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Chapter 1

Classical Molecular
Dynamics simulation




Born-Oppenheimer approximation
Hamilton operator for nuclei and electrons :

H=H,,+H.,+V,
The components are

- h? 02 Z:Z;e
Hon = ZQM 6R2 471'60 ZZ\R R;|’
. _h2 82
Hee = Z Z 2me 81‘ 47r60 Z Z |5 o
i o« i,a j<i,B
v —Z;e?
e 47r60 ZZ\R —Tjol

Notation: n = nuclei (¢, 7, . . .), € = electrons (o, £, . . .).
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Stationary problem for the electrons

Time scale separation between the time scales of the motions of the
“light” and the “heavy” atoms (M; > m.). The electron dynamics
follows instantaneously the motions of the nuclei.

o Electron wave function :
Ye({ria}, tHRY) = we({ria{Ri})e 7.
e Stationary Schrodinger equation :
{Hee + Vie} e = B({R})u,.

The eigenvalues are implicit functions of the configuration of the
nuclei!
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Schrodinger Equation of the nuclei:

awn 2
— Hnwm
835 _hQ 82 6/55

Va({Ri})

The potential of the nuclei is the superposition of the repulsive coulom-
bic terms repulsive terms, V,,,,, and the Born-Oppenheimer electronic
energy, F.(R;}), which depends in a parametric way on the posi-
tions of the nuclei.
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Classical MD

Concept

Instead of solving the Schrodinger equation with the potential V,,({R, })
for the nuclei, we solve the Newton equations,

_OU({Ri})

where U ({R;}) is an empirical potential which is fitted to to V,,({R,}),
U{R:}) = V.({R.}).

The simplest example is the Lennard-Jones potential, which is used

)

for simple liquids
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Force field for a biological macromolecule:

U= > k (7“7:.7 - 5_5-”)2

liaisonsij
2
(0)
+ g kijk: (@m - ¢7ij
angles ijik
+ E ki1 cos (ki — Oijrr)
diedresijk
12 6
Z ;5 0y Z qi4;
R 4€ij 19 — _6 + -_— .
. r r . 471'607”@']'
paires ij paires ij

The terms in red describe the resulting forces of chemical bonds, and
the blue terms describe the effects of the interactions “non-bonded””’
(excluded volume, attractive interactions between induced dipoles,
and electrostatic interactions).
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Coupled vibrations

o Quadratic approximation of U:

Near an equilibrium point, R, we can approximate /
10/55

1
UR)~URy) + é(R — RO)T K- (R —Ry),
where K is the matrix of force constants
9
K — 0°U(R) ot JU(R) _0

e Matrix equation of motion:
M-x+K-x=0, ou x:=R —R,.

M is the (diagonal) mass matrix.
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...Coupled vibrations

e Diagonalisation:
x+K-x=0, ou x=M"7x, K=MK M2

e Normal modes:

Therefore

3

u; {c] expliw;t] + ¢; exp[—iwjt]} :
j=1

where w; > 0, assuming that K is positive definite. The c; are
fixed by the initial conditions.
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Classical limit
e Normal modes: The classical approximation is valid if
hwj <K kBT

In a macromolecule only modes with low frequencies can be de-
scribed in the framework of classical mechanics.

v; < 200em™' ~ 6THz, ou w;=2my; et T =300K.

e MD simulation: We can estimate a frequency omega, by the cur-
vature of the potential between two particles. For the L] potential
we get

18 - 923¢ (1 — 21/64) 18 - 22/3¢
ULJ<T) ~ —€ + ( 9 ) = CU] — —2 )
o Lo

where p is the reduced mass.
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Approximation of a Lennard-Jones potential by a har-
monic potential harmonic potential (¢ = 1, 0 = 1).
For liquid argon we obtain hwy = 2.15- 107° kzT atT =
94.4K. The classical approximation is good.
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Spectrum of normal modes for three proteins and T' = 300 K as a function
of v. The insertion concerns myoglobin only and shows a comparison be-
tween normal modes modes, MD simulation, and experimental data from
inelastic neutron scattering. inelastic neutron scattering. The classical ap-

proximation The classical approximation is good for v < 61T H z.
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Simulation of an infinite system

C ol [(®e © 0o
@) OQ\\OQ O
O 5 © 0 © o

Periodic conditions and “minimum image convention” in an MD simula-
tion. If L is the length of the box, all interactions (except coulombic interac-
tions) are computed within a radius within a radius L/2.
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Integration algorithms
Verlet:

Only the positions are used.

