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When calculating the memory function, following the
approach described in the previous section, the quantity of
interest is actually the Laplace transform of Eq. !14",
which is

Ĉ!s;!1,!2" = ĈE!s;!1,!2" + ĈO!s;!1,!2" . !15"

Since the time dependence in Eq. !14" enters solely through
the factor of exp!−"nt /#m", the functions ĈE!s ;!1 ,!2" and
ĈO!s ;!1 ,!2" differ from CE!t ;!1 ,!2" and CO!t ;!1 ,!2" #Eqs.
!A22" and !A24", respectively$ only in the replacement of
exp!−"nt /#m" by the factor 1 / #s+"n /#m$.

Both C!t ;!1 ,!2" and K!t" are functions not only of !1
and !2, but also of the contour length N and the persistence
length Lp%1/2p. The latter is conveniently expressed in
terms of a dimensionless stiffness parameter z, defined as z
= pN=N /2Lp, which is large !$1" for flexible chains !Rouse
limit" and small !%1" for stiff chains. The evaluation of
C!t ;!1 ,!2" and K!t" for definite values of these parameters
!N, !1, !2, and z" is done numerically, as the eigenvalues "n
must be obtained from a transcendental equation that cannot
be solved in closed form. Details of the evaluation of these
two functions are discussed in Appendix II.

IV. RESULTS AND CONCLUSIONS

Using Eq. !6" to determine the memory kernel from
Ĉ!s ;!1 ,!2", we find, for a fairly wide range of N, z, and !1

and !2 values, that K̂!s" is a power law in s over several
decades, the exponents varying between about 0.25–0.48 in
absolute value. !The highest exponent value, 0.48, and the
one closest to the experimentally determined exponent of
0.49±0.07, was obtained for a chain with the following pa-
rameters: N=5000, z=5000, !1=2500, and !2=−2500."
Chains can apparently be long or short, stiff or flexible, with
small or large separations between !1 and !2, and still pro-
duce power-law memory kernels #within the one-
dimensional !1D" GLE framework$.

Significantly, however, not all choices of N, z, and !1 and
!2 provide satisfactory, simultaneous fits of the calculated
K̂!s" and C!t" curves to the corresponding experimental
curves of Ref. 7. One set of parameter values that does this is
N=500, z=5000, !1=24, and !2=19, with the monomer fric-
tion coefficient #m /kBT chosen to be 3.18s1/2 Å−2 so as to
agree with the value of # /kBT estimated from experiment.7

The corresponding distance correlation function C!t ;!1 ,!2"
#normalized by C!0;!1 ,!2"$ is shown in Fig. 1 !full line",
along with the experimentally determined correlation func-
tion !open circles", and the Mittag-Leffler function of index
1/2 !dashed line". The above parameter values leading to
this curve describe a long flexible polymer in which the
given pair of segments are close together.

For exactly the same set of parameter values, the s de-
pendence of K̂!s", normalized by the first theoretical data
point, is shown in Fig. 2 !full line", along with the experi-
mental data points, normalized by the first experimental data
point !open circles", and their estimated error bounds !dashed
lines". The slope of the theoretical curve is estimated as
−0.43, while the slope of the experimental curve is estimated

as −0.49±0.07.7 Within experimental error, therefore, the
calculated and experimental memory kernel exponents coin-
cide. Interestingly, for the same N and z values, essentially
the same degree of agreement between theory and experi-
ment is obtained even if !1 and !2 are varied, provided their
difference &!1−!2& is about 5.

We also find that changes to the parameter #m /kBT shift
the position of the C!t" and K̂!s" curves, but do not otherwise
change their form. In particular, K̂!s" remains a power law
with the same exponent. Since the experimental distance cor-
relation function is well described by the Mittag-Leffler
function E1/2!−!t / t0"1/2" it decays on a characteristic time

FIG. 1. Distance autocorrelation function C!t" #normalized by C!0"$ as a
function of time t !in seconds". The open circles are the experimental data
!normalized by the first experimental data point" on the fluorescein antifluo-
rescein system taken from Ref. 7. The dashed line corresponds to
the Mittag-Leffler function of index 1/2, and the full line is obtained from
the calculations described in the text. These calculations use the following
parameter values: N=500, z=5000, !1=24, !2=19, and #m /kBT
=3.18s1/2 Å−2.

FIG. 2. Memory kernel K̂!s" as a function of s. The open circles are the
experimental data points !normalized by the first experimental data point" of
Ref. 7. The full line is the theoretical memory kernel !normalized by the first
theoretical data point" calculated from the Laplace transform of the C!t"
curve shown in Fig. 1 using Eq. !6". The dashed lines correspond to the
estimated experimental error bounds.

204903-4 Debnath et al. J. Chem. Phys. 123, 204903 !2005"

Downloaded 30 May 2006 to 132.166.23.102. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

P. Debnath, M. Wei, S. Xie, and B.J. Cherayil.  J. Chem. Phys., 123:204903, 2005.

Distance autocorrelation function

Non-exponential 
decay

(“power law”)



4. FRACTIONAL OU PROCESS AND APPLICATIONS 99

FIGURE IV.9. Left: Harmonic potential driving the OU process.
Right: Sketch of the corresponding “rugged” potential energy
surface leading to fractional Brownian motion.

proposed long time ago by Frauenfelder et al. [56]. It must be emphasised that
such an effective harmonic model can only describe protein dynamics close to
the equilibrium state, which is here characterised by a single global minimum
of the potential.

Using the general considerations concerning FFPEs made in Section 3.1 of
this chapter we can immediately write down the solution of the FFPE describ-
ing the fractional OU process. For this purpose we use expression (IV.57) and
insert the eigenfunctions of the Fokker-Planck operator (II.161) associated with
the standard OU process which are given in Eqs. (II.163) and (II.165). Defining
again the scaled positions ξ = x/

√
〈x2〉 and the scaled relaxation constant

ηα = τ̃ 1−αη (IV.65)

one obtains from (IV.57) [49, 50]

P (ξ, t|ξ0, 0) =
exp

(
− ξ2

2

)

√
2π

∞∑

n=0

1

2nn!
Hn

(
ξ√
2

)
Hn

(
ξ0√
2

)
Eα (−nηαtα) (IV.66)

Here Eα(·) is the Mittag-Leffler function defined in Eq. (IV.53).

4.2. Autocorrelation function and its spectrum. The autocorrelation func-
tion of the scaled variable ξ is obtained from the general expression (IV.59),
using that here y → ξ and

∫
dξ ξPn(ξ) = δn,1. Noting that the autocorrelation

function of ξ equals the normalised autocorrelation function of x, ψ(t) ≡ cξξ(t),
one obtains

ψ(t) = Eα (−ηαtα) (IV.67)

Diffusion in a harmonic potential : 
Ornstein-Uhlenbeck process [1]

Diffusion in a “rugged” harmonic potential
Fractional O.U. process [2]

[2] R. Metzler and J. Klafter. The random 
walk’s guide to anomalous diffusion: A 
fractional dynamics approach. Phys. 
Rep., 339:1–77, 2000.

[1] M.C. Wang and G.E. Uhlenbeck. On the 
theory of Brownian motion II. Phys. Rev., 
93(1):249–262, 1945.



Fractional Fokker-Planck equation

∂P (x, t)

∂t
= τ̃1−α

0D
1−α

t LFP P (x, t)
Fractional Fokker-Planck 
equation

It should also be emphasised that a discrete eigenvalue spec-
trum of a Fokker–Planck operator leads to a strict maximum
relaxation time

tmax ¼ l1"1 (2.15)

in the case of normal Brownian dynamics.

