Energy landscape versus trajectory interpretation of
neutron scattering spectra from complex systems

Seminar Center for Nonlinear Studies
Los Alamos National Laboratory 24 June 2019

Gerald Kneller
Centre de Biophysique Moléculaire, CNRS Orléans & Universiteé d'Orléans
Synchrotron Solell, St Aubin

||||||
Y SWLEIL i
SYNCHROTRON Sl
CB' [ UNIVERSITE D'ORLEANS

ssssssssssssssssssssssssssssss




Probe the structure and dynamics of condensed

matter systems with neutrons - Introduction



The Existence of a Neutron.
By J. CHADWICK', F.RS.
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Properties of the neutron

Elementary properties

Mass m, = 1.675 x 10~°" kg
Electric charge 0C
Spin %h

Magnetic moment -1.913 nuclear magnetons

De Broglie Relations

Momentum p = hk = gnk
_p? _ 1

Energy

T 2my

The “good relation” between energy and momentum:

For E =~ kg T and T = 293K the wave length is comparable to
interatomic distances, A = 1.8 A. This enables the investigation of
structural and dynamical properties of condensed matter systems
on the atomic level.
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Probing atomic motions in complex systems by quasielastic neutron
scattering (QENS)
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The ISF is a quantum correlation function

Detailed Balance relations




Van Hove's theory of neutron scattering

PHYSICAL REVIEW VOLUME 95, NUMBER 1 JULY 1, 1954

Correlations in Space and Time and Born Approximation Scattering in Systems
of Interacting Particles

Lton VAN Hove - _
Institute for Advanced Study, Princeton, New Jersey

(Received March 16, 1954)

A REMARK ON THE TIME-DEPENDENT
PAIR DISTRIBUTION

by LEON VAN HOVE

Instituut voor theoretische fysica der Rijksuniversiteit, Utrecht, Nederland -

Physica, vol. 24, no. 1, pp. 404—408, 1958.



Van Hove quantum (self) correlation function

Relate the (q,w)-description of a scattering experiment to a (x,1)
description, in which atomic motions in space and time are considered.!

[ .
Sl — %/ dt/d3:v CEseel G 1

- / B (5(x — x' + %1(0)8(x’ — %1())) = GX(x, t + ih)

The quantum Van Hove correlation function is difficult to
interpret. In a rarely cited paper? Van Hove showed that its

imaginary part is related to the local density perturbation of
the system by the scattered neutrons.

[1] L. Van Hove, “Correlations in space and time and Born approximation scattering in systems of interacting particles,”
Physical Review, vol. 95, no. 1, p. 249, 1954.

[2] L. Van Hove, “A remark on the time-dependent pair distribution,” Physica, vol. 24, no. 1, pp. 404—408, 1958.



Easy interpretation of G(x,t) in the "mathematical” h—0
limit of the scattering functions

Classical Van Hove correlation function
Here x(1) are classical

Ga(x, 1) h—0 (5(x — (x1(£) — x1(0)))).., trajectories and. G(x,t)
becomes a classical

probability density for a
displacement x in time t
Diffusion models (“spatial motion models”) for QENS
Example: free, normal diffusion

S 1 Dq?
0t Gs(x, t) = DAGs(x, t) (9 w) = ™ (Dg?)? + w2

_Ix]®
€ 4Dt
* G(th): 2\/@




Challenges and limitations of classical spatial
motion models

° Classical diffusion models for atomic motions do not capture
the multiscale dynamics of the atoms in complex systems.

° "Impactless scattering” — vanishing recoil moment

/JFOO _ Njal® no

dw wSs(q,w) = s
B s e

The h—0 limit concerns the scattering system, but also the
"kick” hg from the neutron to the scattering atom.

The impact of the scattered neutrons on the dynamics of
the scattering atoms is by construction neglected. The
neutron is a passive probe.



Quantum frajectory approach - Integrate the neutron Kick

intfo a trajectory-based description of neutron scattering

G. Kneller, Mol. Phys., vol. 83, no. 1, pp. 63—-87, 1994.

° Describe the neutron as an active probe in a
trajectory-based scenario.

> Define the “physical classical limit” of the
scattering functions.