Ri(t + At) « 2Ri(t) — Ry(t — At) +

Accelerations and valocities are approximated by

: Ri(t + At) — R;(t — At)
R, = ;
2\t
Ri(t + At) — 2R;(t) + R;(t — At)

At? '

R,

Q
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“Leap-frog”:
Velocities and positions are used.

At
M;
Ri(t+ At) «+ R;(t) + V,(t + At/2)

Vit + At)2) « Vit — At/2) + —F,(t)

“Velocity-Verlet”:
Again velocities and positions are used.
R,(t + At) «+ R;(t) + V,(t)At

ff. (Fi(t + A;) + Fﬁ))

Vi(t+ At) + Vi(t)+

Velocieties and positions are available at the same time.
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Geometric constraints

Goal: “"Freeze” the fastest movements, such as the vibrations of the
bonds, in order to allow the use of longer integration steps.

Holonomic constraints

It is required that
d“(R,t) =0, a=1...1

where R = (R],...,R})’. An example of a constraint is a fixed
bond length:
ocR,t) = (R, —Ry)* -1}, =0.
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Unconstrained Lagrangian Mechanics

With the Lagrange function
1. :
L:§R -M-R-V(R),
we obtain the equations of motion by postulating that the variation
“ _
S — / dt LR, R, t) = Min.
to

for the true trajectory. This gives

40 oL
T _
5S = / dt OR (dtaR 8R>_

Without constraints the variations R are arbitrary and

d oL 0L oV
ik -oR — MR=-—pp=f
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Lagrange mechanics with constraints

Since

d“(Ro+ 0R,t) — 0%(Ro,t) =0

for a differential variation, it follows that

AGR—0  A=2T
or’

The allowed variations are in the nullspace of A, 0R € V. We know

that t 4oL Oc
0S= [ dt R |——= — = 0.
s= \;(\(dt(?R aR),
E?VrL
Therefore

M-R=f+z, z=ApeV.

Here Mz is the constraint force, and pu = (g1, ..., ;)" contains the
Lagrangian parameters.
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The SHAKE algorithm

For the computation of the yi;, parameters J.-P. RYCKAERT et al. have
proposed the SHAKE algorithm which guarantees that the constraints
are verified in the presence of unavoidable numerical errors errors.!
Dans le schéma de Verlet on écrit

R, =R}, + AM ' ATR,) - p,,

21/55

where Rﬂl is the new position without the presence of constraints
R, =2R, — R,_; + A®M " - f(R,).

We require that the constraints are exactly verified for the new posi-
tions,
o(R,;1)=0, ou o :=(c',... o).

Remark: In the Verlet scheme one should compute the 1,
from o(R,) = 0.

'Ryckaert, J.-P., G. Ciccotti and H.J.C. Berendsen. J. Comp. Phys., 23:327-341, 1977.
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Implementation of SHAKE:

1. Given R\, compute o*(R\”,), and initialize j = 0.

2. Calcule & = At? (A(RnH) M- AT(R, ))

22/55
3. Compute the estimations p9) = —g*(RY) ) /di
4. Compute corrected estimations
R/ =R+ APM ™ - AT(R,) - p¥)
5. Compute UO‘(RSE)) and verify that |0c*(RY"))| < € pour
toutes les contraintes

for all the constraints. If the result is OK, stop. Otherwise,
start over with 2

Here € is a tolerance parameter. We notice that the constraints are
considered independent in the computation of /) estimates.
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Rigid molecules
Positioning a rigid body
For each mass point we write
Ri(t) =Ro(t) +1r,(t) ou ri(t)=D(x(t))-r;.

Here R points to the center of mass, and r; = R; — Ry. The matrix
D is orthogonal and parametrized by the coordinates x.

Angular velocities

Using D' - D = 1 we deduce the relations

Here w = D - w. The “hat” marks the reference frame related to the
body. We have linear relations (A and A depend on the choice of x)

w=AKX)-%  @=AKX)-x
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Lagrange function

L= Z MR2O+Z “me12,; — V({Rao +10,}).

24/55
For any molecule M, = > . m, ;.