C. Correlation function and its Fourier spectrum

From the general form, eqn. (2.12), of the solution of a FFPE
one can derive a formula for the correlation function cOO(t) :¼
hO(t)O(0)i. Using the relation between the Pn(O) and Qn(O)
and one obtains

cOOðtÞ ¼
Z Z

dO0 dOOO0PðO; tjO0; 0ÞPeqðO0Þ

¼
X1

n"1

Z
dOOPnðOÞ

! "2

Eað"la;ntaÞ: ð2:16Þ

It should be noted that the sum in eqn. (2.16) starts with n ¼ 1
since there is no net drift in the equilibrium state, and thereforeR
dO OP0(O) ¼ 0.
In experiments one measures often the Fourier spectrum of a

time correlation function and not the time correlation function
itself. The generalised stretched exponential functions intro-
duced in eqn. (2.9) have the convenient feature that they
possess an analytical Fourier transform.32 Defining c̃OO(o) ¼RþN
"N dt exp("iot)cOO(t), one obtains

~cOOðoÞ ¼
X1

n¼1

Z
dOOPnðOÞ

! "2

Laðo; ta;nÞ; ð2:17Þ

where La(o;t) is the generalised Lorentzian (here ta,n & t for
brevity)

Laðo; tÞ ¼
2t sinðap=2Þ

jotjðjotja þ 2 cosðap=2Þ þ jotj"aÞ
0oa ' 1; :

ð2:18Þ

The relaxation times ta,n are given by

ta,nla,n"(1/a), n a 0, (2.19)

where la,n are the rescaled eigenvalues which have been defined
in eqn. (2.11) and which appear in definition (2.16) of the
correlation function. It is important to note that La(o;t)
is singular at o ¼ 0 if a a 1. This is due to the fact that
Ea("(t/t)a) is a self-similar function which has no characteristic
time scale. The limiting behaviour for large frequencies,

La(o;t) p o"(11a), (2.20)

differs from that of a Lorentzian, L(o,t) ¼ 2t/(1 þ [ot]2),
which decays as po"2

III. A simple model for QENS from proteins

In the following it will be shown how a FFPE approach can be
used to construct a simple model for internal protein dynamics,
as it is observed by quasielastic neutron scattering. Two
essential features must be taken into account in this case:

(a) The model must describe diffusive motions which are
confined in space.

(b) The resulting correlation functions must exhibit long-
time memory effects leading to a non-exponential decay in
time.

Such a model is the fractional Ornstein–Uhlenbeck process
which describes non-Markovian diffusion of a Brownian par-
ticle in a harmonic potential. As already mentioned, this model
has been recently used to model spectra from fluorescence
photon correlation spectroscopy.17 In contrast to the model
by Volino and Dianoux,15 the confinement of the atomic
motions is not modelled by a boundary condition, but by a

quadratic potential

VðxÞ ¼ K

2
x2: ð3:21Þ

Here K 4 0 is the force constant of the elastic force F(x) ¼
"Kx which restores the equilibrium position x ¼ 0 of the
Brownian particle. The latter is a tagged, ‘‘representative
atom’’ which describes the motion of all atoms in a protein.
The potential (3.21) must be interpreted as an effective poten-
tial, which represents the envelope of a rugged multiminima
potential energy surface,33 as it is shown in Fig. 1. At low
temperatures the tagged atom is trapped in one of the local
minima and performs harmonic vibrations. If the temperature
is raised above the transition temperature Tg of about 200 K,
the tagged atom can easily escape the local minima and
performs diffusive motions in the effective envelope potential.
To account for long-time memory effects, which are character-
istic for relaxation processes in complex systems, the motion of
the tagged atom is not described by the standard Ornstein–
Uhlenbeck process, but by its fractional counterpart. The force
constant K describes effectively the softness or ‘‘resilience’’ of
the protein, which suffices to obtain a qualitative description of
elastic neutron scattering from proteins.9

A. Fractional Fokker–Planck equation and its solution

In the following O - x describes the position of a Brownian
particle, which diffuses in the harmonic potential (3.21). In this
case the drift coefficient in the Fokker–Planck operator (2.2) is
set to a1(x) ¼ "Zx and the fluctuation coefficient to a2(x) ¼ 2D,
where Z is an inverse relaxation time and D is the diffusion
coefficient. The Ornstein–Uhlenbeck process has been exten-
sively studied in the past, and the left and right eigenfunctions
of the corresponding Fokker–Planck operator

LFP ¼ Z
@

@x
xþD

@2

@x2
ð3:22Þ

are well known.26,28 One obtains

QnðxÞ ¼
1ffiffiffiffiffiffiffiffiffi
2nn!

p Hnðx
ffiffiffiffiffiffiffiffiffiffiffi
Z=2D

p
Þ ð3:23Þ

for the left eigenfunctions corresponding to the negative eigen-
values

ln ¼ nZ, n ¼ 0,1,2,. . . (3.24)

Here Hn( ( ) is the nth Hermite polynomial.30 As outlined
above, the right eigenfunctions are given by Pn(x) ¼
Peq(x)Qn(x), where Peq(x) ¼ P0(x) is the equilibrium density.
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Fig. 1 Sketch of the potential energy surface of a protein.
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describes the time evolution of the transition probability
density for a Markovian stochastic process, assuming that
small increments in time lead to small increments in the
stochastic variable under consideration. From a physical point
of view Fokker–Planck equations describe diffusion processes
in the presence of systematic forces. For Fokker–Planck
operators with a discrete spectrum of eigenvalues the Marko-
vian hypothesis leads to solutions and associated correlation
functions which exhibit a multiexponential decay in time, with
a well defined slowest relaxation mode. In order to generate
correlation functions with algebraic long-time tails, as they are
often observed in relaxation processes of complex systems, the
fractional Fokker–Planck equation (FFPE) has been intro-
duced more recently.20–23 It is effectively a phenomenological
generalisation of the Fokker–Planck equation which leads by
construction to non-exponentially decaying solutions. Assum-
ing that O is the stochastic variable under consideration, the
fractional Fokker–Planck equation reads

@PðO; tÞ
@t

¼ ~t1$a
0 D1$a

t LFPPðO; tÞ: ð2:1Þ

Here P(O,t) % P(O,t |O0,t0) is the transition probability density
for a move from O0 at time t0 to O at time t, and LFP is the
standard Fokker–Planck operator

LFP ¼ $ @

@O
a1ðOÞ þ

1

2

@2

@O2
a2ðOÞ; ð2:2Þ

where a1(O) and a2(O) are, respectively, the drift and fluctua-
tion coefficients which depend in general on O. The symbol

0Dt
1$a denotes the Riemann–Liouville operator for a fractional

derivative of order 1 $ a.29 For an arbitrary function f the
latter is defined as

0D
1$a
t f ðtÞ ¼ d

dt

Z t

0
dt

ðt$ tÞa$1

GðaÞ
f ðtÞ: ð2:3Þ

Here G( ' ) is the Gamma function.30 In general, a fractional
derivative of order b4 0 is a normal derivative of order n, with
n being the smallest integer number Zb, which is preceded
by a fractional integration of order n $ b. The scaling factor ~t
(~t 4 0) in (2.1) has been introduced to ensure the correct
dimension of the right-hand side. The FFPE (2.1) is to be
solved with the initial condition P(O, 0) ¼ d(O $ O0). One
recognises that the standard FPE equation is retrieved in the
limit a - 1.

B. General form of the solution

The construction of the FFPE (2.1) is most easily understood
by looking at its Laplace transform, which is defined as f̂(s) ¼RN
0 dt exp($st)f(t) for an arbitrary function f(t) (<s} > 0).