GC Wick
Kicked Hamiltonian
2D a 2
~ P1 - 2l (P1 + Nq) A
H = -V (Fq H = -V (Fq
o V). A= (f1)

Proof. With Z = tr{e_BF’} G. C. Wick, “The scattering of
neutrons by systems containing
light nuclei,” Physical Review,

Fu(q, t) = <e—iq->“<1(0)eiq->“<1(t)> vol. 94, no. 5, pp. 12281242,
s\ 1954.
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Propagator form of the intermediate
scattering function

Flat) =5 [ | [ dxaxax

x\e BH‘X> < /‘eitlfl’(q)/h|xll> <X”‘e_iﬂ:’/h|X>
N’ e, e’
K(x,x',—iBh) Kq(x',x",—t) K(x'",x,t)

Retfrieve trajectories through a path integral
representation of the propagators



Real time propagator

Setting At =t/n

_jAt A
K (Xbs X, ) = (xple™ 't”/h|xa> <xb|( ) )

/ /dX1 . dXp Xb| ) |x1) (X1 ( _'%H) x2) ...

- {Xn] (e_ %FI) xp) "5 /D[X(T)]eiA[X(T)]/h

Path action integral

Alx(1)] = dr (Mx(7)?/2 — V(x(r)
- v"' /O L(X(r)x(7))

At



"Kicked” real time propagator

Phase factor form

Kq(Xb, Xa, t) = K(Xp, Xa, t)e"dx67%)

Path integral form

K(Xb,Xa, t) — /D[X(T)]eiAQ[X(T)]/h

“"Kicked” path action integral

Aqlx(7)] :/o dr (Mx(t

Coupling to the neutron
)?/2 — V(x(7) +|hgx(r)
Ly(x(7),x(7))




Imaginary time propagator

Setting t;, = Bh and Aty = tyn/n

AT n
K (i, X0, —i31) = (xple~ 5”\xa> (xel (€ H) " xa)

/ /dxl . dXxp( Xb\ ) x1) (x1] (e_#’:’) x0) . ..

Gl (&Y ) " / Dix(r)]e-FHX/n

Average path energy

H —i t 7 (Mx(1)? x(T
(] = 2 | dr (M3 P2+ Vo)



1
Fs(q,t) = ?///dxdx’dx” K(x,x', —ih)Ky(x', x", —t)K(x", x, t)

L
i —“kick” hq

A G
1
1
1

1
forward paths ¢
in imaginary
time

The red path corresponds to the classical
a;, 4 limit, where the total real time action is
minimized and the high temperature/short
time limit is used for the propagation in
imaginary time. The “neutron kick” is taken
into account.



Classical limit of the intermediate scattering function

Expressing the density matrix through the classical limit of the
Wigner function and retaining only the classical path (A > h)

yields
| ch
o« |eiA®(p.xiha,t)/H jig-(x' (p,x,t) —x)

AV(p,x; hq,t) = V((x+x")/2) — V(x)
Ad(p,x; hq, t) = A(x,x', t) — A(X', X", t) + (po + hq) - (x — x”

where x" = x'(p, x, t) and x” = x"(p, x; hq, t).

The standard classical limit reads




The intermediate scattering function F(q,t) can be written as a
path integral over closed paths, one of which is the classical path.

The classical path minimizes the total action in real time and is
ballistic in imaginary time (short time apprixmation).

The “physical classical limit” of F(g,t) corresponds to retaining
only the total classical path, which preserves the scattering

kinematics and the impact of the neutron on the scattering
system.

The complexity of calculating the scattering function is though
increased compared to the mathematical classical limit h—0,
where the neutron is a passive probe.



Classical mechanical energy landscape description of

neutron scattering — integrate multiscale dynamics




Energy landscapes - a Kinetic picture of protein
dynamics and kinetics

E(Xx)

“Conformational substates”

‘ll JULRA ll. X

The protein jumps between different minima of the highly multidimensional
(free) energy landscape which correspond to similar “conformational
substates” (H. Frauenfelder et al, Science 254, 1598 (1991)).

Protein dynamics through jump kinetics



The Energy Landscapes and Motions

of Proteins

HaNs FRAUENFELDER, STEPHEN G. SLIGAR, PETER G. WOLYNES

Conformational substates
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Non-exponential
rebinding kinetics of CO
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Fig. 2. Rebinding of CO to Mb after photodissociation, measured separately
for the substates of tier 0 at pH 5.7. (A) N(t) is the fraction of proteins that
have not rebound a CO at the time ¢ after photodissociation. All three
substates (Ay, A;, and A;) rebind nonexponentially in time. (B) The
activation enthalpy spectra, defined through Eq. 1.



