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1 Free Diffusion

1.1 Diffusion equation

Diffusion is an elementary transport problem describing the spreading of molecules, or micro-
scopic particles (solutes) in general, in a solution. The first theoretical description has been given
by Adolf Fick [1] and was inspired by Fourier’s description of heat conduction. Later a derivation
was given by Einstein [2], which can be considered as a first step towards a description of diffu-
sion processes in terms of stochastic displacements of individual particles. Considering a diluted
solution, where interactions between the solute particles can be neglected, and neglecting exter-
nal forces on them, there time- and space-dependent concentration is described by the following
partial differential equation,

∂tc(x, t) = D∆c(x, t) (1.1)

Here D is the diffusion constant and ∆ = ∂2
x + ∂2

y + ∂2
z is the Laplace operator. The diffusion

constant is a so-called transport coefficient and has the physical dimension m2/s in SI units. The
derivation of the diffusion equation needs two basic ingredients:

1. A model for the the solute current density, j(x, t), which describes the tendency to diminish
concentration gradients and to establish a uniform solute concentration at long times. To
describe this well-known phenomenon, Fick proposed to express the current density j(x, t)
in the form (“Fick’s law”)

j(x, t) = −D∇c(x, t) (1.2)

The solute current density is thus supposed to be proportional and opposed to the gradient of
the solute concentration, with the diffusion constant D being the constant of proportionality.
It can be interpreted as transport reaction on a given solute gradient and for this reason, the
diffusion constant is a transport coefficient.

2. The conservation of the total number of solute molecules,N =
∫
d3r c(x, t) = 1, which yields

the condition
∂tc(x, t) + ∇ · j(x, t) = 0 (1.3)

for the solute current density. One sees immediately that insertion of Expression (1.2) into
Eq. (1.3) leads to the diffusion equation (1.1). Eq. (1.3) is known as equation of continuity,
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and appears in other fields of physics in the context of conservation laws. Its integral form
is derived with Gauss’ theorem and reads

∂t

∫

V

d3r c(x, t)

︸ ︷︷ ︸
NV (t)

= −
∮

∂V

da · j(x, t)
︸ ︷︷ ︸

I∂V (t)

= 0, (1.4)

where NV (t) is the number of solute particles in the volume V and I∂V (t) the net cur-
rent of solute particles across the surface of V . Under physically reasonable assumptions
limV→∞ I∂V (t) = 0, such that limV→∞NV (t) = const., where the constant is the total num-
ber N of solute particles.

1.2 Solution of the diffusion equation

The diffusion equation is easily solved by spatial Fourier transformation. Introducing the Fourier
transform pair

f̃(k) =

∫
d3r e−ik·xf(x), (1.5)

f(x) =
1

(2π)3

∫
d3k eik·xf̃(k), (1.6)

Fourier transform of the diffusion equation (1.1) leads to

∂tc̃(k, t) = −D|k|2c̃(k, t), (1.7)

and thus transforms a partial differential equation into an ordinary differential equation, which
can be solved to give

c̃(k, t) = c̃(k, 0)e−D|k|
2t, (1.8)

where c̃(k, 0) is the Fourier transform of the initial solute concentration. If we make the idealized
assumption that all solute particles are initially concentrated at the origin, x = 0, of the coordinate
system, we have

c(x, 0) = Nδ(x)←→ c̃(k, 0) = N. (1.9)

In the case of freely diffusing particles in a homogenous system, there no reason to chose a par-
ticular initial point, and therefore x0 = 0 can been chosen. For the Fourier transform of the solu-
tion (1.8) back into real space we can use that in one dimension

g(x) =
e−

1
2 (x/σ)2

√
2πσ

←→ g̃(k) = e−
1
2 (σk)2 .

Setting σ =
√

2Dt and factorizing c̃(k, t) = Ng̃(kx, t)g̃(ky, t)g̃(kz, t), leads then to the solution

c(x, t) = N
e−
|x|2
4Dt

(
√

4πDt)3
(1.10)
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Figure 1: Left panel: Time evolution of the concentration for free diffusion. Right panel: Time evolution of
the concentration for diffusion in a harmonic potential. More details are given in the text.

One recognizes that limt→0 c(x, t) = Nδ(x). The left panel of fig. 1 shows the spreading of the
concentration profile for free diffusion in one dimension. The solution (1.10) may be used to extract
the velocity field of the diffusing solute particles, writing

j(x, t) = c(x, t)v(x, t) (1.11)

and using here the definition (1.2) of the solute current density, j(x, t). The result is

v(x, t) =
x

2t
, (1.12)

showing that the velocity has radial symmetry and tends from initially infinite values to zero as
the equilibrium state is attained.

2 Diffusion in presence of forces

2.1 Smoluchowski equation

The diffusion equation has been extended by Marian Smoluchowski in order to account for explicit
driving forces acting on the solute particles [3]. His idea was to supplement Fick’s law (1.2) by a
term containing the driving force, F (x), writing

j(x, t) = −D∇c(x, t) +D
F (x)

kBT
c(x, t) (2.1)

Here kBT is the Boltzmann constant multiplied by the temperature T in Kelvin. As in the case of
free diffusion the equation of continuity (1.3) must be fulfilled to guarantee the conservation of the
total number of particles. Assuming that the driving force derives from a potential

F (x) = −∇V (x), (2.2)

leads to the modified diffusion equation

∂tc(x, t) = D∇ ·
{
∇c(x, t) +

∇V (x)

kBT
c(x, t)

}
(2.3)
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which is referred to as the Smoluchowski equation.
The presence of an external driving force leads to non-trivial stationary solutions, cs(x). Setting

∂tcs(x, t) = 0, it follows from the Smoluchowski equation (2.3) that

∇cs(x) +
∇V (x)

kBT
cs(x) = 0, (2.4)

which may be written in the form

∇ log
(
cs(x)

)
= −∇V (x)

kBT
, (2.5)

showing that log
(
cs(x)

)
∝ −V (x)

kBT
. The normalized solution for cs(x) is thus

cs(x) = N
exp

(
−V (x)
kBT

)

Zc
≡ ceq(x) (2.6)

where it is supposed that

Zc =

∫
d3r exp

(
−V (x)

kBT

)
(2.7)

exists. Being proportional to the configurational Boltzmann factor, cs(x) has the form of an equilib-
rium distribution function in statistical mechanics, and Zc is the corresponding partition function.
It is also important to note that the equilibrium concentration, ceq(x), does not depend on the diffu-
sion constant. The latter determines how fast an arbitrary initial concentration c(x, 0) approaches
ceq(x).

2.2 An example – diffusion in a harmonic potential

We consider now the concrete situation, where the systematic force driving the solute particles in
a suspension derives from an isotropic harmonic potential,

V (x) =
1

2
K|x|2, K > 0. (2.8)

Defining the relaxation constant1

η =
DK

kBT
, (2.9)

the Smoluchowski equation (2.3) takes the form

∂tc(x, t) = D∆c(x, t) + η∇ · {xc(x, t)} (2.10)
1The physical dimension is s−1.
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One dimensional case. To construct the solution the Smoluchowski equation (2.10), we consider
first the one-dimensional case,

∂tc(x, t) = D
∂2

∂x2
c(x, t) + η

∂

∂x
{x c(x, t)} . (2.11)

As in the case of free diffusion we apply a Fourier transform to obtain

∂tc̃(k, t) = −Dk2c̃(k, t)− ηk ∂
∂k
c̃(k, t). (2.12)

We use here the correspondences ∂xf(x) ↔ ikf̃(k) and xf(x) ↔ i∂kf̃(k). We suppose that the
solution has still Gaussian form – as in the case of free diffusion – and make the ansatz [4]

c(x, t) = N
e
− (x−µ(t))2

2σ(t)2

√
2πσ(t)

←→ c̃(k, t) = Ne−
1
2σ(t)2k2−iµ(t)k, (2.13)

where µ(t) and σ(t) are the time-dependent mean and variance, respectively, of this Gaussian.
Ordinary differential equations for µ(t) and σ(t) are obtained by inserting the Fourier transform
c̃(k, t) of the Gaussian Ansatz (2.13) into the Fourier transformed Smoluchowski equation (2.12).
Observing that the resulting equation must be separately fulfilled for its real and imaginary part,
one obtains the differential equations

σ(t) (ησ(t) + σ′(t)) = D,

ηµ(t) + µ′(t) = 0,

respectively. Assuming that the solute particles are initially concentrated at x(0) = x0,

lim
t→0

c(x, t) = Nδ(x− x0), (2.14)

the initial conditions are σ(0) = 0 and µ(0) = x0, which leads to

σ(t) =

√
D(1− e−2ηt)√

η
, (2.15)

µ(t) = x0e
−ηt. (2.16)

Inserting this into the general Gaussian form of the solute concentration, which is given by the
lefthand side of the Fourier transform pair (2.13), one obtains

c(x, t) = N

(
η

2πD(1− e−2ηt)

)1/2

exp

(
−η (x− x0e

−ηt)
2

2D (1− e−2ηt)

)
. (2.17)

Inserting limt→0 µ(t) = x0 and limt→0 σ(t) = 0 into the ansatz (2.13) for the solution the initial
condition (2.14) of the solution is well retrieved. Concerning the long time limit, we have

lim
t→∞

µ(t) = 0, (2.18)

lim
t→∞

σ(t) =
√
D/η =

√
kBT/K, (2.19)
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which shows that limt→∞ c(x, t) is a centered Gaussian function, irrespective of the localization,
x0, of the initial concentration. The concrete form is

lim
t→∞

c(x, t) =

(
K

2πkBT

)1/2

exp

(
− Kx2

2kBT

)
= ceq(x), (2.20)

where is the equilibrium concentration, noting that ceq(x) ∝ exp
(
−V (x)
kBT

)
, with V (x) = Kx2/2.