Performing first an integration of both sides of the FFPE from
0 to t yields

Pðt;OÞ $ PðO; 0Þ ¼ ~t1$a
Z t

0
dt

ðt$ tÞa$1

GðaÞ LFPPðO; tÞ;

and a subsequent Laplace transform leads to

P̂ðs;OÞ $ PðO; 0Þ
s

¼ ~t1$as$aLFPPðO; tÞ:

Using that P(O,0) ¼ d(O $ O0) one obtains thus

P̂ðO; sÞ ¼ 1

s$ ½s~t)1$aLFP

dðO$ O0Þ: ð2:4Þ

We assume now that LFP has a discrete spectrum of
eigenvalues. The Dirac distribution may then be expressed in
terms of the biorthogonal set of right and left eigenfunctions of

LFP, which are defined by the relations26,28

LFPPn(O) ¼ $lnPn(O), (2.5)

Lþ
FPQn(O) ¼ $lnQn(O), (2.6)

respectively, and fulfil (Pn,Qk) ¼ dnk, where dnk is the Kroneck-
er delta. The operator Lþ

FP is adjoint to LFP, such that
(g, LFPf) ¼ (Lþ

FPg,f), and one has Pn(O) ¼ Qn(O)Peq(O).
The scalar product of two functions f and g is here defined
as (f, g) ¼

RþN
$N dO f(O)g(O). Inserting the representation

dðO$ O0Þ ¼
X

n

PnðOÞQnðO0Þ: ð2:7Þ

into expression (2.4) yields thus

P̂ðO; sÞ ¼
X

n

1

sþ ðs~tÞ1$aln
PnðOÞQnðO0Þ: ð2:8Þ

One can now make use of the relation

Eað$taÞ ¼ 1

2p i

I

C
ds

expðstÞ
sð1þ s$aÞ ; ð2:9Þ

where Ea(z) is the Mittag–Leffler function31

EaðzÞ ¼
X1

k¼0

zk

Gð1þ akÞ: ð2:10Þ

The above series expansion shows that Ea(z) is a generalised
exponential function, where the gamma function G(1 þ ak)
replaces the factorial k! in the series representation of a normal
exponential function. Therefore the functions Ea($ta) may be
considered as generalised stretched exponential functions.
Using the above relations and the rescaled eigenvalues

la,n :¼ ~t1$aln, (2.11)

the inverse Laplace transform of eqn. (2.8) can be cast into the
form

PðO; tÞ ¼
X

n

PnðOÞQnðO0ÞEað$la;ntaÞ: ð2:12Þ

The generalised stretched exponential functions decay
monotonically to zero with t - N, and for large times one
can make the approximation

Eað$la;ntaÞ *
l$1
n;at

$a

Gð1$ aÞ
: ð2:13Þ

The solution of a FFPE has thus by construction an algebraic
long-time tail. In the limit a - 1 each generalised stretched
exponential in eqn. (2.12) is replaced by exp($lnt), and one
retrieves the eigenfunction representation for the solution of a
Fokker–Planck equation.28 The transition from a FPE to its
fractional counterpart leads thus to the replacement of
exp($lnt) - Ea ($la,nta) in the eigenfunction expansion of
the general solution.
A remark concerning the equilibrium density is in place here.

If the Fokker–Planck operator describes a system close to
thermal equilibrium, it possesses only negative eigenvalues,
except for one which is zero and which is associated to the
eigenfunctions P0(O) ¼ Peq(O), representing the equilibrium
density. The corresponding left eigenfunction is given by
Q0(O) ¼ 1. Ordering the eigenvalues ln such that l0 o l1 o
l2. . ., where l0 ¼ 0, it follows from the proportionality relation
eqn. (2.11) that also la,0 o la,1, o la,2. . ., and in particular
la,0 ¼ l0 ¼ 0. This shows that the equilibrium solution of a
FFPE is the same as the one of the corresponding standard
FPE,

PeqðOÞ ¼ lim
t!1

PðO; tÞ ¼ P0ðOÞ: ð2:14Þ
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0 < α ≤ 1

D

η
=

kBT

K
= 〈x2〉

fractional derivative

[1] R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: A fractional 
dynamics approach. Phys. Rep., 339:1–77, 2000.



∂P (x, t)
∂t

+
∂J(x, t)

∂x
= 0

J(x, t) = −D
P (x, t)

∂x
+

D

kBT
F (x)P (x, t)

∂P (x, t)
∂t

+
∂J̃(x, t)

∂x
= 0

J̃(x, t) =
d

dt

∫ t

0
dτ

(t− τ)α−1

Γ(α)
J(x, τ)

“normal diffusion”

“anomalous diffusion”

memory effects

F (x) = −∂U

∂x

-3 -2 -1 1 2 3
x

1

2

3

4

U!x"U(x) =
1
2
Kx2

fractional derivative of order 1-α

Smoluchowski picture of fractional Brownian motion
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years [53, 54, 55, 56]. Assuming that y is the stochastic variable under con-
sideration, a fractional Fokker-Planck equation reads

∂P (y, t)

∂t
= τ̃ 1−α

0D1−α
t LFP P (y, t), 0 < α ≤ 1 (IV.48)

Here P (y, t) ≡ P (y, t|y0, t0) is the transition probability density for a move
from y0 at time t0 to y at time t, and LFP is the standard Fokker-Planck oper-
ator given in Eq. (II.147). The symbol 0D1−α

t stands for the Riemann-Liouville
operator for a fractional derivative of order 1 − α [57]. If f(·) is an arbitrary
function the latter is defined as

0D1−α
t f(t) =

d

dt

∫ t

0

dτ
(t− τ)α−1

Γ(α)
f(τ) (IV.49)

Here Γ(·) is the generalised factorial (“Gamma function”) [17]. In general, a
fractional derivative of order β > 0 is a normal derivative of order n, with
n being the smallest integer number ≥ β, which is preceded by a fractional
integration of order n − β. The scaling factor τ̃ (τ̃ > 0) in (IV.48) must be
introduced to ensure the correct dimension of the right-hand side. As any
normal FPE, the FFPE (IV.48) is to be solved with the initial condition P (y, 0) =
δ(y − y0).

3.2. Solution in terms of Eigenfunctions. The construction of the FFPE
(IV.48) is most easily understood by looking at its Laplace transform. Integrat-
ing both sides of the FFPE from 0 to t yields

P (t, y)− P (y, 0) = τ̃ 1−α

∫ t

0

dτ
(t− τ)α−1

Γ(α)
LFP P (y, τ),

and a subsequent Laplace transform leads to

P̂ (s, y)− P (y, 0)

s
= τ̃ 1−αs−αLFP P (y, τ).

With P (y, 0) = δ(y − y0) one obtains thus

P̂ (y, s) =
1

s− [sτ̃ ]1−αLFP
δ(y − y0). (IV.50)

We assume now that LFP has a discrete spectrum of eigenvalues. The Dirac
distribution may then be expressed in terms of the biorthogonal set of right
and left eigenfunctions of LFP , as discussed in Section 11 of Chapter 2. One
obtains

P̂ (y, s) =
∑

n

1

s + (sτ̃)1−αλn
Pn(y)Qn(y0). (IV.51)
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t stands for the Riemann-Liouville
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0D1−α
t f(t) =

d

dt

∫ t

0

dτ
(t− τ)α−1

Γ(α)
f(τ) (IV.49)

Here Γ(·) is the generalised factorial (“Gamma function”) [17]. In general, a
fractional derivative of order β > 0 is a normal derivative of order n, with
n being the smallest integer number ≥ β, which is preceded by a fractional
integration of order n − β. The scaling factor τ̃ (τ̃ > 0) in (IV.48) must be
introduced to ensure the correct dimension of the right-hand side. As any
normal FPE, the FFPE (IV.48) is to be solved with the initial condition P (y, 0) =
δ(y − y0).

3.2. Solution in terms of Eigenfunctions. The construction of the FFPE
(IV.48) is most easily understood by looking at its Laplace transform. Integrat-
ing both sides of the FFPE from 0 to t yields
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Solution of FFPEs in terms of 
eigenfunctions

Laplace transform
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At this point one can make use of the relation

Eα (−tα) =
1

2πi

∮

C

ds
exp(st)

s(1 + s−α)
, (IV.52)

where Eα(z) is the Mittag-Leffler function [58]

Eα(z) =
∞∑

k=0

zk

Γ(1 + αk)
(IV.53)

One recognises that Eα(z) is a generalised exponential, where the Gamma
function Γ(1 + αk) replaces the factorial k! in the series representation of a
normal exponential function. The functions Eα (−tα) may be considered as
generalised stretched exponential functions, where the normal stretched exponen-
tial is defined as exp (−tα) and has been used in the Kohlrausch-Williams-Watt
model for dielectric relaxation [59]. The left part of Fig. IV.8 shows the func-
tions Eα (−tα) and exp (−tα) for α = 1/2 together with a normal exponential
function, exp(−t). Here it has been used that [58]

E1/2

(
−t1/2

)
= exp(t)erfc(t1/2). (IV.54)

The memory function shown in the inset will be discussed later. The gen-
eralised stretched exponential functions decay monotonically to zero with
t→∞, and for large times one can make the approximation

Eα (−λα,nt
α) ≈

λ−1
n,αt−α

Γ(1− α)
(IV.55)

Using the above relations and the rescaled eigenvalues

λα,n := τ̃ 1−αλn (IV.56)

the inverse Laplace transform of (IV.51) can be cast into the form

P (y, t) =
∑

n

Pn(y)Qn(y0)Eα (−λα,nt
α) (IV.57)

Due to (IV.55) the solution of a FFPE has thus by construction an algebraic
long time tail. In the limit α → 1 each generalised stretched exponential
in (IV.57) is replaced by exp(−λnt), and one retrieves the eigenfunction repre-
sentation (II.156) for the solution of a standard FPE. The transition from a FPE
to its fractional counterpart leads thus to the replacement of exp(−λnt) −→
Eα (−λα,ntα) in the eigenfunction expansion of the general solution.