Protein dynamics displays self-similarity

Relaxation and time correlation functions have a multi-
exponential form:

5(t) = /O A p(A) exp(—Ad)

For complex systems these functions decay for long times slowly
with a power law and exhibit thus self-similarity:

o(t) " (t/r) 7, 0< B <1 * p(AL) A Pu(t)



CO-rebinding kinetics

46 Biophysical Journal Volume 68 January 1995 46-53

A Fractional Calculus Approach to Self-Similar Protein Dynamics

Walter G. Gléckle and Theo F. Nonnenmacher
Department of Mathematical Physics, University of Ulm, D-89069 Uim, Germany

N(t) 0 |
, N(t) = N(0)Es ((—[t/7]°)
: Mittag-Leffler function
1077 S Sk
Ep(z) =
d 2 I'(1+ Bk)
=B

t—
. e ()
FIGURE 2 Three-parameter model Eq. 32 for rebinding of CO to Mb [(1—75)
after photo dissociation, The parameters are 1, = 8.4 X 107", a = 3.5 X
107* K" and k = 130, the data points are from Austin et al. (1975).




"Stretched” ML function and relaxation spectrum

Relaxation function Relaxation rate spectrum

sin(73)
A(A=P + M8 + 2cos(m3))

p(\; B) = ~

lim p(A; B) = 0(A —1)




Relating relaxation rates to the
“roughness” of the energy landscape

The distribution barrier heights corresponds to a distribution of
rates for Kinetic processes and conformational relaxation.

P [100-70

To relate barrier heights and relaxation rates, one needs a model.

A= Ape | Arrhenius

e2

R. Zwanzig, PNAS 85,1988.

A= )\06_



1 1 1 3 Proc. Natl. Acad. Sci. USA
Diffusion in a rough potential B L, A, el USA | 1988

ROBERT ZWANZIG Physics

University of Maryland, College Park, MD 20742

D* = D exp[—(&/kgT)?].

V(%)

Barrier height




For diffusion in a
harmonic potential

D() — <332>>\()

Saouessi, Peters &
Kneller, JCP150, 20109.

grou(€;B)
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Energy barrier distribution

2esin(ma)

7 exp(ae?) + exp(—ae2) + 2 cos(ma)




* The problem with energy landscapes models is that they
refer only to the wW/time domain and are not g/space-

resolved. They are thus a priori not relevant for modeling
neutron scattering.

» They can though be related to neutron scattering within
the Gaussian approximation of F(q,t).



Gaussian approximation of Fs(q,t) and diffusive motions

A. Rahman, K. Singwi, and A. Sj6lander, Physical Review 126, 986 (1962).
G.R. Kneller, The Journal of Chemical Physics 145, 044103. Communication.

Cumulant expansion in q

Fl(q,t) = e%tf(q, t) fa,t) = exp (Z(l)kq% m(ﬂ)

k=1
72(t) = NZ(t>7 ; i
va(t) = palt) — %ua(t)Z, por(t) = /0 Wi /0 dtag (Dg(t1) - - - Dg(tar))

Gaussian approximation (moderate momentum transfers, q)

In the classical limit
F(q,t) is completely
determined by the
MSD of the
diffusing scattering
atom




Relaxation rate/energy barrier spectra for atomic motions in
proteins

Motions in proteins are confined in space (a=0) and the atomic
positions can be referred to a well-defined mean positions,

x(t) = u(t) + (x)

The MSD for confined motions can be expressed in terms of the
displacement autocorrelation function.

t
0 2 4 6 8 10

decay.

Distribution of relaxation rates/
barrier heights



Fractional Ornstein-Uhlenbeck process — a model for
self-similar single-atom dynamics in proteins

p

Normal Ornstein- N}\‘W‘-N Fractional Ornstein-

Uhlenbeck process: \\\&.‘\\\},:\‘\\;“r» \: ;\‘\ ) Uhlenbeck process:
RO Anomalous Diffusion in

Diffusion in a “smooth”
harmonic potential

M\““ N

W

a “rugged” harmonic
potential

|. Shao,Y. Physica D: Nonlinear
Phenomena 83, 461477

Uhlenbeck, G. E. & (1995).

Ornstein, L. S. 2.R. Metzler; J. H.Jeon,and A. G.
Physical Review 36, Cherstvy, Physical Chemistry
823 (1930). Chemical Physics, vol. 16, pp.