The right panel of Figure 1 shows the solution for a concrete example, where D = 1, η = 1,
x0 = 1 in dimensionless units. On sees clearly that the solution evolves towards the equilibrium
concentration (black solid line), which is a centered Gaussian.

Three dimensional case. The results of the previous paragraph are immediately generalized to
three dimensions, noting that the potential V (x) is isotropic, and therefore c(x, t) = Π3

i=1c(ri, t):

c(x, t) = N

(
η

2πD(1− e−2ηt)

)3/2

exp

(
−η |x− x0e

−ηt|2
2D (1− e−2ηt)

)
, (2.21)

lim
t→∞

c(x, t) = N

(
K

2πkBT

)3/2

exp

(
−K|x|

2

2kBT

)
= ceq(x). (2.22)

3 Probabilistic description of diffusion processes

3.1 Conditional probabilities for particle displacments

The probabilistic description of diffusion processes is based on the concept of conditional prob-
abilities for the displacements of individual particles, instead of using a macroscopic approach
in terms concentrations of ensembles of particles according to Fick, Einstein, and Smoluchowski.
The link between the two approaches is that concentrations of a very large number of diffusors
(N ≈ 1023) can be considered as valid “histogram approximations” for conditional probability
densities if the initial concentrations correspond to the situation that all particles start at the same
point, c(x, 0) = Nδ(x− x0). On may therefore write

d3r p(x, t|x0, 0) ≈ d3r
c(x, t)

N
. (3.1)

where p(x, t|x0, 0) is the conditional probability to find a tagged particle at time t at some posi-
tion, x, given that this particle started at time 0 at some given initial position, x0. Its time evolution
is given by the Smoluchowski equation

∂tp(x, t|x0, 0) = D∇ ·
{
∇p(x, t|x0, 0) +

∇V (x)

kBT
p(x, t|x0, 0)

}
(3.2)

which has to be solved with the initial condition

p(x, t|x0, 0) = δ(x− x0). (3.3)

7



0 2 4 6 8 10
-8

-6

-4

-2

0

2

4

t

x(
t)

Free diffusion

0 2 4 6 8 10

-0.5

0.0

0.5

1.0

t

x(
t)

Diffusion in a harmonic potential

Figure 2: Left panel: A sample of 10 stochastic trajectories for free diffusion, setting D = 1 and ∆t = 0.1.
Right panel: A sample of 10 stochastic trajectories for diffusion in a quadratic potential (Ornstein-Uhlenbeck
process), setting D = 0.05, η = 1, x0 = 1, and ∆t = 0.1.

In the case of free diffusion the localization x0 was arbitrarily set to x0 = 0, since the diffusion
equation is invariant under a translation of the coordinate system. The example of the Smolu-
chowski equation for a harmonic potential shows that such a translational invariance does not
exist in general, and the form of the solution will thus in general depend on x0. Taking again
diffusion in a harmonic potential as a concrete example, we have

∂tp(x, t|x0, 0) = D∆p(x, t|x0, 0) + η∇ · {xp(x, t|x0, 0)} , (3.4)

with the solution

p(x, t|x0, 0) =

(
η

2πD(1− e−2ηt)

)3/2

exp

(
−η |x− x0e

−ηt|2
2D (1− e−2ηt)

)
, (3.5)

lim
t→∞

p(x, t|x0, 0) =

(
K

2πkBT

)3/2

exp

(
−K|x|

2

2kBT

)
= peq(x) (3.6)

for the initial condition (3.3).

3.2 Stochastic equations of motion

The probabilistic interpretation of diffusion processes is based on the idea to follow individual
tagged particles and to consider conditional probability densities for their displacements rather
than concentrations of many particles. It is therefore meaningful to ask the question if the Smolu-
chowski can be used to derive probabilistic (or stochastic) equations of motions describing the
time evolution of their random trajectories. For this purpose we introduce the moment generating
function for the particle displacements,

G(k, t) =

∫
d3u e−ik·(x−x0)p(x, t|x0, 0), (3.7)
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which yields the tensorial displacement moments via

〈x⊗ . . .⊗ x︸ ︷︷ ︸
k times

〉(t) = ik∇⊗ . . .⊗∇︸ ︷︷ ︸
k times

G(k, t)|k→0. (3.8)

Considering now a small time increment, ∆t, we can approximate

G(k,∆t) ≈
∫
d3r e−ik·(x−x0)

(
δ(x− x0) + ∆t∂tp(x, t|x0, 0)|t=0︸ ︷︷ ︸

p(x,∆t|x0,0)

)
,

where ∂tp(x, t|x0, 0) is given by the r.h.s. of the Smoluchowski equation (3.2),

G(k,∆t) ≈
∫
d3r e−ik·(x−x0)

(
δ(x− x0) + ∆t

{
D∇ ·

{
∇δ(x− x0) +

∇V (x)

kBT
δ(x− x0)

}})
.

Applying particle integrations, the derivatives of the delta distribution can be transformed in
derivatives of the plane wave exp(−ik · (x− x0)), leading to

G(k,∆t) ≈
∫
d3r e−ik·(x−x0)

(
δ(x− x0) + ∆t

{
D∇ ·

{
∇δ(x− x0) +

∇V (x)

kBT
δ(x− x0)

}})

= 1−
∫
d3r D|k|2e−ik·(x−x0)δ(x− x0) +

∫
d3r iDk · ∇V (x)

kBT
e−ik·(x−x0)δ(x− x0),

and integration over x leads to

G(k,∆t) ≈ 1−D|k|2∆t+ iDk · ∇V (x0)

kBT
∆t. (3.9)

Applying now the rule (3.8) for the computation of the tensorial moments, we obtain

〈(x− x0)〉 = −D∇V (x0)

kBT
∆t, (3.10)

〈(x− x0)⊗ (x− x0)〉 = 2D∆t1. (3.11)

Noting that 〈x0〉 = x0 = x(t0), the above equations can be translated into the stochastic equation
of motion

x(t0 + ∆t) = x(t0)−D∇V (x(t0))

kBT
∆t+ δξ (3.12)

where δξ is a stochastic displacement verifying

〈δξ〉 = 0, (3.13)

〈δξ ⊗ δξ〉 = 2D∆t1. (3.14)

Eq (3.12) is a discrete equation of motion, and describes, in fact, the first step t0 → t1 = t0 + ∆t.
Successive applications t1 → t2 = t1 + ∆t, t2 → t3 = t3 + ∆t, etc. lead to the discrete trajectory

T = {x(t0),x(t1),x(t2),x(t3), . . .}.

As examples we consider the case of free diffusion and diffusion in a harmonic potential.
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Free diffusion. In absence of a external forces it follows from Eq. (3.12) that the updates of the
particle positions are given by

x(t0 + ∆t) = x(t0) + δξ, (3.15)

where the random displacements satisfy the conditions (3.13) and (3.14). Fig. 2 shows two ex-
amples for stochastic trajectories corresponding to one-dimensional diffusion processes. The left
panel of Fig. 2 shows 10 sample trajectories for free one-dimensional diffusion, where the equation
of motion (3.15) becomes x(t0 + ∆t) = x(t0) + δξ. The parameters are here D = 1 and ∆t = 0.1
and all trajectories start at x0 = 0.

Ornstein-Uhlenbeck process. If we consider diffusion in a harmonic potential,

V (x) =
1

2
K|x|2, K > 0,

it follows from Eq. (3.12) that the updates of the positions are given by

x(t0 + ∆t) = x(t0)− ηx(t0)∆t+ δξ, (3.16)

where η = DK/kBT (see Eq. (2.9)) and the random displacements satisfy again the conditions (3.13)
and (3.14). Eq. (3.16) defines a stochastic process which is referred to as Ornstein-Uhlenbeck (OU)
process [5–7]. The right panel of Fig. 2 displays 10 sample trajectories corresponding to the one-
dimensional OU process. Note that all trajectories start at x0 = 1, i.e. displaced with respect to the
minimum of the potential. The remaining parameters are D = 0.05, η = 1, and ∆t = 0. It is well
visible that all trajectories fluctuate for long times around the minimum of the potential, which is
at x = 0. This observation is coherent with the time evolution of the concentration of diffusing
particles in a harmonic potential, which is displayed in Fig. 1.

3.3 Time-dependent mean squared displacements

The time-dependent mean squared displacement (MSD) is the fundamental quantity characteriz-
ing the diffusion of individual particles. In a system at thermal equilibrium it is defined through

W (t) ≡ 〈|x(t)− x(0)|2〉 =

∫ ∫
d3rd3r0|x− x0|2p(x, t|x0, 0)peq(x0) (3.17)

where peq(x0) is the equilibrium probability density for finding the particle at time 0 at position x0.
We have seen that the stochastic trajectory of a diffusing particle is entirely determined by the
conditional probability density p(x, t|x0, 0) to go from a well-defined starting position, x0, to some
position, x, within a time span, t. The calculation of an MSD must in addition account for the
weighting of the initial position, which is given by peq(x0). Otherwise we would compute an
MSD for a particular initial position. Using Bayes’ law, 2 we see that

p(x, t|x0, 0)peq(x0) = p(x, t;x0, 0) (3.18)

is the joint probability density to find the particle at time 0 at the position x0 and at time t at the
position x.