If the Fokker-Planck operator describes a system close to thermal equilib-
rium, it possesses only negative eigenvalues, except for one which is zero and
which is associated to the eigenfunction P0(y) = Peq(y), representing the equi-
librium density. The corresponding left eigenfunction is given by Q0(y) = 1.
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Here Γ(·) is the generalised factorial (“Gamma function”) [17]. In general, a
fractional derivative of order β > 0 is a normal derivative of order n, with
n being the smallest integer number ≥ β, which is preceded by a fractional
integration of order n − β. The scaling factor τ̃ (τ̃ > 0) in (IV.48) must be
introduced to ensure the correct dimension of the right-hand side. As any
normal FPE, the FFPE (IV.48) is to be solved with the initial condition P (y, 0) =
δ(y − y0).

3.2. Solution in terms of Eigenfunctions. The construction of the FFPE
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With P (y, 0) = δ(y − y0) one obtains thus
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s− [sτ̃ ]1−αLFP
δ(y − y0). (IV.50)

We assume now that LFP has a discrete spectrum of eigenvalues. The Dirac
distribution may then be expressed in terms of the biorthogonal set of right
and left eigenfunctions of LFP , as discussed in Section 11 of Chapter 2. One
obtains

P̂ (y, s) =
∑

n

1

s + (sτ̃)1−αλn
Pn(y)Qn(y0). (IV.51)
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which can be easily solved for P̂ (y, t). Using the initial condition P (y, 0) =
δ(y − y0) one obtains thus the following formal solution in the s-plane

P̂ (y, s) =
1

s− LFP
δ(y − y0). (II.148)

We assume now thatLFP has a discrete spectrum of eigenvalues. The Dirac
distribution may then be expressed in terms of the biorthogonal set of right
and left eigenfunctions of LFP , which are defined by the relations [16, 14]

LFP Pn(y) = −λnPn(y), (II.149)
L+

FP Qn(y) = −λnQn(y), (II.150)

respectively, and fulfil (Pn, Qk) = δnk, where δnk is the Kronecker delta.
The scalar product of two functions f and g is here defined as (f, g) =∫ +∞
−∞ dy f(y)g(y). The operator L+

FP is adjoint to LFP , such that (g,LFP f) =
(L+

FP g, f). From the general form (II.147) one finds

L+
FP = a1(y)

∂

∂y
+ a2(y)

1

2

∂2

∂y2
(II.151)

The left and right eigenfunctions are connected through

Pn(y) = Qn(y)Peq(y) (II.152)

Here Peq(y) describes the equilibrium distribution, which is characterised by

LFP Peq(y) = 0. (II.153)

Inserting the identity

δ(y − y0) =
∑

n

Pn(y)Qn(y0). (II.154)

into expression (II.148) yields thus

P̂ (y, s) =
∑

n

1

s + λn
Pn(y)Qn(y0) (II.155)

The solution in time is easily found by inverse Laplace transform,

P (y, t) =
1

2πi

∮

C

ds exp(st)P̂ (y, s),

using the theorem of residues. The contour C includes all poles of P̂ (y, s) and
one obtains from (II.155)

P (y, t) =
∑

n

exp(−λnt)Pn(y)Qn(y0) (II.156)
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where Eα(z) is the Mittag-Leffler function [58]

Eα(z) =
∞∑

k=0

zk

Γ(1 + αk)
(IV.53)

One recognises that Eα(z) is a generalised exponential, where the Gamma
function Γ(1 + αk) replaces the factorial k! in the series representation of a
normal exponential function. The functions Eα (−tα) may be considered as
generalised stretched exponential functions, where the normal stretched exponen-
tial is defined as exp (−tα) and has been used in the Kohlrausch-Williams-Watt
model for dielectric relaxation [59]. The left part of Fig. IV.8 shows the func-
tions Eα (−tα) and exp (−tα) for α = 1/2 together with a normal exponential
function, exp(−t). Here it has been used that [58]

E1/2

(
−t1/2

)
= exp(t)erfc(t1/2). (IV.54)

The memory function shown in the inset will be discussed later. The gen-
eralised stretched exponential functions decay monotonically to zero with
t→∞, and for large times one can make the approximation

Eα (−λα,nt
α) ≈

λ−1
n,αt−α

Γ(1− α)
(IV.55)

Using the above relations and the rescaled eigenvalues

λα,n := τ̃ 1−αλn (IV.56)

the inverse Laplace transform of (IV.51) can be cast into the form

P (y, t) =
∑

n

Pn(y)Qn(y0)Eα (−λα,nt
α) (IV.57)

Due to (IV.55) the solution of a FFPE has thus by construction an algebraic
long time tail. In the limit α → 1 each generalised stretched exponential
in (IV.57) is replaced by exp(−λnt), and one retrieves the eigenfunction repre-
sentation (II.156) for the solution of a standard FPE. The transition from a FPE
to its fractional counterpart leads thus to the replacement of exp(−λnt) −→
Eα (−λα,ntα) in the eigenfunction expansion of the general solution.

If the Fokker-Planck operator describes a system close to thermal equilib-
rium, it possesses only negative eigenvalues, except for one which is zero and
which is associated to the eigenfunction P0(y) = Peq(y), representing the equi-
librium density. The corresponding left eigenfunction is given by Q0(y) = 1.
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sentation (II.156) for the solution of a standard FPE. The transition from a FPE
to its fractional counterpart leads thus to the replacement of exp(−λnt) −→
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The exponential functions,
exp(−λnt), are replaced by
by Mittag-Leffler functions,
Eα(−λα,nt).
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(!{s} > 0). Performing first an integration of both sides of the FFPE from 0 to t yields

P (t, Ω)− P (Ω, 0) = τ̃ 1−α

∫ t

0

dτ
(t− τ)α−1

Γ(α)
LFP P (Ω, τ),

and a subsequent Laplace transform leads to

P̂ (s, Ω)− P (Ω, 0)

s
= τ̃ 1−αs−αLFP P (Ω, τ).

Using that P (Ω, 0) = δ(Ω− Ω0) one obtains thus

P̂ (Ω, s) =
1

s− [sτ̃ ]1−αLFP
δ(Ω− Ω0). (2.4)

We assume now that LFP has a discrete spectrum of eigenvalues. The Dirac distribu-

tion may then be expressed in terms of the biorthogonal set of right and left eigenfunc-

tions of LFP , which are defined by the relations [26, 28]

LFP Pn(Ω) = −λnPn(Ω), (2.5)

L+
FP Qn(Ω) = −λnQn(Ω), (2.6)

respectively, and fulfil (Pn, Qk) = δnk, where δnk is the Kronecker delta. The operator L+
FP

is adjoint to LFP , such that (g,LFP f) = (L+
FP g, f), and one has Pn(Ω) = Qn(Ω)Peq(Ω).

The scalar product of two functions f and g is here defined as (f, g) =
∫ +∞
−∞ dΩ f(Ω)g(Ω).