Variation

h d 0L oL
- T . - —
58 = /to dt {2&: 6Ra70 (dt aRa’O aRa0>
d 0L oL
A —
2 0m (G, ara,i)} g

Here we pose (1, are quasi-coordinates)

ra,i = W, N o, 5ra,i — 577@ A oy 57’@ X Wey-
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Equations of motion for the center of mass:

The R , are arbitrary and we find

_OV({Rs,})
OR..;

MaRa,O — Z Fa,i; Fa,i —

Equations of motion for the otation:

We find
d dL,,

— 1O, w,| =
77 1©a - wa

For the x, we have the relations

dt -

A(X,) X, = w,.
O, is the inertia tensor (index v omitted)
O = =3z i+ 2) =X

- Na7 N, = Z L ) A Fa,z’-

25/55
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Euler equations for the rotation:
We work in the reference of the principal axes >

To; = D(X,) (Wo ATyy), Ory; =D(x,) (00, AToi), O, X W,. e

This gives (f;a = @a - W, is the angular momentum in i)

d -~ A N ” A
=, @a°@a}+dja/\@a'wa:Na; Na: faz’/\Faz’-
i 2 Far N F

For the x, we have the relations

A

A(X,) Xy = W, .

Here ©,, is the inertia tensor in ¥ (constant and diagonal).

O, 0 0
o= o0 6, 0
0 0 O.
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Angular velocities and quaternions

We choose the components of a quaternion as angular coordinates
coordinates, X < q = (¢s, 4», ¢, ¢.)", tel que

GCHe—¢—¢ 2—q9+ e 299 + ¢:q:) 27/55
20—qsqy + 4:.q.)  2(0:0: +4,9.) C+E— ¢ — G

where ¢ + ¢; + qj + ¢* = 1. For w one can write § = B(q) W,

QS qs —qz — Qy —(q: 0
Qx _ 1 dx ds —q. dy . w &
dy 2\ &% ¢ & —% Wy
q,z q. — Qy 4z qs («:}z

If we choose the Euler angles x < (a, 3,7)’ the relation & < @ can
become singular:

: __cosy sin 7y ~
O.é sin 3 sin 3 0 ~
B | = sin 7y COoS 7Y 0] | wy
¥ cot fcosy —cot Bsiny 1 P

&
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An algorithm for the integration of Euler equations:

“Leap frog” scheme?:
L(n+1/2) = L(n—1/2) + AtN(n)
an+1) = qn)+ AtBlq+1/2)) - (w(n+1/2),0)7. 28/55

Realization with an auxiliary step (for each molecule « ):
1. L(n) = L(n — 1/2) + £!N(n).
L(n) = D"(q(n)) - L(n).
&n) =0 - Ln).
q@RL/2) = a(n) + $B(a(n)) - (@(n),0)".
L(n+1/2) =L(n — 1/2) + AtN(n).
L(n+1/2) = ( (n+1/2)) - L(n + 1/2).
on+1/2) =60  -Ln+1/2).
qn+1)= q(n) + AtB(Q@F1/2)) - (w(n+1/2),0)7.

® N o g k= W b

D. Fincham, Leapfrog rotational algorithms, Molecular Simulation 8, 165-178 (1992).
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Simulations in the NV ensemble

Extended system

We define a “virtual” dynamic system of N particles having posi-
tions p; and speeds p;. The relation to the “real” system is given

by
ri, = Py,

Lagrange function

1
L. —Z —m,;s°p; — pl,...,pN)+§M532—ngTlns.

M, is a f1ct1t10us mass” for s, and g is still to be determined.

29/55
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Hamilton function

2
7,
Ho= 3o Vi) +

A 7

P
oM,

H(TT,P) 30/55

-+ ngTln S.

Partition function

1 +00 00
We(NVE) :ﬁ/ dps/O als/R d3N7r/Vd3Np5(E—’He)

1 /27 M.\ Y2 E
= — > — |- Z(N T).
g(@T) “phﬂl AN,V T)

Here Z.(N,V,T) is the partition function of the canonical ensemble:

|
Z(N,V,T) = ~ /IR &N /V 4N p exp [—Hg,}p )] |
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Hamilton equations

OH, T
Pe = or; - m,;s?
. OH. A%
e Ip; - _8pi
s OHe _ s
Ops M;
i M. Z m  gksT

m;s? S

i




Equations of motion for physical variables

We use that
d d
§— = —,
dr  dt 32/55
where T is the “virtual” time. This gives
. Db
r, = —
m;
: oV
Pi = —50 CPi