2The usual form uses probabilities and not probability densities and says that the joint probability p(A,B) for finding A
and B can be written in the two equivalent forms p(A,B) = p(A|B)p(B) = p(B|A)p(A), where p(A|B) is the conditional
probability to find A given B and p(B|A) is the conditional probability to find B given A.
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3.3.1 Free diffusion

In case of free diffusion there are no external forces, V (x) ≡ 0, such that

∂tp(x, t|x0, 0) = D∆p(x, t|x0, 0). (3.19)

Free diffusion implies a translationally (and rotationally) homogeneous system, such that

peq(x0) =
1

V
, (3.20)

where V → ∞ is the volume of the macroscopic system in which the diffusion process takes
place. Correspondingly, the diffusion equation (3.19) is translationally invariant, and the variable
transform x→ u = x− x0 will not change its form,

∂tp(u, t|0, 0) = D∆p(u, t|0, 0). (3.21)

For the MSD we have
W (t) =

∫
d3u|u|2p(u, t|0, 0),

noting that
∫
V
d3r0(1/V ) = 1. To compute W (t) we establish first a simple differential equation

∂tW (t) =

∫
d3u|u|2∂tp(u, t|0, 0),

where ∂tp(u, t|0, 0) is to be replaced by the r.h.s. of Eq. (6.3). We may then use double partial
integration to obtain

∂tW (t) = D

∫
d3u|u|2∆p(u, t|0, 0) = D

∫
d3u {∆|u|2}︸ ︷︷ ︸

=6

p(u, t|0, 0) = 6D,

from which it follows immediately that

Wfree(t) = 6Dt (3.22)

Working more generally in n dimensions this becomes

Wfree(t) = 2nDt (3.23)

3.3.2 Confined diffusion

We consider now the situation that a potential V (x) prevents the diffusing particle to escape to
infinity, such that

〈|x|2〉 ≡
∫
d3r peq(x)|x|2 <∞. (3.24)

Expanding |x − x0|2 = |x|2 + |x0|2 − 2x · x0 in Expression (3.17) for the MSD and using that,
according to Bayes’ law,

p(x, t|x0, 0)peq(x0) = p(x0, t|x, 0)peq(x), (3.25)
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we obtain

W (t) =

∫ ∫
d3rd3r0|x0|2p(x, t|x0, 0)peq(x0) +

∫ ∫
d3rd3r0|x|2p(x0, t|x, 0)peq(x)

− 2

∫ ∫
d3rd3r0x · x0p(x, t|x0, 0)peq(x0).

Since
∫
d3r p(x, t|x0, 0) = 1 and

∫
d3r0 p(x0, t|x, 0) = 1 we are left with

W (t) =

∫
d3r0 |x0|2peq(x0) +

∫
d3r |x|2peq(x)− 2

∫ ∫
d3rd3r0 x · x0p(x, t|x0, 0)peq(x0).

The first two integrals are trivially identical and using an abbreviated notation we have thus

W (t) = 〈|x(t)− x(0)|2〉 = 2
(
〈|x|2〉 − 〈x(t) · x(0)〉

)
(3.26)

Defining the normalized position autocorrelation function

φ(t) =
〈x(t) · x(0)〉
〈|x|2〉 (3.27)

the MSD takes the form
W (t) = 2〈|x|2〉(1− φ(t)) (3.28)

Since φ(t) relaxes for long times to zero, the MSD grows to the plateau value

W (∞) = 2〈|x|2〉. (3.29)

In case of confined diffusion the trick to establish a simple differential equation for the MSD,
which was used in the case of free diffusion, does not work and the computation has to be per-
formed via the correlation function (3.27). Here again one can try to establish a simple differential
equation and as an example consider the Ornstein-Uhlenbeck process, i.e. a particle diffusing in
a quadratic potential. For simplicity we consider first the one-dimensional case and define the
unnormalized correlation function

cxx(t) ≡ 〈x(t)x(0)〉 =

∫ +∞

−∞

∫ +∞

−∞
dxtdx0 xtx0p(xt, t|x0, 0)peq(x0). (3.30)

The time derivative of this function is then given by

∂tcxx(t) = ∂t

∫ +∞

−∞

∫ +∞

−∞
dxtdx0 xtx0p(xt, t|x0, 0)peq(x0)

=

∫ +∞

−∞

∫ +∞

−∞
dxtdx0 xtx0{∂tp(xt, t|x0, 0)}peq(x0)

=

∫ +∞

−∞

∫ +∞

−∞
dxtdx0 xtx0

{
D
∂2

∂x2
t

+ η
∂

∂xt
xt

}
p(xt, t|x0, 0)peq(x0)

=

∫ +∞

−∞

∫ +∞

−∞
dxtdx0 p(xt, t|x0, 0)peq(x0)

{
D
∂2

∂x2
t

− xtη
∂

∂xt

}
xtx0

= −η
∫ +∞

−∞

∫ +∞

−∞
dxtdx0 xtx0p(xt, t|x0, 0)peq(x0) = −ηcxx(t).
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Here Eq. (3.4) and partial integration have been used, assuming that limxt→±∞ p(xt, t|x0, 0) = 0
and limxt→±∞ xtp(xt, t|x0, 0) = 0. Noting that

cxx(0) = 〈x2〉 =

∫ +∞

−∞
dx0 x

2
0peq(x0) =

kBT

K
, (3.31)

we obtain
cxx(t) =

kBT

K
e−ηt (3.32)

for the unnormalized correlation function.

O.U. process

free

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

5

6

t

W
[t]

Figure 3: MSD for the one-dimensional Ornstein-
Uhlenbeck process (blue solid line) and the corre-
sponding plateau value (blue dashed line). The or-
ange line indicates the MSD for a freely diffusing
particle. More details are given in the text.

The normalized correlation function is then a
decaying exponential function,

φ(t) = e−ηt, (3.33)

independent of the dimension, n. Using that

〈x2〉 = n
kBT

K
(3.34)

the MSD in n dimensions becomes

W (t) = 2n
kBT

K

(
1− e−ηt

)
, (3.35)

and with Relation (2.9) we may also write

W (t) = 2n
D

η

(
1− e−ηt

)
. (3.36)

Since η ∝ K, the limit η → 0 corresponds thus
to the limit K → 0, i.e. to considering vanishing
force constant, one one retrieves the MSD for free diffusion,

lim
K→0

W (t) = lim
η→0

W (t) = 2nDt. (3.37)

It is finally worthwhile noting that this law for the MSD arises also in the short time limit

W (t)
ηt�1≈ 2nDt, (3.38)

which simply means that on time scales t� 1/η the particle diffuses seemingly freely. Fig. 3 shows
the MSD for a particle diffusing in one dimension in a harmonic potential (solid blue line), setting
n = 1, D = 1 and η = 1 in dimensionless units. The dashed blue line indicates the corresponding
plateau value. For comparison the MSD for free diffusion is shown (orange solid line). One sees
that the MSD for confined and free diffusion are identical for t� 1/η.
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4 Colloids and macromolecular systems

4.1 Many-body Smoluchowski equation and stochastic equations of motion

Many applications of the theory of diffusion processes concern many particle systems, such as
colloids, polymers, and biological macromolecules. Neglecting rotational degrees of freedom, the
configurations of such systems are defined by the the positions of allN constituents, {x1, . . . ,xN}.
The Smoluchowski equation (3.2) describing the the diffusion of all N particles keeps its general
form,

∂tp(x, t|x0, 0) = ∇ ·D(x) ·
{
∇p(x, t|x0, 0) +

∇V (x)

kBT
p(x, t|x0, 0)

}
(4.1)

where the position for a single particle is replaced by an 3N -dimensional vector,

x =




x1

...
xN


 , (4.2)

the potential function
V (x) ≡ V (x1, . . . ,xN ) (4.3)

accounts for both external and inter-particle forces, and the diffusion constant, D, becomes a pos-
itive definite 3N × 3N matrix depending on the positions of all particles, and accounts for hydro-
dynamic interactions,

D(x) =




D11(x) . . . D1N (x)
...

. . .
...

DN1(x) . . . DNN (x)


 . (4.4)

The corresponding stochastic equations of motion are

x(t0 + ∆t) = x(t0)−D(x) · ∇V (x0)

kBT
∆t+ δξ (4.5)

where δξ is a stochastic displacement verifying

〈δξ〉 = 0, (4.6)

〈δξ ⊗ δξ〉 = 2D(x)∆t1. (4.7)

Hydrodynamic interactions are mediated by the solvent and arise only if the solute particles
are in motion. They are usually computed on the basis of the laws of continuum mechanics solving
the Navier-Stokes equation with appropriate boundary conditions for the solvent at the boundary
of the solute particles [8, 9]. This aspect is briefly discussed in the next section.

4.2 Elementary hydrodynamics

To understand the construction of the diffusion matrix D(x) on the basis of continuum hydro-
dynamics we start with the concept of friction. If we consider a spherical solute article of radius

14
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Figure 4: Left panel: Friction force F η exerted on a sphere moving with velocity v. Right panel: A simple
Rouse chain of identical spherical monomers.

a and move it with constant velocity v across a solvent of velocity η, the necessary driving force
must exactly balance the frictional force (see Fig. 4),

F γ = −γv. (4.8)

where the friction constant γ is given by [8]

γ = 6πηa. (4.9)

The so-called Stokes-Einstein relation puts in relation the friction constant γ given above and the
diffusion constant of the diffusing solute particle. It puts, in fact, in relation dissipation (friction)
and fluctuation (diffusion), noting that in general D = kBTµ, where µ = 1/γ is the mobility
coefficient of a diffusing particle. With Formula (4.9) one obtains thus.

D =
kBT

6πηa
. (4.10)

The computation of the diffusion tensor for finite distances is a difficult task. The general solution,
including rotational degrees ans lubrication forces, i.e. hydrodynamic interactions at very short
distances, has been presented in Ref. [9]. A good approximation for polymers, where lubrication
needs not to be considered, is the Rotne-Prager tensor [10]. It has been developed to describe
polymer dynamics, where a polymer is described by a chain of spherical monomer “beads” which
have all the same radius, a. An illustration is given in Fig. 4 (right panel), where the springs repre-
sent interactions between the monomers keeping them at a prescribed mean distance. Rotational
degrees of freedom of individual monomers need not be considered, since rotational motions of
the monomers are essentially blocked. The block matrices Dij(x) in the general form (4.4) of the
Diffusion matrix are here given by

Dii(x) =
kBT

6πηa
, (4.11)

Dij(x) =
kBT

8πη|xij |3
{(
|xij |21 + xij ⊗ xij

)
+

2a2
i

|xij |2
(

1

3
|xij |21− xij ⊗ xij

)}
, i 6= j, (4.12)
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where xij = xi − xj . If the solute particles are spaced such that |xi − x|j → ∞ for any pair (i, j)
with i 6= j, the diffusion matrix takes the diagonal form,

D(x) ≈




D11 0 . . . 0
0 D21 . . . 0
...