Inserting the representation

δ(Ω− Ω0) =
∑

n

Pn(Ω)Qn(Ω0). (2.7)

into expression (2.4) yields thus

P̂ (Ω, s) =
∑

n

1

s + (sτ̃)1−αλn
Pn(Ω)Qn(Ω0). (2.8)

One can now make use of the relation

Eα (−tα) =
1

2πi

∮

C

ds
exp(st)

s(1 + s−α)
, (2.9)

where Eα(z) is the Mittag-Leffler function [31]

Eα(z) =
∞∑

k=0

zk

Γ(1 + αk)
. (2.10)

5
Mittag-Leffler function

∝ t−α

When calculating the memory function, following the
approach described in the previous section, the quantity of
interest is actually the Laplace transform of Eq. !14",
which is

Ĉ!s;!1,!2" = ĈE!s;!1,!2" + ĈO!s;!1,!2" . !15"

Since the time dependence in Eq. !14" enters solely through
the factor of exp!−"nt /#m", the functions ĈE!s ;!1 ,!2" and
ĈO!s ;!1 ,!2" differ from CE!t ;!1 ,!2" and CO!t ;!1 ,!2" #Eqs.
!A22" and !A24", respectively$ only in the replacement of
exp!−"nt /#m" by the factor 1 / #s+"n /#m$.

Both C!t ;!1 ,!2" and K!t" are functions not only of !1
and !2, but also of the contour length N and the persistence
length Lp%1/2p. The latter is conveniently expressed in
terms of a dimensionless stiffness parameter z, defined as z
= pN=N /2Lp, which is large !$1" for flexible chains !Rouse
limit" and small !%1" for stiff chains. The evaluation of
C!t ;!1 ,!2" and K!t" for definite values of these parameters
!N, !1, !2, and z" is done numerically, as the eigenvalues "n
must be obtained from a transcendental equation that cannot
be solved in closed form. Details of the evaluation of these
two functions are discussed in Appendix II.

IV. RESULTS AND CONCLUSIONS

Using Eq. !6" to determine the memory kernel from
Ĉ!s ;!1 ,!2", we find, for a fairly wide range of N, z, and !1

and !2 values, that K̂!s" is a power law in s over several
decades, the exponents varying between about 0.25–0.48 in
absolute value. !The highest exponent value, 0.48, and the
one closest to the experimentally determined exponent of
0.49±0.07, was obtained for a chain with the following pa-
rameters: N=5000, z=5000, !1=2500, and !2=−2500."
Chains can apparently be long or short, stiff or flexible, with
small or large separations between !1 and !2, and still pro-
duce power-law memory kernels #within the one-
dimensional !1D" GLE framework$.

Significantly, however, not all choices of N, z, and !1 and
!2 provide satisfactory, simultaneous fits of the calculated
K̂!s" and C!t" curves to the corresponding experimental
curves of Ref. 7. One set of parameter values that does this is
N=500, z=5000, !1=24, and !2=19, with the monomer fric-
tion coefficient #m /kBT chosen to be 3.18s1/2 Å−2 so as to
agree with the value of # /kBT estimated from experiment.7

The corresponding distance correlation function C!t ;!1 ,!2"
#normalized by C!0;!1 ,!2"$ is shown in Fig. 1 !full line",
along with the experimentally determined correlation func-
tion !open circles", and the Mittag-Leffler function of index
1/2 !dashed line". The above parameter values leading to
this curve describe a long flexible polymer in which the
given pair of segments are close together.

For exactly the same set of parameter values, the s de-
pendence of K̂!s", normalized by the first theoretical data
point, is shown in Fig. 2 !full line", along with the experi-
mental data points, normalized by the first experimental data
point !open circles", and their estimated error bounds !dashed
lines". The slope of the theoretical curve is estimated as
−0.43, while the slope of the experimental curve is estimated

as −0.49±0.07.7 Within experimental error, therefore, the
calculated and experimental memory kernel exponents coin-
cide. Interestingly, for the same N and z values, essentially
the same degree of agreement between theory and experi-
ment is obtained even if !1 and !2 are varied, provided their
difference &!1−!2& is about 5.

We also find that changes to the parameter #m /kBT shift
the position of the C!t" and K̂!s" curves, but do not otherwise
change their form. In particular, K̂!s" remains a power law
with the same exponent. Since the experimental distance cor-
relation function is well described by the Mittag-Leffler
function E1/2!−!t / t0"1/2" it decays on a characteristic time

FIG. 1. Distance autocorrelation function C!t" #normalized by C!0"$ as a
function of time t !in seconds". The open circles are the experimental data
!normalized by the first experimental data point" on the fluorescein antifluo-
rescein system taken from Ref. 7. The dashed line corresponds to
the Mittag-Leffler function of index 1/2, and the full line is obtained from
the calculations described in the text. These calculations use the following
parameter values: N=500, z=5000, !1=24, !2=19, and #m /kBT
=3.18s1/2 Å−2.

FIG. 2. Memory kernel K̂!s" as a function of s. The open circles are the
experimental data points !normalized by the first experimental data point" of
Ref. 7. The full line is the theoretical memory kernel !normalized by the first
theoretical data point" calculated from the Laplace transform of the C!t"
curve shown in Fig. 1 using Eq. !6". The dashed lines correspond to the
estimated experimental error bounds.
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Model spectra (!=0.5)

It should be noted that SFBD(!) is singular at !!0 for
0"""1. This property reflects the fact that there is no upper
limit for the relaxation time scales in the FBD model #see
Eq. $3%&. This aspect is illustrated in Fig. 2 which shows the
Fourier transforms of the model functions depicted in Fig. 1.

The Fourier transform of the stretched exponential is com-

puted in the same way as SFBD(!), using that the Laplace
transform of 'SE(t) has a closed form for "!1/2,

'̂SE$s %!
1

s
#
1

2s
!(

s)
exp! 1

4s) " erfc! 1

2!s) " . $12%

C. Memory function

As already mentioned in the Introduction, a rigorous the-

oretical approach to describe the time evolution of time cor-

relation functions has been developed by R. Zwanzig.12,13 If

a(t) is the dynamical variable under consideration, the time

evolution of its autocorrelation function

'$ t %!*a$0 %a$ t %+ $13%

is described by the integrodifferential equation

d

dt
'$ t %!##

0

t

d),$ t#)%'$)%. $14%

As usual, the brackets denote an ensemble average. The ker-

nel ,(t) is the memory function associated with '(t), which
is itself a correlation function and can be expressed in terms

of phase space variables. One writes

,$ t %!*ȧ exp# i$1#P%Lt& ȧ+/*a2+. $15%

Here L is the Liouville operator of the system and P is a

projector whose action on an arbitrary function in phase

space f is defined through Pf!a*a f +/*a2+. For details we
refer to the monograph by Boon and Yip.13 Here it matters

only that Eq. $14% is a priori exact, and that different models
for '(t) can be introduced at the level of the memory func-
tion. In the simplest case one considers a memoryless pro-

cess where ,(t)!(1/))-(t). In this case Eq. $14% becomes a
simple differential equation with '(t)!'(0)exp(#t/)) as
solution. One can now ask which memory function corre-

sponds to the correlation function given by Eq. $2%. For this
purpose we compare expression $9% to the Laplace transform
of the memory function equation $14%, which reads

'̂$s %!
'$0 %

s$ ,̂$s %
. $16%

It follows that the Laplace transformed memory function for

the fractional Brownian dynamics model is given by

,̂$s %!s$s)%#", 0"".1. $17%

We note that 'FBD(0)!1 according to the definition of

'FBD(t) by Eqs. $1% and $2%. When performing Laplace trans-
forms, it is important to distinguish between left-hand and

right-hand derivatives. The reason is that f (t)/0 for t"0 is
implicitly assumed whenever the Laplace transform of f (t)

is calculated. The time derivative in Eq. $14% is, for example,
formally a right-hand derivative. For any function with f (t)

/0 for t"0 one obtains the correspondence

d$ f

dt
/ lim

h→0$

f $ t$h %# f $ t %

h
↔s f̂ $s %# f $0 %, $18%

between the right-hand derivative and its Laplace transform,

whereas

d# f

dt
/ lim

h→0$

f $ t %# f $ t#h %

h
↔s f̂ $s % $19%

for the left-hand derivative of f (t). Using relation $19% we go
back to Eq. $17% and write ,FBD(t)!d# f /dt for t%0, where
f̂ (s)!(s))#". From the definition of the Gamma function18

one finds that t"#1/0(")↔s#". Consequently f (t)

!t"#1/(0("))") and

,FBD$ t %!
"#1

0$"%)2
! t) " "#2

, t%1 , 0"""1 $20%

for any 1%0. To define ,(t) on the whole positive time axis
we set

,FBD$ t %!C#2t for 0.t.1 . $21%

The constants C and 2 are determined by the conditions that
,(t) be continuous in t!1 and that

#
0

3

dt,FBD$ t %!0. $22%

The latter relation follows from Eq. $17% by setting s!0 and
using that ,̂(0)!40

3dt,(t). One obtains C!(1/))"(3
#")/#120(")& and 2!2(1/))"(2#")/#130(")& . The

form of ,(t) for t!#0,1& is not relevant in the limit 1→0,

where ,FBD(t) becomes a distribution. In this context we
refer to the well-known Dirac distribution which can be vi-

sualized by various normalized functions in the limit of van-

ishing width, such as a rectangular pulse, a Gaussian, a

Lorentzian, etc. The form $21% is the simplest possible ansatz
which ensures the continuity of the memory function at t

!1 and verifies ,FBD(0)%0 for any 1%0. The latter condi-
tion follows from relation $15% by setting t!0. An example
for ,FBD(t) is given in the inset of Fig. 1. Here "!1/2, as in
the corresponding correlation function in the same figure.