24128-24164,2014.




Fractional Fokker-Planck equation for conditional probability

0, _
o p(u.tluo, 0) =0, L p(u, tfug,0), 0 < <1

Time evolution operator
Harmonic potential

0, 9, Ku K
L = Dﬁ— - | V(a) = —\u|2

ou |ou kgT 2

Fractional time derivative
B 4 [t p_ )81 represents memory
915 g (1) dT( D" o) | effects in the
dt [(5)
framework GLE.




Time series and autocorrelation functions for the fOU

process

OU process, 7=0.3

1 - tim
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Application 1: Lysozyme under pressure by QENS and
MD simulations (notation: g—a)

Neutron scattering

QENS dynamic structure factor

MD simulation

Mean square displacement <[x(t)-x(0)]?> of the H
atoms in lysozyme MD simulation

1x1073 ;— 0'03; MD
31"10-4 ;_ 0.02
= E |
wn - = i
1x10° £ Exp.data 0.1 MPa *_ *° 5 0015 3 kbar
= —— Fitfou £
1x108 g
= Lysozyme
1x1073
1x104 E B
s I SRROMIER: o 0.1 MPa 300 MPa
------ () mm®) o | t(ps) (%) (@m®) [ | < (ps)
6.17x107> § 0.548 31.75 4.74x107> § 0.54 § 39.08

e Calandrini, Kneller, J. Chem. Phys., vol. 128, no. 6, p. 065102,2008.
e Calandrini et al,, Chem. Phys., vol. 345, pp. 289-297, 2008.

e Kneller, Calandrini, Biochimica et Biophysica Acta, vol. 1804, pp. 56—62,2010.

The form of the energy
landscape does not change
under pressure.



Application 2: Protein dynamics by NMR relaxation

spectroscopy
Relaxation N —1H

Cii(t) = (Po(p(1) - p:(0))),

g

ciilt) — G RO
N

Global rotation Internal dynamics

o_gsé_ Fit of simulated cj(t)

09 F

Soass |
08 [ %

0.75
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-

Prediction of
Experimental data

* Calandrini,Abergel, Kneller,
J. Chem. Phys., vol. 128, p. 145102,

T1,T2, NOE e
( ) ’ ) | * Calandrini,Abergel, Kneller,
b e e o et J- Chem. Phys., vol. 133, p. 145101,
- ———+—— alphatau S2 from fit NCR 20 | 0

P N S SN B R SR ANy AN S Ry S S
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residues



Quantum mechanical energy landscape concept

for neutron scattering

Describe the neutron as an active probe in
an energy-landscape oriented interpretation
of neutron scattering.



QENS from a Mossbauer perspective

Frauenfelder, Fenimore & Young, PNAS |11, 12764 (2014).

Spatial motion model Energy landscape model
"Homogeneous” QENS spectrum “Heterogeneous” QENS
from a diffusion model based on spectrum composed of many

Van Hoves theory « Mossbauer lines »
! | I | C 12
Elastic

/:? < 0.8

) s

%’ 0.5 G >

5 5

2= c 0.4
iquasl-elastlc

oL TR | o LA

AE (a.u.)

No qualitative distinction between elastic
and inelastic scattering



During its flight through the sample, the neutron wave packet
records the net energy transition of the system from the
initial energy level E to the final level E+AE.

* The neutron is considered as a passive probe

l * The description is essentially qualitative
e Momentum transfer is not considered



The role of momentum transfer during incoherent

neutron scattering is explained by the energy
landscape model

Hans Frauenfelder®', Robert D. Young®, and Paul W. Fenimore®’ PNAS | | 4’ S0 (ZO | 7)

e The neutron is an active probe : “Local

heating” of the sample due to the momentum
transfer.

e But: Momentum and energy transfer are not
connected through scattering kinematics.