. . . . . .
...

0 0 . . . DN1


 , (4.13)

as it should be. It should be noted that the approach to the diagonal form is very slow, ∝ 1/|xij |.
From this point of view hydrodynamic interactions ressemble electrostatic interactions.

5 Diffusion in velocity space

Diffusion processes are not limited to position space. Instead of considering the position x of
a particle as stochastic variable, one can for instance consider its velocity. In the following we
discuss free diffusion of a Brownian particle in velocity space, i.e. on a finer time scale which
allows to resolve relaxation processes of the velocity and which is finer compared to the one which
is characteristic for diffusion in position space. A Brownian particle moving in velocity space is
referred to as “Rayleigh particle” [7].

5.1 Smoluchowski equation in velocity space

The equilibrium distribution for the velocity of a diffusing particle in a liquid or in a dense gas is
known to be the Maxwell distribution, which has Gaussian form,

Peq(v) =

(
M

2πkBT

)3/2

exp

(
−M |v|

2

2kBT

)
. (5.1)

This distribution function may be compared with the one for a particle diffusing in a harmonic
potential of the form V (x) = K|x|2/2 (OU process),

peq(x) =

(
K

2πkBT

)3/2

exp

(
−K|x|

2

2kBT

)
, (5.2)

the one-dimensional case of which has been discussed earlier. Comparing the distributions (5.1)
and (5.2), shows that the kinetic energy, T = M |v|2/2, in the Boltzmann factor of distribution (5.1)
is replaced by the potential energy, V = K|x|2/2, in the Boltzmann factor of distribution (5.2).
Since both T and V are quadratic functions, the corresponding Smoluchowski equations for the re-
spective variables v and xmust have the the same form, and one can infer from the Smoluchowski
equation (3.2) that the time evolution of the the conditional probability density p(v, t|v0, 0) reads

∂tP (v, t|v0, 0) = Dv∇v ·
{
∇vP (v, t|v0, 0) +

∇vT (v)

kBT
P (v, t|v0, 0)

}
. (5.3)

Noting that the diffusion constant for the OU process in position space is given by D = 〈x2〉η,
where η is a relaxation constant with the physical dimension 1/s, its follows that

Dv = 〈v2
x〉η = η

kBT

M
(5.4)
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With this definition and T = M |v|2/2 one obtains from Eq. (5.3) that

∂tP (v, t|v0, 0) = η∇v ·
{
v P (v, t|v0, 0)

}
+ η

kBT

M
∆vP (v, t|v0, 0) (5.5)

where ∇v = ∂/∂v and ∆v = (∂/∂v) ·(∂/∂v). Using the solution for spatial diffusion in a harmonic
potential (voir Eqs. (3.5) et (3.6)) we find

P (v, t|v0, 0) =

(
M

2πkBT (1− e−2ηt)

)3/2

exp

(
− M |v − v0e

−ηt|2
2kBT (1− e−2ηt)

)
, (5.6)

lim
t→∞

P (v, t|v0, 0) =

(
M

2πkBT

)3/2

exp

(
−M |v|

2

2kBT

)
= Peq(v), (5.7)

where Peq(v) is the Maxwell distribution.

5.2 Mean square displacement in velocity space

As for a Brownian particle diffusing in a harmonic potential in position space, one can define a
mean square velocity displacement,

Wv(t) = 〈|v(t)− v(0)|2〉 = 2
(
〈|v|2〉 − 〈v(t) · v(0)〉

)
, (5.8)

which may be written in the form

Wv(t) = 2〈|v|2〉(1− φvv(t)) (5.9)

where

φvv(t) =
〈v(t) · v(0)〉
〈|v|2〉 = e−ηt (5.10)

is the normalized velocity autocorrelation function (VACF). Since φvv(t) relaxes for long times to
zero, the MSD grows to the plateau value

W (∞) = 2〈|v|2〉 =
nkBT

m
. (5.11)

5.3 Ornstein-Uhlenbeck process in velocity space and Langevin equation

As for the Smoluchowski equation in position space, one may derive a stochastic equation of
motion for the velocity from Eq. (5.3), and in analogy to Eq. (3.12) one obtains

v(t0 + ∆t) = v(t0)−Dv
∇T (v(t0))

kBT
∆t+ δξv, (5.12)

or, equivalently,
v(t0 + ∆t) = v(t0)− ηv(t0)∆t+ δξv (5.13)
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where the stochastic displacement in velocity space verifies

〈δξv〉 = 0, (5.14)

〈δξv ⊗ δξv〉 = 2nDv∆t1 = 2n η
kBT

M
∆t1, (5.15)

where n is the dimensions of v. Approximating

v(t0 + ∆t)− v(t0)

∆t
≈ v̇(t0),

the stochastic equation of motion (5.13) can be considered as analogue to the Langevin equa-
tion [11] (the notation is here adapted),

v̇(t) + ηv(t) = fs(t) (5.16)

which is named after Paul Langevin who introduced this equation in 1908 to describe Brownian
motion. Here fs(t) is a stochastic acceleration verifying

〈fs(t)〉τ = 0, (5.17)

〈fs(t)⊗ fs(t′)〉τ = 2Dv1δ(t− t′). (5.18)

The averages 〈. . .〉τ are here time averages,

〈fs(t)〉τ ≡ lim
T→∞

1

T

∫ T/2

−T/2
dτ fs(τ) (5.19)

〈fs(t)⊗ fs(t′)〉τ ≡ lim
T→∞

1

T

∫ T/2

−T/2
dτ fs(t+ τ)⊗ fs(t′ + τ). (5.20)

in this picture, fs(t) is Gaussian white noise and it follows from the Langevin equation (5.16) that

d

dt
〈v(0) · v(t)〉τ + η〈v(0) · v(t)〉τ = 〈v(0) · fs(t)〉τ .

Since fs(t) is Gaussian white noise, it follows that

〈v(0) · fs(t)〉τ = 0 (5.21)

such that
d

dt
〈v(0) · v(t)〉τ + η〈v(0) · v(t)〉τ = 0. (5.22)

Therefore the velocity autocorrelation function is an exponential function

cvv(t) = 〈v(0) · v(t)〉τ = 〈|v(0)|2〉τe−ηt, (5.23)

leading to

φ(τ)
vv (t) =

〈v(0) · v(t)〉τ
〈|v|2〉τ

= e−ηt (5.24)
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Assuming that

〈|v|2〉τ = 〈|v|2〉 = n
kBT

M
, (5.25)

corresponds to the assumption of ergodicity, where generally time averages are assumed to be
equal to the corresponding ensemble averages. In this context it is worthwhile noting that Eq. (5.21)
can be interpreted as a time scale separation between the dynamics of the “slow” variable v(t)
and the “fast” variable fs(t). This is the picture of Brownian motion, where a massive and slow
Brownian particle is kicked around by rapidly varying forces arising from the collisions with the
surrounding molecules of the solvent in which the Brownian particle (“solute”) is immersed.

The Langevin equation is one of the pivots of modern statistical physics, which uses a stochastic
equations of motion to describe Brownian motion on the basis of single particle motion instead of
using the concept of distribution functions, as Fick, Einstein, and Smoluchowski. It must, however,
be emphasized that a description is terms of probability distributions is more complete, since the
the underlying probability density cannot inferred from the Langevin equation without further
assumptions.

5.4 Velocity autocorrelation function and mean square displacement

The time-dependent mean square displacement of a particle in position space,

W (t) := 〈|x(t)− x(0)|2〉,

is closely related to its velocity autocorrelation function (VACF). Since

x(t)− x(0) =

∫ t

0

dt′ v(t′),

one can write

W (t) =

∫ t

0

dt′
∫ t

0

dt′′ 〈v(t′) · v(t′′)〉.

Supposing that v(t) is described by a stationary stochastic process, such that its autocorrelation
function depends only on time differences,

〈v(t′) · v(t′′)〉 = 〈v(t′ − t′′) · v(0)〉,

the MSD may be written in the form

W (t) =

∫ t

0

dt′
∫ t

0

dt′′ cvv(t
′ − t′′),

where cvv(t) denotes the (unnormalized) velocity autocorrelation function,

cvv(t) = 〈v(t) · v(0)〉.

A more useful expression can be obtained by introducing the new variables

u = t′ − t′′,
v = t′′,
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Figure 5: Integration domains for the variables (t′, t′′) and (u, v).

for which the corresponding Jacobi matrix reads

J =

(
∂u
∂t′

∂u
∂t′′

∂v
∂t′

∂v
∂t′′

)
=

(
1 −1

0 1

)
.

Since the determinant of J equals one, |J | = 1, the volume element is transformed as dudv =
|J |dt′dt′′ = dt′dt′′. In the new variables u and v the MSD thus takes the form

W (t) =

∫ t

0

dv

∫ t−v

−v
du cvv(u),

and Fig. 5 shows that one may also write

W (t) =

∫ t

0

du

∫ t−u

0

dv cvv(u)

︸ ︷︷ ︸
triangle 1

+

∫ 0

−t
du

∫ t

−u
dv cvv(u)

︸ ︷︷ ︸
triangle 2

.