FIG. 2. The figure shows the Fourier spectra corresponding to the time

correlation functions presented in Fig. 1.
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fBD

exponential

stretched exponential

absence of characteristic

time/frequency scales

! “fractal bahaviour”

ψ̃(ω) ∝ ω−(1+α) si ωτ " 1

Lorentzian

The latter reads here

PeqðxÞ ¼
ffiffiffiffiffiffiffiffiffi
Z

2pD

r
exp $ Zx2

2D

" #
: ð3:25Þ

Since the equilibrium density must be proportional to the
Boltzmann factor, Peq(x) p exp($bV(x)), it follows from
eqn. (3.25) that

D

Z
¼ kBT

K
: ð3:26Þ

Here b ¼ 1/kBT is the inverse temperature divided by the
Boltzmann constant kB and K is the force constant of the
quadratic potential in eqn. (3.21). Defining the scaled positions

x0 ¼ xffiffiffiffiffiffiffiffiffi
hx2i

p ð3:27Þ

where hx2i is the mean square position fluctuation

hx2i ¼ kBT

K
ð3:28Þ

and the scaled relaxation constant

Za ¼ ~t1$aZ, (3.29)

one obtains from eqn. (2.12)20,23

Pðx0; tÞ ¼
exp $x02=2

$ %
ffiffiffiffiffiffi
2p

p
X1

n¼0

1

2nn!
Hn

x0
ffiffiffi
2

p
" #

Hn
x0
0ffiffiffi
2

p
" #

Eað$nZat
aÞ:

ð3:30Þ

Here Ea( % ) is the Mittag–Leffler function defined in eqn. (2.10).

B. The autocorrelation function and its memory function

The autocorrelation function of the scaled variable x0 is
obtained from the general expression (2.16), using that here
O - x0 and

R
dx0 x0Pn(x

0) ¼ dn,1. Defining the normalized
autocorrelation function c(t) & cx0x0(t), one obtains

c(t) ¼ Ea($Zata). (3.31)

In the limit a - 1 the exponentially decaying correlation
function of the standard Ornstein–Uhlenbeck process is re-
trieved. Fig. 2 shows c as given by eqn. (3.31) for a ¼ 1/2 (solid
line), its limit for a - 1 (dashed line), and for comparison also
the ‘‘normal’’ stretched exponential exp($[t/t]a) with a ¼ 1/2.
The latter is also known as Kohlrausch–Williams–Watt
(KWW) function and has been used extensively to model
dielectric relaxation processes.34 For identical parameters t
and a it decays more rapidly with time than the correlation
function, eqn. (3.31), but still much slower than an exponential

function. The inset shows the memory function of c(t) which is
discussed below. It is worthwhile noting that the correlation
function of the fractional Ornstein–Uhlenbeck process has the
analytical form c(t) ¼ exp([t/t])erfc([t/t]1/2) if a ¼ 1/2.31

The Fourier spectrum of c(t) is a single generalised Lor-
entzian,

~cðoÞ ¼ 2ta sinðap=2Þ
otaj j otaj jaþ2 cosðap=2Þ þ otaj j$að Þ

; 0oa ( 1;

ð3:32Þ

where ta is given by

ta ¼ Za$1/a (3.33)

Fig. 3 shows the Fourier transforms of the correlation func-
tions depicted in Fig. 2. The spectrum corresponding to a
fractional Ornstein–Uhlenbeck process is almost featureless. It
reflects that the latter has no characteristic time scale and is
self-similar in the sense of a fractal on the frequency axis: any
zoom on the spectrum yields a similar pattern. The KWW
model does in general not lead to an analytical form for the
Fourier transform of the associated time correlation function.
An exception is the case a ¼ 1/2, which is depicted in Fig. 3.
For practical applications the Fourier transform of the KWW
model may be approximated by algebraic functions.35

The non-exponential decay of c(t) can be quantified by using
the concept of memory functions, which have been introduced
by Zwanzig.36 In the full Hamiltonian description of a many
body system the autocorrelation function c(t) of any phase
space variable fulfils a Volterra-type equation of the form

d

dt
cðtÞ ¼ $

Z t

0
dt xðt$ tÞcðtÞ; ð3:34Þ

where the kernel x( % ) is the memory function associated with
c(t). The latter can be formally expressed in terms of all phase
space variables. One sees easily that an exponential decay of
c(t) can be produced by a memoryless process where x(t) ¼
(1/t)d(t). In this case eqn. (3.34) becomes a simple differential
equation, with c(t) ¼ exp($t/t) as solution. A comprehensive
introduction into the theory of memory functions can be found
in the monograph by Boon and Yip.37 Here it matters only that
relation (3.34) is exact and that any physical model for a
correlation function is thus essentially a model for the memory
function. In this context it is important to note that the
commonly used Kohlrausch-Williams-Watt model, in which
the correlation function is described as stretched exponential,
c(t) ¼ exp($[t/t]a) (0 o a r 1), has no associated memory
function. From a statistical mechanics point of view it does
thus not belong to the class of ‘‘admissible’’ models.32
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Fig. 2 Model correlation function for the fractional OU process with
a ¼ 1/2 (solid line), the exponential exp($[t/t]) (dashed line), and the
stretched exponential exp($[t/t]a) for a ¼ 1/2 (dashed–dotted line).

Fig. 3 The Fourier spectra corresponding to the model correlation
functions depicted in Fig. 2.
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is given Eq. (IV.67). Using expression (IV.69) the corresponding Laplace trans-
form can be written in the form

ψ̂(s) =
1

s(1 + [sτα]−α)
. (IV.70)

It follows thus from the general form of the Laplace transformed autocorre-
lation function (I.102) that the Laplace transformed memory function is given
by

κ̂(s) = s(sτα)−α, 0 < α ≤ 1 (IV.71)

In order to obtain the memory function by inverse Laplace transform of
(IV.71) we use the correspondence

d−f

dt
= lim

h→0+

f(t)− f(t− h)

h
L←→ sf̂(s) (IV.72)

between the left-hand derivative of a function and it Laplace transform. Com-
parison with the corresponding relation for the right-hand derivative, which
is given in Eq. (I.101), shows that here the initial value f(0) does not appear.
Applying the above rule to (IV.71) shows that the memory function is given by
the time left-hand time derivative of a function g(t) whose Laplace transform
has the form ĝ(s) = (sτα)−α. From the correspondence tα−1/Γ(α) ←→ s−α it
follows that g(t) = 1/τα(t/τα)α−1/Γ(α). For 0 < α < 1 this function is singular
for t → 0+, and only a left-hand derivative can be computed. The result for
the memory function is thus

κ(t) =
α− 1

τ 2
αΓ(α)

(
t

τα

)α−2

, t > 0, 0 < α < 1 (IV.73)

The condition t > 0 is important, since κ(t) as given above has been obtained
by a left-hand derivatives of a function which is defined only for t > 0. On
the other hand we see from (IV.71) that κ̂(0) = 0 if 0 < α < 1. It follows thus
from (IV.71) and the definition of the Laplace transform that

∫ ∞

0

dtκ(t) = 0 (IV.74)