Franck—Condon picture of incoherent PNAS, 115, pp. 9450 2018.
neutron scattering

Gerald R. Kneller®®'

Based on Wicks “kicked” Hamiltonian, obtain an energy
landscape formulation of neutron scattering that is based
on quantum mechanical scattering theory

Use the complete sets of energy eigenstates of H and I:I’(q) to
obtain a spectral representation of the intermediate scattering
function,

1 7 ! "
Fo(a.t) = < 3 (dmle™ @ (@) (¢ (a) ™™V e /M|y

——Ze—ﬁEm (EEn (61 (@) )



Eigenvalues and eigenfunctions for the Hamiltonians

“Energy landscape”=energy spectrum

I:I/(q)¢n(l3

Flgbn(p) — En¢n(p)

hQ) = Endn(p

hQ)

H' : same energies, but
shifted wave functions

Momentum transfer dependent probabilities for
neutron scattering induced energy transitions

Franck-Condon form

* Line spectrum for the dynamic structure factor

1 _ (E._
Fula, ) = 3 30 e EnetEEnlp, (g

5:(0.9) = 5 3 & PEpn(@)3 (w — [Ex — En]/h)




"MoRbauer” line spectrum for S(q,w)




From the Brockhouse lecture

SLOW NEUTRON SPECTROMETRY

Theories of the physics of condensed matter involve the most basic aspects
of modern physics: the principles of conservation (energy, linear momen-
tum etc.), the chemical elements in various ionic forms, electrons, neutrons,
quantum mechanics. Implementations for a particular substance in a parti-
cular setting, usually involve drastic approximations if the required quantum
statistical calculations are to be possible. Happily, because the nuclear and
magnetic interactions between the neutron and atom are (in some sense)
weak, the very good "first Born approximation” is applicable, and the neu-
trons are effectively “decoupled” from the dynamics of the scattering system
which can be considered in isolation. The neutron, in being scattered,
“causes” transitions between the quantum states of the scattering system but
does not change the states.



Detailed balance and recoil

It follows from the symmetry properties of the transition
properties

pmn(q) — pnm(_q)

that the detailed balance relations are fulfilled




Re-interpretation of the Van Hove function

1 .
A= lems T The standard form
Gulrst) = 35 [ e Fu(a,)
= /dgfr’ (6(r — 1" +11(0))6(x" —£1(2)))
1
Gs(r,t) = - ;e_ﬁEm Gm_n(r,t) The Franck-Condon form
Defining the overlap integrals Ym(R, 1) = g (R)e™HEmt/P

/

Ty sn(r,t) :/d3r2...dSTNw,;:(r,rg,...,rN,t)wm(r,rg,...,rN,t).

The G-coefficients are given by the correlation integrals

Grmn(r,t) = /dgr Trsn(r +1', )T . (r',0)



Again the classical limit

The double sum

1

Gs(rvt) — Z Z _BEme%n( t)

m,n

translates info the single phase space average

C 1 cl
(e = 7 [ AT G y (r:)

where G i (r,t) = d(r — [r1(t) — r1(0)])

are transition “certainties”, since the transition
I'(0) — I'(¢) is deterministic.



An analytical example - the harmonic oscillator

Wave functions for the 0->3’ transition

T VvV

2

P 1 2 2
E = -

= 2mQX

2 2
Pmn(q) = e_é(—l)mjL”LS,f,’_m) (yZ) Lgm_”) (y_> Transition probabilities

2h
y(q) = o Dimensionless momentum transfer




Some transition probabilities as a
function of momentum transfer

0-0 0-1 0-2

-10 -5 0 5 10y -10 -5 0 5 10y -10 -5 0 5 10y
2-0 21 h 22




Intermediate scattering function

1 — m I(n—m
Fs(qa t) — ? Z € FrY +1/2)e ( )Qtpmn(q)

Textbook result (c.f. Lovesey)

* Fu(q. 1) = e (sin(@0)-+i(1—cos(@n)) coth( 252))

Dynamic structure factor

1 — m
Se(g,w) = 5 p_ e M5 (w — [n — mIQ) pmn(a)




Complex systems

The quantum state variables of complex
systems are quasi-continuously distributed.

X is a set of variables describing
the state of the system

H|$(X)) = E(X)[6(X))

(1 ifX =X,

\O otherwise

(p(X")(X)) = <

Continuous counting |M — dm = Mdf X
p(X) is the density of (quantum) states of the system.

»For X=E p(E) is the (quantum) “energy landscape”.




Scattering function and energy landscape




The scattering functions are determined by the
transition probabilities and the density of states, p(E).

The dynamic structure factor is a continuous function
in W and for X=E it becomes a thermally weighted
transition probability for transitions from E—E'=E+hw

SS(q,w):hdeWeq(E)W(E+hw\E;q).

quasielastic scattering at finite instrumental

' A priori continuous transition from elastic to
resolution.