1

- p;
¢ = M. (;E_ngT>

]

We choose g = 3N. The variable ¢ plays the role of a “friction con-
stant” which can be positive or negative.
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Simulations in the NpT ensemble

Extanded system
virtuel | réel | relation
Q Vil Q=V
T _
TQ Pv | 40 = Dv
S S s=S
Uy Ps Tgs = Ds
p | r |QPp=r
T
™ P 0% p
dr | dt | L=dt




Lagrange function

szz/s 2

L Z (Q1/3p17 0o c 7@1/3PN)

1 .
+ 5]\4@&@2 — P...Q + M §* — gkgTlns.

M, and M, are the fictitious “masses” for () and s, respectively, and
P, is the desired pressure.

Hamilton function

2

_ T, 1/3 1/3
He_zm—'—v(Q p17'°'7Q pN)

2

P6.'17
* QMQSQpQ T Feat

2 + gk’BT lIl S.

M,

34/55
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Partition function

Here we have

+oo +oo
(NVE) |/ / dQ/ / ds/ B3N /d3Np5E He)
N Ry 35/55

am2 MM, \ /* E
( T ) explk T] Ze(N,p,T).

Z.(N,p,T) is the partition function of the NpT ensemble:

1 [ PV
ZC(N,p,T):m/O dv : d3N7r/Vd3Np exp [—H(W’ZL; ! ]

9
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Equations of motion for physical variables:

In the following we replace the indices “Q)” by “V”.

Po= Vrﬁ_ pi 36/55
N
P: = ar, vaz Pi
y _ Pv
V=
. 1 p? %
_ _p 4 pi
pv ext + 3V {213 (ml r; arl)}
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Chapter 2
The Monte Carlo method




Master equation
Définition:

e Let ¢ be the index of N microstates of a system.

e Let p; be the probability of finding the system in state «.

e Let w;; = w;_,; be the transition rate 1 — J.

With these definitions we have the balance

dp;
d]jf = Z Wi;Pj — Z Wi P; -
J J

afze)

We verify that

38/55
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Matrix form:

With the definitions

A = (4), Ay = wij — (Zwkﬂ> i)

P = (p17°'°7pN> )

the Master equation takes the form

dp
= A-
o P,

with the formal solution

p(t) = exp(At) - p(0).

We see that the sum of the elements of a column of A is zero:

ZAU :wa—zwkaaw :Zwij—Zwkj :O

39/55
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Stationary state:

A stationary state is given by:

dPeq
dt

=0=A" p,.

In components we have

Z wijp] Z w]ZpZ
J

Detailed balance

We impose that for each pair of states ¢ and

eq __ €q
WP~ = WiiP;~ -




Attaining equilibrium
For p,, to be an equilibrium state we must impose that

Peg = lim exp(At) - p(0).
It is assumed that A has a spectral decomposition of the form
A:Z)\kuk'vf, VZ-T'llj :513
k
If we put \; = 0, it follows that

exp(At) = Z exp(\pt)uy - v 2% - Vi =D 152';
k

if £ > 1 (necessary cond.). Since ). A;; = 0, it follows that p., =

(1,...,1) and

peq Zpl =1 = lim exp(At) - p(0) = Pey-

t—00

41/55

=[] [a] [=] [~] ] [=]



Canonical Monte Carlo

State of equilibrium: 42/55

In the following ¢ is a state in the configuration/phase space of a
physical of a physical system, E; the energy of ¢, and 5 = kgT'. We

have )
e eXp _6EZ
pr = VIE) g S (-8B,

Decomposition of w;;:

We decompose w;; as follows::
Wij = T

where «;; is the probability of proposal for a move j, and 7;; is the
probability of of acceptance.
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Metropolis algorithm: 43/55

Here we put
Q;j = = const.

and we choose
T = min(l, exp(—pB[E; — Ey])) -
Verification:

Wi;  T5 min(l,exp(—ﬂ[Ez’ B EJD) = eX (—5[E — ED
Wi : i N min(l,exp(—B[Ej . EZD) S | .

This is true regardless of E; and E;.
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Pseudo code:
1. Choose a particle in configuration 7 and calculate £.