Since both Eq. (IV.73) and Eq. (IV.74) must be fulfilled, the resulting memory
function is a distribution in the sense of functional analysis, i.e. a mathemat-
ical object similar to the Dirac distribution. To understand this point better
consider the insert of Fig. IV.8, which shows the memory function (IV.73) for
α = 1/2 on a coarse-grained time scale with a resolution of δt = 0.1. In this
case κ(t) is a normal function. In order to satisfy condition (IV.74), κ(t) is rep-
resented by a linear function of the form κ(t) = C − λt for 0 ≤ t ≤ δt. The
constants C and λ can be fixed by imposing (IV.74) and continuity at t = δt.
The form of κ(t) for t ∈ [0, δt] is not important below the resolution threshold
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has the form ĝ(s) = (sτα)−α. From the correspondence tα−1/Γ(α) ←→ s−α it
follows that g(t) = 1/τα(t/τα)α−1/Γ(α). For 0 < α < 1 this function is singular
for t → 0+, and only a left-hand derivative can be computed. The result for
the memory function is thus

κ(t) =
α− 1

τ 2
αΓ(α)

(
t

τα

)α−2

, t > 0, 0 < α < 1 (IV.73)

The condition t > 0 is important, since κ(t) as given above has been obtained
by a left-hand derivatives of a function which is defined only for t > 0. On
the other hand we see from (IV.71) that κ̂(0) = 0 if 0 < α < 1. It follows thus
from (IV.71) and the definition of the Laplace transform that

∫ ∞

0

dtκ(t) = 0 (IV.74)

Since both Eq. (IV.73) and Eq. (IV.74) must be fulfilled, the resulting memory
function is a distribution in the sense of functional analysis, i.e. a mathemat-
ical object similar to the Dirac distribution. To understand this point better
consider the insert of Fig. IV.8, which shows the memory function (IV.73) for
α = 1/2 on a coarse-grained time scale with a resolution of δt = 0.1. In this
case κ(t) is a normal function. In order to satisfy condition (IV.74), κ(t) is rep-
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constants C and λ can be fixed by imposing (IV.74) and continuity at t = δt.
The form of κ(t) for t ∈ [0, δt] is not important below the resolution threshold

G.R. Kneller & K. Hinsen. J. Chem. Phys., 121(20):10278–10283, 2004.
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FIGURE IV.8. Left: The function Eα(−[t/τ ]α) for α = 1/2 (solid
line), the stretched exponential exp(−[t/τ ]α) for α = 1/2 (dashed-
dotted line), and the normal expoential exp(−[t/τ ]). The inset
shows the memory function associated with Eα(−[t/τ ]α). Right:
Fourier spectra associated with the correlation function shown
in the left part.

Ordering the eigenvalues λn such that λ0 < λ1 < λ2 . . ., where λ0 = 0, it fol-
lows from the proportionality relation (IV.56) that also λα,0 < λα,1 < λα,2 . . .,
and in particular λα,0 = λ0 = 0. This shows that the equilibrium solution of a
FFPE is the same as the one of the corresponding standard FPE,

Peq(y) = lim
t→∞

P (y, t) = P0(y) (IV.58)

3.3. Correlation function and its Fourier spectrum. From the general
form (IV.57) of the solution of a FFPE one can derive a formula for the cor-
relation function

cyy(t) =

∫ ∫
dy0dy yy0P (y, t|y0, 0)Peq(y0)

=
∞∑

n=1

(∫
dy yPn(y)

)2

Eα (−λα,nt
α) . (IV.59)

which is the generalisation of (II.159) for normal FPEs.
From the Laplace transformed form of Eα (−λα,ntα) the Fourier transform

of the autocorrelation function can be straightforwardly derived, noting that
f̃(ω) = 2"{f̂(iω)} for even functions f(t) = f(−t). One obtains [47]

c̃yy(ω) =
∞∑

n=1

(∫
dy yPn(y)

)2

Lα(ω; τα,n), (IV.60)

power law

ε→0

κ
(t

/τ
)κ(t) =

α− 1
τ2
αΓ(α)

(
t

τα

)α−2

(t > 0)



which are nothing but the eigenvalues λν of the drift matrix η defined in Eq. (4.82). They

describe the relaxation of the position correlation matrix

c(t) = 〈x(0) · xT (t)〉 (4.104)

from which the dynamic form factors f ′ij(q, t) (4.96) are formally computed via f ′ij(q, t) =

exp(Q(i) T · c(t) · Q(j)). It should be noted that the histogram exhibits a strong increase

for small inverse relaxation times, indicating that no maximum relaxation time can be

observed within the simulation time span.

5. Relaxation spectra

To establish a relation between the relaxation spectrum for coupled Brownian oscil-

lators presented in Fig. 20 and the corresponding quantity for the fractional Ornstein-

Uhlenbeck process, we write the (normalised) correlation function associated with the

latter in the form

ψ(t) =

∫ ∞

0

dλ p(λ) exp(−λt). (4.105)

Here p(λ) ≥ 0 and it follows from ψ(0) = 1 that p(λ) is normalised,
∫ ∞

0

dλ p(λ) = 1. (4.106)

Using the definition of the Laplace transform, one finds that

ψ̂(s) =

∫ ∞

0

dλ
p(λ)

s + λ
. (4.107)

Formally, the relation between ψ̂(s) and p(λ) is a Stieltjes transform, which may be in-

verted to give [61]

p(λ) = lim
ε→0+

1

π
%

{
ψ̂(−[λ + iε])

}
. (4.108)

In case of exponential decay, where ψ(t) = exp(−[t/τ ]), one has ψ̂(s) = 1/(s + τ−1) and

p(λ) = δ(λ − τ−1) contributes a single inverse relaxation time, λ = τ−1. In case of the

fractional OU process one has instead

ψ̂(s) =
1

s(1 + [sτ ]−α)
, 0 < α ≤ 1, (4.109)

and the relaxation spectrum is found to be

p(λ) =
τ

π

(τλ)α−1 sin(πα)

(τλ)2α + 2(τλ)α cos(πα) + 1
, 0 < α < 1. (4.110)
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which are nothing but the eigenvalues ln of the drift matrix g
defined in eqn. (4.82). They describe the relaxation of the
position correlation matrix

c(t) ¼ hx(0) " xT(t)i (4.104)

from which the dynamic form factors f
0

ij(q,t), eqn. (4.96), are

formally computed via f
0

ij(q,t) ¼ exp(Q(i)T " c(t) "Q(j)). It should
be noted that the histogram exhibits a strong increase for small
inverse relaxation times, indicating that no maximum relaxa-
tion time can be observed within the simulation time span.

5. Relaxation spectra. To establish a relation between the
relaxation spectrum for coupled Brownian oscillators pre-
sented in Fig. 20 and the corresponding quantity for the
fractional Ornstein–Uhlenbeck process, we write the (normal-
ised) correlation function associated with the latter in the form

c(t) ¼
RN
0 dl p(l)exp(#lt). (4.105)

Here p(l) Z 0 and it follows from c(0) ¼ 1 that p(l) is
normalised,

RN
0 ¼ dl p(l) ¼ 1. (4.106)

Using the definition of the Laplace transform, one finds that

ĉðsÞ ¼
Z 1

0
dl

pðlÞ
sþ l

: ð4:107Þ

Formally, the relation between ĉ(s) and p(l) is a Stieltjes
transform, which may be inverted to give61

pðlÞ ¼ lim
e!0þ

1

p
=fĉð#½lþ ie(Þg: ð4:108Þ

In case of exponential decay, where c(t) ¼ exp(#[t/t]), one has
ĉ(s) ¼ 1/(s þ t#1) and p(l) ¼ d(l # t#1) contributes a single
inverse relaxation time, l ¼ t#1. In the case of the fractional
OU process one has instead

ĉðsÞ ¼ 1

sð1þ ½st(#aÞ
; 0oa ) 1; ð4:109Þ

and the relaxation spectrum is found to be

pðlÞ ¼ t
p

ðtlÞa#1 sinðpaÞ
ðtlÞ2a þ 2ðtlÞa cosðpaÞ þ 1

; 0oao1 ð4:110Þ:

The calculation is very similar to the one which leads to the
Fourier spectrum presented in (2.18). Expression (4.110) coin-
cides with the result found by Glöckle and Nonnenmacher in
ref. 19, but the calculation is simpler. The dashed line in Fig. 20
shows a fit of the function (4.110) to the histogram of inverse
relaxation times which has been obtained from the Brownian
mode model. The fit shows a qualitative agreement for t ¼ 2.98
ps and a ¼ 0.76, indicating a relaxation behaviour closer to
exponential relaxation than the mean square displacement
shown in Fig. 13 (t ¼ 33.5, a ¼ 0.49). Here it must be kept
in mind that the Brownian mode model describes protein
motion on the residue level, whereas the mean square displace-
ment in Fig. 13 contains also contributions from relaxation of
very fast motions, such as side-chain rotations and vibrations.
Therefore, the relaxation spectra should only be compared for
small relaxation rates. The essential point is their overall
agreement in this region.