With a new variable change u→ −u for the integration over triangle 2 and using that c(u) = c(−u)
for a classical (stationary) time correlation function one finds

W (t) = 2

∫ t

0

du (t− u)cvv(u) (5.26)

Using the normalised form of the VACF, this may be written as

W (t) = n
2kBT

M

∫ t

0

du (t− u)φvv(u) (5.27)

5.5 Mean square displacement of a Rayleigh particle

In the preceding section we have derived a relation between the MSD and the VACF and Relation
(5.27) will now be used to derive the MSD for the concrete case of a freely diffusing Brownian
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particle, whose motion is described by an OU process in velocity space – the Rayleigh particle. For
this purpose it is very convenient to work with the Laplace transform. For an arbitrary function
f(t) = Θ(t)f(t) the Laplace transform and its inverse and its inverse are defined by

f̂(s) =

∫ ∞

0

dt exp(−st)f(t) (5.28)

f(t) =
1

2πi

∮

C

ds f̂(s) exp(−st). (5.29)

The Laplace transform of f(t) exists if one can find a constant a > 0 such that |f(t)| < exp(at).
The variable s must be chosen such that <{s} > a. The contour C in relation (5.29) includes all
singularities of f̂(s). In many cases one uses the residue method to obtain f(t) from relation (5.29).
In some cases the notations

f̂(s) ≡ L{f(t), t, s}, (5.30)

f(t) = L−1{f̂(s), s, t}. (5.31)

will also be used.
Expression (5.27) shows that the MSD is formally proportional to a convolution of the functions

f(t) = t and g(t) = φvv(t). The general form for the convolution integral is

(f ∗ g)(t) :=

∫ t

0

dτ f(t− τ)g(τ), (5.32)

where f(t) = Θ(t)f(t) and g(t) = Θ(t)g(t). It is easy to prove that

L{(f ∗ g)(t), t, s} = f̂(s)ĝ(s). (5.33)

Applying the above convolution theorem to relation (5.27) yields thus

Ŵ (s) = n
2kBT

M

φ̂vv(s)

s2
, (5.34)

since L{t, t, s} = 1/s2. For a freely diffusing Brownian particle we have φvv(t) = exp(−γt), and
the corresponding Laplace transform is given by

φ̂vv(s) =
1

s+ η
. (5.35)

Inserting the above expression into (5.34) yields thus

Ŵ (s) = n
2kBT

M

1

s2(s+ η)
(5.36)

and an inverse Laplace transform leads to the MSD in the time domain,

W (t) = n
2kBT

M

{
exp(−ηt)− 1 + ηt

η2

}
(5.37)
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Figure 6: The normalised VACF, φvv(t), of a Brownian particle and the corresponding MSD. All
quantities are given in dimensionless units, i.e. t← ηt and W (t)←W (t)η2/〈|v|2〉.

For times much longer than the inverse relaxation rate, t� η−1, the MSD grows linearly with time

W (t) ≈ 2nDt (5.38)

Here D is the diffusion constant

D =
kBT

Mη
(5.39)

and the above relation is often referred to as Einstein relation. Fig 6 illustrates the form of the MSD
for a freely diffusing Brownian particle. The linear growth with time is attained for t� η−1. If, in
contrast, t� η−1 one can approximate exp(−ηt) ≈ 1− ηt+ (ηt)2/2. In this case one finds

W (t) ≈ 〈|v|2〉t2 =
nkBT

M
t2 (5.40)

Fig 6. shows indeed a parabolic form of the MSD in the initial phase.

6 Anomalous free diffusion

6.1 Introduction

We consider here a generalization of the diffusion equation, which has the form

∂tp(x, t|x0, 0) = 0∂
1−α
t , Dα∆p(x, t|x0, 0) (6.1)

where 0∂
1−α
t denotes a fractional derivative of order 1−α. For an arbitrary function f(.) the latter

is defined through

0∂
1−α
t f(t) =

d

dt

∫ t

0

du
(t− u)α−1

Γ(α)
f(u) (6.2)
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where Γ(.) is the Gamma function or generalized factorial, which is defined for complex argu-
ments [12]. The fractional derivative introduces memory effects and the underlying stochastic
processes are non-markovian. It leads in particular to an MSDwhich grows ∝ tα, with 0 ≤ α < 2.
The regime 0 < α < 1 is referred to as “subdiffusion” and the regime 1 < α < 2 as “superdiffu-
sion”. The is a large amount of literature on fractional diffusion models and Refs. [13–15] can be
taken as starting point to explore the subject.

6.2 Mean square displacement

For the calculation of the MSD we follow the same steps as for normal free diffusion and use in
addition the Laplace transform as a powerful tool. The first step is to change x→ u ≡ x− x0 and
to write the fractional diffusion equation in the form

∂tp(u, t|0, 0) = 0∂
1−α
t Dα∆p(u, t|0, 0). (6.3)

For the time derivative of the MSD we have then

∂tW (t) =

∫
d3u|u|2∂tp(u, t|0, 0)

=

∫
d3u|u|20∂

1−α
t Dα∆p(u, t|0, 0) = Dα

{
0∂

1−α
t

∫
d3u|u|2∆p(u, t|0, 0)

}

= Dα





0∂
1−α
t

∫
d3u p(u, t|0, 0)

{
∆|u|2

}
︸ ︷︷ ︸

2n





= 0∂
1−α
t {2nDα}.

Applying here the Laplace transform leads to

sŴ (s)−W (0)︸ ︷︷ ︸
=0

= s1−α
(

2nDα

s

)
= 2nDαs

−(1+α),

which yields in the domain

W (t) = 2nDα
tα

Γ(1 + α)
(6.4)

Noting that Γ(2) = 1, the well-known expression for normal free diffusion is retrieved for α→ 1.

6.3 Kubo relation for the (fractional) diffusion constant

The example of a Rayleigh particle has shown that the linear evolution of the mean square dis-
placement with time, which follows from the diffusion equation according to Eq. (3.22), is ob-
tained as an asymptotic regime, where t � η−1, with η being the relaxation constant of the velocity
autocorrelation function. Since the latter decays exponentially, the diffusion constant given by
Formula (5.39) can be written as D = kBT/M

∫∞
0
dt φvv(t). Using that cvv(0) = nkBT/M , where is

the dimension of the diffusion problem, we can write

D =
1

n

∫ ∞

0

dt cvv(t) (6.5)
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which is an example in which a transport coefficient – here the diffusion constant – is expressed
as an integral over a time correlation function. The derivation, which is based on linear response
theory, is due to Ryogo Kubo.3 It will now be shown that this formula can be obtained without any
further assumption from Expression (5.26), by using a theorem from asymptotic analysis, which
is due to Jovan Karamata.4 The concept has been described in Ref. [16] and more details can be
found there. Karamata’s theorem relates the asymptotic form of a certain class of functions f(t)
for large t with the asymptotic form of its Laplace transform, F (s), for small s. It states that

f(t)
t→∞∼ L(t)tα ⇔ F (s)

s→0∼ L(1/s)
Γ(1 + α)

s1+α
, (6.6)

with the condition α > −1. The function L(t) is here a “slowly varying function”, which is defined
through the property limt→∞ L(λt)/L(t) = 1, where λ > 0 is an arbitrary scaling parameter. It can
easily be checked that the logarithm, L(t) = log(t), is such a function, and here we will make the
assumption that L(t) obeys the stronger condition

lim
t→∞

L(t) = 1. (6.7)

Obviously any function with this property is slowly growing in the sense of Karamata’s theorem.
The latter can then be applied to the mean square displacement,

W (t)
t→∞∼ L(t)2nDt⇔W (s)

s→0∼ L(1/s)
2nD

s2
, (6.8)

noting that Γ(2) = 1. From a physical point of view, L(t) refines the asymptotic regime of he MSD,
but here a concrete form is not needed. We use simply that it follows from Expression (5.26) that

Ŵ (s) =
2ĉvv(s)

s2
, (6.9)

and therefore
D = lim

s→0

1

n
ĉvv(s) =

1

n

∫ ∞

0

dt cvv(t) (6.10)

which is exactly Expression (6.5).
These results can be straightforwardly generalized to the case of anomalous diffusion, consid-

ering instead of Eq. (6.8)

W (t)
t→∞∼ L(t)2nDαt

α ⇔W (s)
s→0∼ L(1/s)2nDα

Γ(1 + α)

s1+α
. (6.11)

Using that limt→∞ L(t) = 1 we obtain here instead of the Kubo formula (6.10) the fractional gen-
eralization [17]

Dα = lim
s→0

1

n

sα−1

Γ(1 + α)
ĉvv(s) =

1

n

∫ ∞

0

dt 0∂
α−1
t cvv(t) (6.12)

where 0∂
α−1
t is a fractional derivative of order α− 1,

0∂
α−1
t f(t) =

d

dt

∫ t

0

du
(t− u)1−α

Γ(2− α)
f(u). (6.13)

3Ryogo Kubo, japanese physicist, 1920 – 1995, famous for his work in the field of non-equilibrium statistical physics.
4Jovan Karamata, serbian mathematician, 1902-1967.
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It is interesting that the case α = 0 can be explicitly included

D0 =
1

n
〈|u|2〉 =

kBT

K
(6.14)

where u = x−x0. The proof is given in Ref. [17]. Confined diffusion can thus be formally consid-
ered as extreme cas of anomalous diffusion, where α = 0, and the fractional diffusion constant is
here the mean square position fluctuation.

7 Fractional Ornstein-Uhlenbeck process

7.1 Introduction

We consider here the fractional Smoluchowski equation

∂tp(x, t|x0, 0) = 0∂
1−α
t {Dα∆p(x, t|x0, 0) + ηα∇ · {xp(x, t|x0, 0)}} , (7.1)

where Dα can be considered as fractional short time diffusion coefficient (see discussion below),
with physical dimensions m/sα, and ηα as fractional relaxation constant, with physical units s−α.
Instead of Relation (2.9) we have here

ηα =
DαK

kBT
, (7.2)

and, again, the MSD can be derived via Eq. (3.26), inserting the correlation function cxx(t) ≡
〈x(t) · x(0)〉. As for the case of the normal OU process we perform the computation first for the
one-dimensional case, starting from the definition (3.30) for cxx(t). It follows then that

∂tcxx(t) = 0∂
1−α
t

∫ +∞

−∞

∫ +∞

−∞
dxtdx0 xtx0{∂tp(xt, t|x0, 0)}peq(x0)

= 0∂
1−α
t

∫ +∞

−∞

∫ +∞

−∞
dxtdx0 xtx0

{
D
∂2

∂x2
t

+ η
∂

∂xt
xt

}
p(xt, t|x0, 0)peq(x0)

= 0∂
1−α
t

∫ +∞

−∞

∫ +∞

−∞
dxtdx0 p(xt, t|x0, 0)peq(x0)

{
D
∂2

∂x2
t

− xtη
∂

∂xt

}
xtx0

= −η0∂
1−α
t

∫ +∞

−∞

∫ +∞

−∞
dxtdx0 xtx0p(xt, t|x0, 0)peq(x0) = −ηα {0∂1−α

t cxx(t)}.