2. Make a random movement of the chosen particle,

R— R+ A —-0.5),

where 0 < £ < 1is a random number (uniform distribution).

3. Compute the energy L; of the new configuration .

4. Accept ¢ with probability min(l, exp(—0[E; — EJ])) :

44/55
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Chapter 3

Ab initio Molecular
Dynamics




Motivation

MD simulation without the approximation of the electronic energy
by an empirical potential.
Reason:

Empirical potentials do not allow to consider physical processes that
directly involve physical processes that directly involve electrons.

Applications:

e Studies of chemical reactions.

e Simulations of spectroscopic observations that are directly cou-
pled to coupled to the electronic degrees of freedom, such as Ra-
man spectroscopy, and Raman spectroscopy, and chemical shift
in NMR spectroscopy.

Remarque: The nuclei are always treated as classical particles.

48/55
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Solution of the electronic problem
Variational method:
The solution of the stationary Schrédinger equationre
Heu, = E({R:})ue,
can be formulated as a variational problem
(e, f[eue) = Min., (Ue, ue) = 1.

The wave function of the ground state, u.(r;,), depends on all the
electronic coordinates electronic coordinates.

Here and in the following we suppress the parametric dependence
of the electronic wave functions of positions R; of the nuclei.




Equivalent minimization problem:

We choose u, = u,.(r;,) as a superposition of appropriately chosen
basis functions,

{rz a} Z Cn {rz a}
This gives a constrained minimization problem for the coefficients
{ci}:
> chea(®y, HD,) =Min({c;}), > e)* =1

n,m

Here m,n =1, ..., M, where M is the number of basis functions
considered. If M < oo, we obtain an approximation of the varia-
tional problem.

50/55
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Minimization with constraints:

We define the matrix M x M
H = (Hj), Hy; = (9, H ©)),

and the vector
c=(c,-.. ,cM)T,

and we look for a vector ¢ for which
fle,N)=c'-H-c—Mc'-¢c—1} = Min.

Here \ is a Lagrange parameter for the constraint ¢’ - ¢ = 1. This
gives
H:-c— \c, c’-c=1.

The optimal c coefficients are given by the eigenvector of H which
corresponds to the smallest eigenvalue = minimum energy.

51/55
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Kohn - Sham Theorem

1. The electronic fundamental energy is a functional of of the elec-

tronic density,
E.(1R.}) = E|pe(r)]

2. The electronic density is a function of three spatial coordinates

pe(r) =) elya(r),

«

52/55

where ¢ is a sum over the orbitals occupied by a only electron.
Reminder: The wave function u.({m; ) is a function of 3N, co-
ordinates, if IV, is the total number of electrons.

The electronic fundamental energy can be obtained by the solu-
tion of a problem for an “effective particle”.
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Ab initio MD
Density functional:
bl =~ X o [ e syl
+ /dgr Pe()V,o(r, {R;}) + /d3r Pe(r)V(r) + E,.c[pe(r)] .

Here V/};(r) is the Hartree energy (coulombic interaction interaction
between the electrons),
/ d3 / 6
~ 376 r—r \

and &,.[p.(r)] is the correlation exchange density functional. It is not
strictly known, and it contains all the hidden effects of many-body
effects. There are approximations which “work well”.

HI'
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Lagrangian for ab intio MD :

We construct the Lagrange function
=Y SMR? ~ (El{plr, )] + Vil {R2)

+g§a: / d*r (v, 1) (r, 1) +§; Aap ( / d'r 5 (r, t)s(r,t) — %)-

e The wave functions for the orbitals are expressed in
¢a(r7 t) — Z Ca,i(t) ¢i<r)7

where the coefficients ¢, ; are dynamic dynamic variables. The
idea is that the ¢, ; evolve such that £[{1,(r, t)}| always remains
minimal

e The last term describes the normalization constraints of the 1, (r, t).
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Plane wave bases

With g = #(I,m,n) (periodic conditions) we write psi,(r,t) as a

plane wave superposition,

war t Z Caq qu‘.

|Q|<QCut

Equation of motion for the nuclei::

d oL oL
dtoR, OR,;

Equation of motion for the coefficients:

With the definition
Co = (Coz;Oa so00g Ca;qmam)T
we write 7 or 97
ik
—— = : C. - Cs = 0a8 — Aag-
dtde, oc, cl e g

55/55
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