments, which probe
in much longer time scales than neutron scattering, and
from another protein (myogmobin). This indicates the
“universality”and selfsimilarity of protein dynamics

We finally note that all numerical and many sym-
bolic calculations have been performed with the Wolfram
Mathematica package.18
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Conclusions

• Both, trajectory and energy landscape-oriented interpretations of 
neutron scattering from condensed matter systems can be obtained by 
trading the neutron as an active probe.


• In the “trajectory picture” the intermediate scattering function is 
written as a path integral, containing a forward and a backward path, 
where the latter is initiated with a momentum transfer “kick”.


• In the “Franck-Condon picture” the neutron induces transitions of the 
system between different energy levels/quantum states and the 
corresponding momentum transfer-dependent transition probabilities 
determine the measured intensities.


• The FC picture leads to a new physical interpretation of the quantum 
Van Hove correlation functions and in their classical limit.


• The FC picture suggests a description of QENS, which treats elastic 
and quasielastic scattering as parts of one and the same spectrum.
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Reinterpreting the Van Hove function
Van Hove introduced the spatial Fourier transform of the in-

termediate (self) scattering function,

Gs(r, t) = 1(2⇡)3 � d
3
q e
−iq⋅r

Fs(q, t),
= � d

3
r
′ ��(r − r′ + r̂1(0))�(r′ − r̂1(t))� [43]

in order to relate the (r, t)-space of spatial motions to the(q,!)-space of neutron scattering spectra,

Ss(q,!) = 1

2⇡
� +∞
−∞ dt� d

3
r e

i(q⋅r−!t)
Gs(r, t). [44]

The Van Hove function takes the convenient form of a condi-

tional probability density for displacements r within time t if

one considers the classical approximation

Gs(r, t) ≈ ��(r − [r1(t) − r1(0)])�cl [45]

which is the standard assumption in modelling QENS spec-

tra. As mentioned earlier, this approximation corresponds to

considering the limit �h→ 0 and not only implies that the scat-

tering system can be treated in the classical approximation,

but also that the momentum transfer �p = �hq does not per-

turb the dynamics of the scattering system.

The spectroscopic picture of neutron scattering introduced

in this paper gives more insight into the physical meaning of

the quantum Van Hove correlation function. If expression (55)

is inserted into the definition (43) of the Van Hove (self) cor-

relation function one obtains

Gs(r, t) = 1

Z
�
m,n

e
−�Em

e
it(En−Em)��h

gm→n(r), [46]

where the functions gm→n(r) are the Fourier transforms of the

transition probabilities,

gm→n(r) = 1(2⇡)3 � d
3
q e
−iq⋅r

wm→n(q). [47]

For simplicity, we consider here only the discrete energy spec-

tra. Since wm→n(q) = �am→n(q)�2, it follows from the correla-

tion theorem of the Fourier transform that

gm→n(r) = � d
3
r
′
Am→n(r + r′)A∗m→n(r′), [48]

with Am→n(r) = 1(2⇡)3 � d
3
q e
−iq⋅r

am→n(q). [49]

Noting that the transition amplitudes can be written as

am→n(q) = � d
3N

Re
iQ⋅R

�
∗
n(R)�m(R), [50]

the functions Am→n(r) can be expressed as partial overlap

integrals

Am→n(r) =
� d

3
r2 . . . d

3
rN �

∗
n(r, r2, . . . , rN)�m(r, r2, . . . , rN) [51]

of the energy eigenfunctions �n(R) in position space. For

m = n we have in particular

Am→m(r) = � d
3
r2 . . . d

3
rN ��m(r, r2, . . . , rN)�2 . [52]

This is the marginal probability density to find the scattering

atom at position r for the case that the system is before and

Fig. 4. Left: Dynamic structure factor corresponding to the intermediate scat-

tering function (59), with R(t) = E�(−(t�⌧)�) for ⌧ = 1, ✏ = 0.01, and two

di↵erent values for the form parameter, �. Right: The same figure for ✏ = 0.001.

after the scattering process in the same energy eigenstate ��m�.
For m ≠ n the Fourier transformed transition amplitudes

An→m(r) cannot be considered as probability densities, since

they are generally complex. They verify the symmetry relation

A
∗
m→n(r) = An→m(r), which leads to g

∗
m→n(r) = gn→m(−r).

The time variable can be straightforwardly integrated into

the formalism by introducing the time-dependent wave func-

tions

 m(R, t) = �m(R)e−iEnt��h [53]

and the corresponding time-dependent transition overlap in-

tegrals

Tm→n(r, t) =
� d

3
r2 . . . d

3
rN  

∗
n(r, r2, . . . , rN , t) m(r, r2, . . . , rN , t). [54]

With these definitions the Van Hove self function is given by

Gs(r, t) = 1

Z
�
m,n

e
−�Em

Gm→n(r, t), [55]

and each coe�cient

Gm→n(r, t) = � d
3
r Tm→n(r + r′, t)T ∗m→n(r′,0) [56]

corresponds to the neutron scattering-induced energy transi-

tion m→ n.

In this context it is instructive to come back to the classical

limit of the Van Hove correlation function, which is defined by

Eq. (45). In this case

G
(cl)
�(0)→�(t)(r, t) = �(r − [r1(t) − r1(0)]) [57]

corresponds to the coe�cient Gm→n(r, t), where �(0) is a

point in phase space describing the state of the system at time

t = 0 and �(t) is the point in phase space to which the system

evolves in time t. This final point is exactly determined by the

laws of classical Hamiltonian mechanics and one can formally

write r(t) ≡ r(�(t)) and r(0) ≡ r(�(0)). Therefore, there is

no integral over the final points in phase space, which would

correspond to the sum over the energy levels n in the quantum

case, and only the thermal average over the initial points in

phase space is needed to compute G
(cl)(r, t).

QENS from complex systems
We consider now QENS from complex systems, where the dis-

tribution of energy levels is quasi-continuous in the range of

accessible energy transfers. Choosing the energy to specify the

quantum state of the scattering system, the dynamic structure

factor takes a particularly simple form. Setting X ≡ E in Ex-

pression (32), the integral over X
′ ≡ E

′
can be performed to

yield

Ss(q,!) = �h� dEWeq(E)W (E + �h!�E;q). [58]
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Based on the probabilistic interpretation of the dynamic structure 
factor

one can define a Shannon entropy for the neutron scattering 
explored energy landscape of proteins

H(q) = �
Z +1

�1
d! Ss(q,!) log

⇣
Ss(q,!)

⌘
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Possible explanation of the “mode softening”

x

V
(x
)

hAChE  hAChE+HupA  

The widened, softer potential is effectively a double-
well potential. The neutrons see a superposition of 
the fast ps dynamics in the two wells and motional 
amplitudes determined by the envelope potential.

sec. to min.