The only difference with respect to the normal OU process is the appearance of the the fractional
derivative 0∂

1−α
t on the r.h.s of the above equations, which leads to the fractional differential equa-

tion
∂tcxx(t) = −ηα

{
0∂

1−α
t cxx(t)

}
. (7.3)

Applying the Laplace transform one obtains

sĉxx(t)− cxx(0) = −ηαs1−αĉxx(s),

which may be solved to yield

ĉxx(t) = cxx(0)
1

s(1 + ηαs−α)
.
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Figure 7: Left panel: Stretched Mittag-Leffler function for different values of α. Right panel: Comparison
to stretched and a normal exponential on a log-log scale.

The fraction on the r.h.s. of the equation is the Laplace transform of the “stretched” Mittag-Leffler
(ML) function [18]

Eα(−ηαtα)←→ 1

s(1 + ηαs−α)
, (7.4)

where the ML function itself is defined by the series

Eα(z) =

∞∑

k=0

zk

Γ(1 + αk)

with z, α ∈ C. On recognizes that the exponential function is retreived for the case α = 1, noting
that Γ(1 + k) = k!. Defining

τ := η−1/α
α (7.5)

we obtain for the correlation function

cxx(t) =
kBT

M
Eα(−(t/τ)α) (7.6)

instead of the exponentially decaying function given in Expression (3.32). An important feature of
the stretched ML function is its asymptotic power-law decay,

Eα(−(t/τ)α)
t→∞∼ (t/τ)−α

Γ(1− α)
(7.7)

The long-time tail vanishes as α→ 1, noting that limz→0 Γ(z) =∞. In n dimensions we have thus

cxx(t) = n
kBT

M
Eα(−(t/τ)−α), (7.8)

and the MSD becomes

W (t) = 2n
kBT

K

(
1− Eα(−(t/τ)−α)

)
(7.9)

For short times we have
W (t)

t→0∼ 2n
kBT

K
(t/τ)−α = 2nDαt

α, (7.10)

which confirms that Dα can be considered as short time diffusion coefficient.
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7.2 Fourier spectrum of the autocorrelation function

The autocorrelation function of the fractional OU process can be straightforwardly obtained from
its Laplace transform. Considering the normalized form,

φ(t) ≡ 〈x(0)x(t)

〈x2〉 , (7.11)

the Fourier transform

φ̃(ω) =

∫ +∞

−∞
dt e−iωtφ(t) (7.12)

can be obtained via
φ̃(ω) = lim

ε→0

1

π
<{φ̂(iω + ε)}, ω ≥ 0, (7.13)

where the Laplace transform is given by (see Eq. (7.4))

φ̂(s) =
1

s(1 + ηαs−α)
.

The result is a “generalized Lorentzian”,

φ̃(ω) =
sin
(
πα
2

)

πω
(
(ωτ)−α + (ωτ)α + 2 cos

(
πα
2

)) , ω ≥ 0 (7.14)

where τ is defined through Eq. (7.5) and 0 < α ≤ 1. The normal Lorentzian is retrieved for α→ 1.

7.3 Relaxation rate spectrum of the autocorrelation function

The autocorrelation function of the fractional OU process can be written as a superposition of a
continuous spectrum of exponentially decaying functions,

φ(t) =

∫ ∞

0

dλ p(λ)e−λt (7.15)
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where the relaxation rate spectrum, p(λ), can be derived as well from the Laplace transform via

p(λ) = lim
ε→0

1

π
={φ̂(−iλ− ε)}. (7.16)

With the relaxation time τ defined through Eq. (7.5) this leads to the analytical formula

p(λ) =
sin(πα)

πλ ((λτ)−α + (λτ)α + 2 cos(πα))
(7.17)

For α→ 1 the relaxation rate spectrum tends to p(λ) = δ(λ− η).

7.4 Diffusion in a “rough” harmonic potential

The time correlation function derived in the preceding section can also be derived from an energy
landscape perspective, considering a particle that diffuses in a “rough” harmonic potential. In the
context of protein dynamics and protein folding, multi-minima energy landscapes have been con-
sidered by Frauenfelder, Wolynes, and co-workers [19–22], considering high-dimensional (free)
energy profiles as functions of the 3N coordinates of proteins containing N atoms. The many min-
ima in these energy landscapes, which are referred to as “conformational substates”, are separated
by energy barriers of different heights hindering more or less the diffusion on the global (free) en-
ergy envelope. To formalize the deceleration of the diffusion process, Zwanzig [23] has considered
the diffusion of a particle in some smooth potential, U(x), which is modulated by at each drawing
a modulation δU from a Gaussian distribution with a fixed standard deviation δG, which is inde-
pendent of x, such that 〈δU2〉(x) = δG2. He found that the short time diffusion coefficient, D, of
the Smoluchowski equation describing the diffusion in the smooth potential becomes

D∗ = De−ε
2

, where ε =
δG

kBT
. (7.18)

For a harmonic potential the short time diffusion coefficient is related through D = 〈x2〉η with
the relaxation constant describing the exponential decay of the position autocorrelation function,
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Elastic neutron scattering from proteins reflects the motional amplitudes resulting from their in-
ternal collective and single-atom dynamics and is observable if the global di�usion of whole molecules
is either blocked or cannot be resolved by the spectrometer under consideration. Due to finite instru-
mental resolution the measured elastic scattering amplitude always contains contaminations from
quasielastic neutron scattering and some model must be assumed to extract the resolution-corrected
counterpart from corresponding experimental spectra. Here we derive a quasi-analytical method for
that purpose, assuming hat the intermediate scattering function relaxes with a “stretched” Mittag-
Le�er function, E–(≠(t/·)–) (0 < – < 1), towards the elastic amplitude and that the instrumental
resolution function has Gaussian form. The corresponding function can be integrated into into a
fitting procedure and allows for eliminating the elastic intensity as a fit parameter. We illustrate
the method for the analysis of two proteins in solution, the intrinsically disordered Myelin Basic
Protein, confirming recently published results [J. Chem. Phys. 156(2):025102 (2022)], and the well-
folded globular protein myoglobin. We also briefly discuss the consequences of our findings for the
extraction of mean square position fluctuations from elastic scans.

I. INTRODUCTION

Thermal neutron scattering is a powerful and versatile
spectroscopic method to probe the structural dynamics
of condensed matter systems.1 An important application
concerns quasielastic neutron scattering (QENS) from
proteins, which gives information about the di�usion and
the relaxation dynamics of these macromolecules.2–6 To
probe the internal non-exponential multiscale relaxation
dynamics, which is crucial for their function and typical
for complex systems in general,7–10 one can either use
hydrated powder samples, where global di�usional mo-
tions are simply blocked, or probe a protein solution with
a spectrometer that will not resolve these motions. In
both cases, information about the motional amplitudes
of internal protein dynamics is contained in the elastic
amplitude and elastic scans are thus in principle su�-
cient to obtain this information. One must, however, be
aware that the extracted motional amplitudes are under-
estimated due to the unavoidable contamination of the
elastic amplitude by contributions from quasielastic scat-
tering, and this correction can be particularly important
for slowly relaxing systems.11 Noting that the “true” elas-
tic amplitude defines the asymptotic form of the neutron
intermediate scattering function at infinite time, it can
only be obtained by assuming some model for that func-
tion. A corresponding “minimalistic” model has been re-
cently proposed and motivated in Ref. [12] and was then
applied in a few subsequent QENS studies of protein dy-
namics,13–15 as well as for confined water molecules in

úE-mail: a.stadler@fz-juelich.de
†E-mail: gerald.kneller@cnrs.fr

clays.16 In all these studies the elastic amplitude was a
fit parameter, which left some ambiguity about the phys-
ical significance of the resulting fits, in particular since
the fit parameters are quite interdependent. The goal of
this paper is to replace the elastic intensity as a fit param-
eter by an estimation on the basis of its experimentally
measured counter part, the assumed model for the re-
laxation function, and the resolution of the instrument
under consideration. Computational e�ciency is here a
fundamental aspect since it enables the integration of the
corresponding function into the fitting procedure for the
remaining parameters of the relaxation function.

The paper is organized as follows: The core of the
paper is contained in the following Section II, which de-
scribes the theoretical background and the method, fol-
lowed by Section IV showing some applications, and the
Conclusions in Section V.

II. THEORETICAL BACKGROUND

A. Scattering functions

In standard neutron scattering experiments one mea-
sures the dynamic structure factor,

F̃ (q,Ê) = 1
2fi

⁄ +Œ

≠Œ
dt e≠iÊtF (q, t), (1)

which is the time Fourier transform of the intermediate
scattering function containing the information about the
structural dynamics of the system under consideration,

F (q, t) = 1
N

ÿ

j,k

�jk

e
e≠iq·R̂j(0)eiq·R̂k(t)

f
. (2)

2

Usually the dynamic structure factor is denoted by
S(q,Ê), but we use the symbol F̃ (q,Ê) to label Fourier
transforms in a uniform way. The scattering-related
quantities are, respectively, the momentum and energy
transfer from the neutron to the sample, q and Ê, in units
of ~, N is the total number of atoms in the scattering
system and for each pair {j, k} of them, {R̂j(t), R̂k(t)}
denote the associated time-dependent position operators.
The symbol È. . .Í stands for a quantum ensemble average
and the weighting factors �jk have the form

�jk = bj
ú
bk + ”jk|bj ≠ bj |2, (3)

where bj and bk are the (complex) scattering lengths1,17
of the atoms j and k, respectively. For a given atom the
average runs over all isotopes and combinations of the nu-
clear and neutron spins and we note that bj,coh © bj and
bj,inc © (|bj ≠ bj |2)1/2 are, respectively, the coherent and
incoherent scattering lengths of atom j. Coherent and in-
coherent scattering probe, respectively, the collective and
average single atom dynamics of the system under con-
sideration, but since these scattering types are not sepa-
rable without special spin-polarization experiments,18–20
we will not explicitly distinguish between them.