Asymptotic analysis of QENS/ENS e rrns

115, ppe F45 UG
Mathematical argument for a combined description of i

elastic and quasielastic scattering (e.g. protein in powders)

Generic form of F(q,t) (q-dependence omitted)

Application of

F,(t)= EISF + (1 — EISF)R(t)

a Tauberian

theorem
. F(\t cg e
lim S — LA =0)= 25 i F(1/s)/s. Littlewood &
t— 00 F(t)
Karamata)

Resulting form for the dynamic structure factor

, Here £
S (UJ) wzo lim l% ks (1/(Zw T 6)) denotes finite
° e—0+ 77 W —+ € instrumental

resolution

A = [ dte 5'F(t) Laplace transform of F(1)



Fusion of elastic and quasielastic line

R(t)=Es(=(|t|/m)"), 0<p<1

S[w,e=0.01] S[w,e=0.001]
1.0?- e 1.02— i
0.8 p=0.7 | B=0.7
o.eé
0. 1\
L .
e . v =

Here € is a resolution parameter and S = 1 corresponds to
exponential relaxation.

For slow power law relaxation oc t =7, with 0 < 8 < 1, the
elastic and quasielastic line are fused and the EISF must be
fitted together with the parameters 3, 7 of the R(t).

>



Use here the symmetrized correlation function

F(t +iBh/2)

F(t) ~ FO(t) = — R

since the real symmetric part of the ISF
determines its asymptotic behavior:

e i) (R)
FO(@) = —ta (5}1 — ) F® (1

odd even



Application to Huperzine-A inhibited human
Acetylcholine Esterase

ﬁ'

M. Saouessi, J. Peters, and G. R. Kneller, J Chem Phys, vol. 150, p. 161104, Apr. 2019.

10f

Z 2 0 1 2
w (meV)

Experimental symmetrize dynamic structure factor for free and HupA-

inhibited hAChE (blue and red dots, respectively) and corresponding

reconstruction from the models (blue and red dashed line). The differences

between free and HupA-inhibited hAChE are almost invisible.



F(q,t)

Fitted intermediate scattering functions of

resolution-deconvolved spectra reveal differences
between free and HupA-inhibited hAChE
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F,(t) = EISF + (1 — EISF)R(t)

R(t)=Es(=(|t|/7)"), 0<p<1

The EISF is a fit
parameter, as 8 and T.
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Q-dependent, semiclassical model for QENS

Assume F(D(¢) ~ F(H)(¢)

Introduce the gq-dependent dynamical variable

(1) = SAaR(t) _ < 6iq.R(t)>

which diffuses in a “rough’ harmonic potential.




Rough harmonic potential and energy barrier distribution

Barrier distribution for different g-values
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7y X e=PAE

Use Zwanzigs theory of diffusion D=D 6_62 . — AE
in a rough potential (PNAS 1988) 0 ’ kT

and that Dy = (22)ng in a harmonic potential, to infer that A = n/n = exp(—¢°)

1 sin(mwa)
TAAY + A= 4 2 cos(max))

1 2e sin(ma)

p(A) =

7 exp(ae?) + exp(—ae?) + 2 cos(ra)



The effect of ligand binding

V(x)
Widening of V(x):
"mode softening”

1\

Roughening” of the
N f’ potential surface




Conclusions

e

Both, trajectory and energy landscape-oriented interpretations of
neutron scattering from condensed matter systems can be obtained by
trading the neutron as an active probe.

In the “trajectory picture” the intermediate scattering function is
written as a path integral, containing a forward and a backward path,
where the latter is initiated with a momentum transfer “kick”.

In the “Franck-Condon picture” the neutron induces transitions of the
system between different energy levels/quantum states and the
corresponding momentum transfer-dependent transition probabilities
determine the measured intensities.

The FC picture leads to a new physical interpretation of the quantum
Van Hove correlation functions and in their classical limit.

The FC picture suggests a description of QENS, which treats elastic
and quasielastic scattering as parts of one and the same spectrum.



Outlook - Energy landscape entropy

Based on the probabilistic interpretation of the dynamic structure
factor

S.(q,w) = h f AE Weo(EYW (E + hw|E: q).

one can define a Shannon entropy for the neutron scattering
explored energy landscape of proteins
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Possible explanation of the "mode softening”

hAChE <———p hAChE+HupA

V(X)

The widened, softer potential is effectively a double-
well potential. The neutrons see a superposition of
the fast ps dynamics in the two wells and motional
amplitudes determined by the envelope potential.