The intermediate scattering function fulfills the sym-
metry relations of a quantum time correlation function,

F ú(q, t) = F (q,≠t), (4)
F (q,≠t) = F (≠q, t + i—~), (5)

where — = 1/kBT is the inverse Boltzmann temperature.
For the dynamic structure factor Eq. (5) translates into

F̃ (q,Ê) = e—~ÊF̃ (≠q,≠Ê), (6)
which is the well-known detailed-balance relation.

B. Elastic and inelastic scattering

Noting that

eiq·R̂j(t) =
⁄

d3r exp(≠iq · r)”(r ≠ R̂j(t))

is the spatially Fourier-transformed single particle den-
sity for atom j, we introduce the deviation of this quan-
tity with respect to its mean value,

”fl̃k(q, t) = eiq·R̂j(t) ≠
e
eiq·R̂j(t)

f
, (7)

to split the intermediate scattering function into a static
and a time-dependent component,

F (q, t) = F (q,Œ) + ”F (q, t), (8)
which are given by

F (q,Œ) = 1
N

ÿ

j,k

�jk

e
eiq·R̂j

fú e
eiq·R̂k

f
, (9)

”F (q, t) = 1
N

ÿ

j,k

�jk

e
”fl̃†

j(q, 0)”fl̃k(q, t)
f
. (10)

Making the the physically reasonable assumption

lim
tæŒ

”F (q, t) = 0, (11)

shows that F (q,Œ) is the asymptotic form of the in-
termediate scattering function and it follows by Fourier
transform of Eq. (8) that

F̃ (q,Ê) = F (q,Œ)”(Ê) + ”F̃ (q,Ê). (12)

Therefore F (q,Œ) represents the elastic amplitude of the
Fourier spectrum and ”F̃ (q,Ê) its inelastic component.
Here “inelastic” is to be understood as “non-elastic” and
includes also the quasielastic component of the spectrum,
which is very close to the elastic line and describes relax-
ation and di�usion processes.

C. Generic form of the scattering functions

For modeling purposes it is convenient to introduce the
normalized relaxation function

„(q, t) = ”F (q, t)/”F (q, 0), (13)

noting that this function does not monotonously decay
for short times. This leads to the generic form

F (q, t) = F (q,Œ) + (F (q, 0) ≠ F (q,Œ))„(q, t) (14)

of the intermediate scattering function which translates
into the corresponding generic form

F̃ (q,Ê) = F (q,Œ)”(Ê)
+ (F (q, 0) ≠ F (q,Œ))„̃(q,Ê) (15)

of the dynamic structure factor. We note that

F (q, 0) = 1
N

ÿ

j,k

�jk

e
eiq·(R̂k≠R̂j)

f
(16)

is the total static structure factor, which tends for q ©
|q| æ Œ to a constant value,

lim
qæŒ

F (q, 0) = 1
N

ÿ

k

�kk, (17)

and oscillates for smaller q-values around that constant.
For modeling purposes it is convenient to normalize the
intermediate scattering function such that

1
N

ÿ

k

�kk = 1. (18)

D. Hydrogen-rich systems

We finally consider the frequent of case of neutron scat-
tering from hydrogen-rich systems, such as proteins and

<latexit sha1_base64="N9Znu/WPsx7+rYR99oEFFx27aMs="></latexit>
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m

X

i

bi�(r� R̂i)
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A. 1

 

Der di f f er ent i el l e St r euquer schni t t f ür di e i nel ast i sche
Neut r onenst r euung an ei nemei nzel nen St r euzent r um

Zur Ber echnung des di f f er ent i el l en St r euquer schni t t s f ür di e i nel ast i sche St r euung ei nes
Neut r ons an ei nemTar get , das aus ei nemei nzel nen St r euzent r um best eht , geht man
von der st at i onär en Schr ödi nger - Gl ei chung f ür di eses Pr obl emaus :

{ Hn + i x t + ' ~} I I F> = EI T) .

 

( A. 1 . 1)

Dabei si nd Hn und Ht di e Hami l t on- Oper at or en des ( f r ei en) Neut r ons und des Tar get s .
Di e bei mSt r euvor gang er hal t ene Gesamt ener gi e i st E. Der Wechsel wi r kungsoper at or
V, der di e Koppl ung zwi schen Neut r on und Tar get beschr ei bt , sol l mi t Absi cht noch
ni cht wei t er spezi f i zi er t wer den . Man beacht e, daß di e Gl ei chung ( A. 1 . 1) i n ei ner ni cht
dar st el l ungsgebundenen Oper at or f or mgegeben i st .

Zur wei t er en Rechnung wi r d nun ( A. 1 . 1) neu ar r angi er t :

JE- Hn - Ht } I X̀ ) - V xp .

Al s f or mal e Lösung f ür den zu ( A. 1 . 2) gehör i gen St r euzust and schr ei bt man :
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Der Zusat z i e i st symbol i sch auf zuf assen, er deut et auf ei ne spät er auszuf ühr ende I nt e-
gr at i on i n der kompl exen Ebene ent l ang ei nes best i mmt en Weges hi n, di e bewi r kt , daß
das gest r eut e Neut r on def i ni t i onsgemäß dur ch ei ne i n Vor wär t sr i cht ung pr opagi er ende
Wel l e beschr i eben wi r d. Gl ei chung ( A. 1 . 3) i st di e Li ppmann- Schwi nger - Gl ei chung, i n
der ( T( +) ) den St r euzust and, al so den Zust and des Syst ems nach der St r euung, l t y( o) )
denj eni gen vor der St r euung ( V = 0) beschr ei bt . I V' ) ) genügt al so der homogenen
Var i ant e von Gl ei chung ( A. 1 . 2) :

{ E - H, , - Ht } I T( °) ) = 0 .

 

( A. 1 . 4)
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Wollan and Eugene Wigner, research director at ORNL in 1946-47 and later a Nobel Laureate 
 

E. Wollan

Figure 10: Left panel: Scheme of a neutron scattering experiment. Right panel: The IN16B spectrometer at
the Institut Laue-angevin in Grenoble.

cxx(t) ≡ 〈x(t)x(0)〉, and setting λ ≡ η, the relaxation rate is thus modulated as

λ∗ = λe−ε
2

. (7.19)

This relation enable the conversion of a spectrum of relaxation rates into a spectrum energy barri-
ers, noting that the latter is a standard deviation of a Gaussian distribution describing the modu-
lation δU of the smooth harmonic potential. The conversion is described by

P (ε) = p(λ(ε))

∣∣∣∣
dλ

dε

∣∣∣∣ (7.20)

and leads to

P (ε) =
2ε sin(πα)

π
(
e−αε2 + eαε2 + 2 cos(πα)

) (7.21)

8 Applications in neutron scattering

We will new discuss some applications of the theory of diffusion described in the previous sections
to model quasielastic neutron scattering spectra (QENS) from liquids and biomolecular systems.
Within the classical interpretation of neutron scattering QENS probes essentially stochastic mo-
tions of the atoms in the sample.

8.1 Basic neutron scattering theory

In neutron scattering experiments the sample of interest is exposed to a beam of incident neutrons
with momentum ~k0 and one one records energy histograms of the scattered neutrons as a func-
tion of the scattering angle. These histograms are proportional to the differential scattering cross
section,

d2σ

dΩdω
=

k

k0
S(q, ω) (8.1)
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where S(q, ω) is the dynamic structure factor containing the information about the structural dy-
namics of the scattering system, k0 and k are the wave numbers of the incident and scattered
neutrons, and q = k0 − k and ω = (E0 − E)/~ are the momentum end energy transfer in units of
~. Usually q is referred to a scattering vector. The dynamic structure factor is given by

S(q, ω) =
1

2π

∫ +∞

−∞
dte−iωtF (q, t), (8.2)

F (q, t) ≈ 1

N

∑

j,k

Γjk

〈
e−iq·x̂j(0)eiq·x̂k(t)

〉
, (8.3)

where F (q, r) is the intermediate scattering function. Here N is the number of hydrogen atoms,
x̂j(t) is the time-dependent position operator of hydrogen atom j, q the scattering vector, and the
symbol 〈. . .〉 denotes a quantum ensemble average and the weighting factors Γjk have the form

Γjk = bj
∗
bk + δjk|bj − bj |2, (8.4)

where bj and bk are the (complex) scattering lengths [24,25] of the atoms j and k, respectively. For
a selected atom the average runs over all isotopes and combinations of the nuclear and neutron
spins and bj,coh ≡ bj and bj,inc ≡ (|bj − bj |2)1/2 are, respectively, the coherent and incoherent
scattering lengths of atom j.

The intemediate scattering function has fulfills the symmetry relations

F ∗(q, t) = F (q,−t), (8.5)
F (q, t) = F (−q,−t+ iβ~). (8.6)

and the model calculations concern the symmetrized version

F (+)(q, t) =
F (q, t+ iβ~/2)

F (q, iβ~/2)
, (8.7)

which can be associated with the classical intermediate scattering function

Fcl(q, t) = F (+)(q, t) (8.8)

using Schofield’s semiclassical approximation [26]. For simplicity we will consider the self corre-
lation function for a single atom j,

fs(q, t) =
〈
e−iq·x̂j(0)eiq·x̂j(t)

〉
, (8.9)

and the version describing collective dynamics,

fc(q, t) =
1

N

∑

j,k

〈
e−iq·x̂j(0)eiq·x̂k(t)

〉
. (8.10)

8.2 Single-atom motion as an Ornstein-Uhlenbeck process

We consider now neutron scattering from a single atom which diffuses in a harmonic potential,
which keeps the atom close to its equilibrium position. This is the simplest possible model for an
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atom in a protein, whose motion is hindered by interactions with the “cage” of the surrounding
atoms. For simplicity we consider a fixed direction “x” which is defined by the direction of the
scattering vector. In this case the intermediate scattering function has the form

fs(q, t) = 〈e−iqx̂(0)eiqx̂(t)〉 (8.11)

and we consider the semiclassical approximation

f (cl)
s (q, t) ≈ f (+)

s (q, t), (8.12)

using the OU process as a stochastic model for the dynamics of the atomic position, x. Defining
f

(OU)
s (q, t) ≡ f (cl)

s (q, t), we write

f (OU)
s (q, t) =

∫ ∫
dxtdx0 e

iq(xt−x0)p(xt, t|x0, 0)peq(x0). (8.13)

where p(xt, t|x0, 0) fulfills the differential equation (2.11),

∂tp(xt, t|x0, 0) = D
∂2

∂x2
p(xt, t|x0, 0) + η

∂

∂x
{x p(xt, t|x0, 0)} ,

and the equilibrium distribution function peq(x0) is given by

peq(x0) = lim
t→∞

p(xt, t|x0, 0).

According to Baye’s rule, p(xt, t|x0, 0)peq(x0) is the joint probability to find the atom at time 0 at
position x0 and at time t at position xt. The solution and the spatial Fourier transform of the latter
can be read off from Eq. (2.13),

p(xt, t|x0, 0) =
e
− (x−µ(t))2

2σ(t)2

√
2πσ(t)

←→ p̃(k, t|x0, 0) = e−
1
2σ(t)2k2−iµ(t)k,

where σ(t) and µ(t) are given by Eqs. (2.15) and (2.16), respectively,

σ(t) =

√
D(1− e−2ηt)√

η
,

µ(t) = x0e
−ηt.

In order to evaluate f (OU)
s (q, t) we write

f (OU)
s (q, t) =

∫
dx0 peq(x0)e−iqx0

∫
dxt e

iqxtp(xt, t|x0, 0),

noting that the second integral is the Fourier transform of the conditional probability density,
p(xt, t|x0, 0) evaluated at the Fourier variable k = q,

p̃(q, t|x0, 0) =

∫
dxt e

iqxtp(xt, t|x0, 0).
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This leads to
f (OU)
s (q, t) = e−

q2

2 σ(t)2
∫
dx0 peq(x0)e−iq(1+e−ηt)x0

which is the spatial Fourier transform of the equilibrium distribution evaluated at the Fourier
variable k = q(1 + exp(−ηt)). Noting that

p̃eq(k) = lim
t→∞

p̃(k, t|x0, 0) = e−
1
2σ(∞)k2 ,

it follows that

f (OU)
s (q, t) = e−Dq

2 (1−exp(−ηt))
η (8.14)

Writing the diffusion constant in the form

D = 〈x2〉η

one obtains the equivalent expression

f (OU)
s (q, t) = e−q

2〈x2〉(1−e−ηt) (8.15)

noting that 〈x2〉 = kBT/K, with K being the force constant of the potential. For an isotropic
harmonic potential it follows that

f (OU)
s (q, t) = e−|q|

2 D(1−e−ηt)
η (8.16)

or, equivalently,

f (OU)
s (q, t) = e−

|q|2〈x2〉
3 (1−e−ηt) (8.17)

noting that

D = 〈x2〉η =
〈x2〉

3
η. (8.18)

Writing η = D/〈x2〉 shows that η vanishes ifK → 0, i.e. if the scattering atom feels no elastic force.
The intermediate scattering function for a free particle is thus given by

f (free)
s (q, t) = lim

η→0
f (OU)
s (q, t) = e−D|q|

2t (8.19)

A physical meaningful interpretation is here that small q-values are considered, such that the mo-
tion of a whole protein can be described by the motion of a “representative” atom. It finally worth-
while mentioning that the intermediate scattering function for the OU process fulfills the so-called
Gaussian approximation in the classical approximation [27] exactly, and for an isotropic potential
one has

f (OU)
s (q, t) = e−

|q|2
6 W (t) (8.20)

where W (t) is the MSD

W (t) = 〈|x(t)− x(0)|2〉 = 2〈x2〉(1− e−ηt) (8.21)
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8.3 Fractional Ornstein-Uhlenbeck process for collective variables

In the preceding section we have described the intermediate scattering function of a tagged atom
by a stochastic model for the time evolution of its position. Formally, this approach can be general-
ized to theN atoms of a macromolecule considering their collective diffusion in a 3N -dimensional
harmonic potential [28, 29], but this approach necessitates a realistic force field for molecular dy-
namics simulations and is not suited to develop simple models which can be fitted directly to
experimental neutron scattering data. An alternative is to consider anomalous diffusion of the
collective variable

aq(x1, . . . ,xN ) =
1√
N

N∑

j=1

eiq·xj (8.22)

which leads to a non-exponentially decaying correlation function, which typical for complex sys-
tems. Here N = 1 is admitted to model incoherent (“self”) scattering. For the following consider-
ations we split aq into a static and a dynamic part,

aq(t) = 〈aq〉+ ξq(t), (8.23)

and write the intermediate scattering function in the form

f(q, t) = |〈aq〉|2 + 〈ξ∗q(0)ξq(t)〉 (8.24)

where |〈aq〉|2 is the elastic emplitude of the measured dynamic structure factor,

s(q, ω) = |〈aq〉|2δ(ω) +
1

2π

∫ +∞

−∞
dt e−iωt〈ξ∗q(0)ξq(t)〉. (8.25)

Using that 〈|ξq|2〉 = 〈|aq|2〉 − |〈aq〉|2 the intermediate scattering function can be cast into the form

f(q, t) = |〈aq〉|2 +
(
〈|aq|2〉 − |〈aq〉|2

)
φξξ(q, t) (8.26)

where φq(t) is the normalized autocorrelation function

φξξ(q, t) ≡
〈ξ∗q(0)ξq(t)〉
〈|ξq|2〉

(8.27)

and
〈|aq|2〉 = F (q, 0) = S(q) (8.28)

is the static structure factor, which becomes S(q) = 1 for a single atom.
To enable the use of stochastic models we introduce the vector variable

ξq ≡
(
<{aq − 〈aq〉}
={aq − 〈aq〉}

)
(8.29)

supposing that the 〈aq〉 is not strictly zero. This assumption is correct for any system where the
scattering atom feels a force from its neighbors and assures that the two components of ξq are
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independent in the case N = 1, where a single atom is considered. In terms of the vector variable
ξq the intermediate scattering function can be expressed as

f(q, t) = |〈aq〉|2 + 〈ξTq (0) · ξq(t)〉 (8.30)

noting that in the classical limit

〈ξTq (0) · ξq(t)〉 = <{〈ξ∗(q, 0)ξ(q, t)〉}, (8.31)

if 〈ξ∗(q, 0)ξ(q, t)〉 is invariant with respect to a reflection q → −q, which can be assumed for
proteins or other macromolecules in solution or powder samples. The explicit form of the auto-
correlation function of ξq is

〈ξTq (0) · ξq(t)〉 =

∫ ∫
d2ξ0d

2ξt ξ
T
0 · ξt p(ξ, t|ξ0, 0)peq(ξ0), (8.32)

omitting the q-dependence of ξ on the r.h.s. of the above equation.
In the following we will consider the case that the time evolution of the dynamical vector

variable ξq(t) is described by an Ornstein-Uhlenbeck process [5–7] or its fractional variant [13–15],
which describe here, respectively, normal and anomalous diffusion of ξ in an harmonic potential

V (ξ) =
K

2
|ξ|2, (8.33)

where K > 0 has he dimension of an energy. From a physical point of view this potential assures
that a(q) stays more or less close to its mean value 〈a(q)〉 and the equilibrium probability density,
peq(ξ0), has Gaussian form

peq(ξ) ∝ e−βK2 |ξ|2 , (8.34)

with β = 1/kBT . We will here discuss the case of the fractional O.U. process which contains
the normal O.U. process as a special case. Applications concern so far only incoherent scattering
from water and proteins in solution [30–35], which is described by scattering from a single atom
in the framework of the model. The Smoluchowski (Fokker-Planck) equation for the transition
probability of a fractional O.U. process has the form

∂tp(ξ, t|ξ0, 0) = 0∂
1−α
t

{
D

(α)
ξ ∆p(ξ, t|ξ0, 0) + η

(α)
ξ ∇ ·

(
ξ p(ξ, t|ξ0, 0)

)}
, (8.35)

where the fractional diffusion coefficient has here the dimension 1/sα and is related to to the frac-
tional relaxation constant though

D
(α)
ξ (q) = η

(α)
ξ (q)〈|ξq|2〉. (8.36)

To obtain the time autocorrelation function of ξq(t) it is not necessary to solve the Smoluchowski
equation explicitly, and following the same steps as for the position autocorrelation function de-
scribed in Section (7) one finds

cξξ(t) = 〈|ξ(q)|2〉Eα
(
−η(α)

ξ tα
)

(8.37)
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where the initial value is given by

〈|ξq|2〉 = 〈|aq|2〉 − |〈aq〉|2 (8.38)

and the relaxation function is thus

φξξ(q, t) = Eα

(
−η(α)

ξ tα
)

(8.39)

The parameters of the stretched Mittag-Leffler function are here q-dependent, i.e. α ≡ α(q) and
η

(α)
ξ ≡ η(α)

ξ (q).
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