V. Conclusion

In this article it has been shown that new insights into
quasielastic neutron scattering can be obtained by developing
what one could call simulation-based models, where computer
simulations are used as an essential input. Two approaches
have been presented to describe non-exponential relaxation in
a complex system like a protein: fractional Brownian dynamics

of a single particle, and ‘‘normal’’ Brownian dynamics of many
coupled particles. In both cases only modest momentum
transfers can be considered since both models describe a
protein on a coarse-grained scale. Localised motions, such as
rapid side-chain rotations, cannot be described within these
models. Roughly speaking, the concept of fractional Brownian
dynamics leads to the introduction of generalized Lorentzians,
which describe empirically to the very broad QENS spectra
obtained from internal protein dynamics. The example of the
fractional OU process has shown that the QENS spectra can be
quite well reproduced with essentially one additional para-
meter compared to the fit of a Lorentzian. In contrast to the
Kohlrausch-Williams-Watt model, where correlation functions
are empirically described by stretched exponentials, the frac-
tional OU process leads to a correlation function whose Four-
ier transform has a quite simple analytical form and possesses
moreover a well-defined memory function.32 The latter model
has thus advantages from a practical and a theoretical point of
view, although it must be clearly stated that its is still empirical
at this stage. The study of the average mean square displace-
ment of the atoms in Lysozyme has shown that FBD models
may be used to extrapolate the dynamics in a certain way to
very long time scales, or equivalently to low frequencies. In this
respect FBD models describe what is called in mode coupling
theory the ‘‘a-regime’’ of the dynamic structure factor, describ-
ing the slow relaxation processes.62 It will be interesting to
exploit the extrapolation properties of FBD models in combi-
nation with computer simulations to gain more insight into the
influence of temperature and pressure onto the slow relaxation
processes in proteins, in particular to establish a signature of
protein function in these processes. A more practical question
which can be addressed in this context is how elastic and
quasielastic neutron scattering experiments on systems with a
vast spectrum of time scales must be interpreted in view of the
fact that these techniques work with a relatively small time
window.63

Clearly, some effort has to be made now to develop a
physical picture of fractional Brownian dynamics and also to
make a closer contact with mode coupling theory. Here
computer simulation will certainly be crucial. The model of
coupled Langevin oscillators gives a hint that FBD in proteins
may be formally obtained by coupling a very large number of
viscoelastic elements. Such models can indeed explain ‘‘frac-
tional’’ responses of end-to-end distances in polymers due to
external forces.64 It must be clearly stated that fractional BD,
with absolutely no characteristic time scale, is probably an
idealized mathematical model of a physical system which has a
very broad, but limited distribution of relaxation times. This
point can be illustrated by the simulation study of lysozyme,
which revealed a signature of fractional BD in the collective
dynamics of this protein. Here the underlying time series of the
Fourier transformed particle density has been modelled with a
large but necessarily finite number of up to 1000 coefficients,
corresponding to 1000 relaxation times. An important aspect
of the computer experiment is that not only the Fourier
spectrum of intermediate scattering function can be fitted by
the FBD model, but also the memory function. Such a coin-
cidence is far from being trivial. A certainly very optimistic
interpretation of such computer experiments is that protein
dynamics around the native state, which does not exhibit rare
transitions from one global minimum to another, is essentially
already developed on the nanosecond time scale, although the
total relaxation may take much longer.

Appendix A: S(q,x) for the Ornstein–Uhlenbeck
process

To derive the dynamic structure factor belonging to the inter-
mediate scattering function (3.44), one uses that the latter is of
the form f(t) ¼ exp(#a)g(t), where
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Relaxation rate spectrum

∫ 1/τ

0
dλ p(λ) = 1/2

[1] G.R. Kneller. PCCP, 7:2641 – 2655, 2005.

[2] V. Calandrini, D. Abergel, and G.R. 
Kneller. J .Chem. Phys., 128(14):
145102, 2008.
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“Scaling” of the memory function

κ̂(λs) = λ1−ακ̂(s)

ψλ(t) =
1

2πi

∮

C
ds

exp(st)
s + λκ̂(s)

,

s→s/λ
=

1
2πi

∮

C′
ds

exp(sλt)
s + κ̂(λs)

.=
1

2πi

∮

C′
ds

exp(sλt)
s + λ1−ακ̂(s)

.

ψλ(t) =
1

2πi

∮

C′
ds

exp
(
stλ

Pn−1
j=0 (1−α)j

)

s + κ̂(sλ(1−α)n−1)
n→∞−→ = ψ(λ1/αt)

Fractional Brownian dynamics :

For n iterations :

ψ(t) does not change its form !
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FIGURE IV.1. Left: A tri-peptide (tri-alanine) in the extended
conformation. The yellow triangles indicate the planar peptide
bond structure. Right: The right-handed α-helix as typical sec-
ondary structure motive.

FIGURE IV.2. Left: Ball-and-stick representation of lysozyme.
Right: Corresponding cartoon representation showing the sec-
ondary structure elements.

Since the 1970’s the molecular dynamics simulation technique is also used
for protein simulations. In the beginning, the solvent was replaced by an effec-
tive medium in order to reduce the computational effort, but today the simu-
lation of a protein molecule in an effective solvent of several hydration layers
is standard. From a methodological point of view the MD simulation of a
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δt, and if we let δt → 0 the memory function κ(t) becomes a distribution. This
is familiar from the Dirac δ-distribution, which can be represented by Gauss-
ian, a rectangular window, etc., in the limit where the width of these functions
go to zero at constant integral. One writes δ(t) = limε → 0δε(t), where ε is the
width parameter in the various representations δε(t) for δ(t) at finite resolution
ε, and independently of ε one has

∫ +∞
−∞ dt δε(t) = 1.

The case α = 1 must be considered separately. It follows from (IV.71) for
α = 1 that κ̂(s) = τ−1, where it has been used that τα = τ , according to (IV.69).
Here Eq. (IV.74) is not valid and we have

∫∞
0 dtκ(t) = 1/τ , with κ(t) = τ−1δ(t).

4.4. Mean square displacement. With (IV.67) we find that the autocor-
relation function of the displacement vector u = R − R(eq) has the form
cuu(t) = 〈u2〉Eα (−ηαtα), and with the definition of τα according to (IV.69)

cuu(t) = 〈u2〉Eα (−[t/τα]α) (IV.75)

More interesting for the study of diffusion processes is the mean square dis-
placement, which can be written in the form W (t) = 2〈u2〉(1− ψ(t)) in case of
confined motions in space. From (IV.67) we find

W (t) = 2〈u2〉
(
1− Eα (−[t/τα]α)

)
(IV.76)

Fig. IV.10 shows the neutron-weighted average mean-square displacement for
the atoms in lysozyme as compared to a fit of a model function obtained from
a fractional OU process with α = 0.49 and τ = 33.5 ps. The plateau value
has been obtained from a separate calculation of the atomic fluctuations from
the same MD trajectory, yielding an average of 〈u2〉 = 0.019 nm2. The calcula-
tion of position fluctuations is less demanding from a statistics point of view
since the MSD is time-dependent quantity and low frequency motions must
be resolved with accuracy, according to expression (IV.5). An MD simulation
is, however, never long enough to see all motions in a protein. This dilemma
becomes visible in Fig. IV.10. The MSD is only reliable for a time span if about
10 % of the MD trajectory length and the fBD model appears to be a reasonable
extrapolation method for long times. This is the advantage of a model without
a typical time scale. If the model is valid, it is valid for any time scale.

4.5. Dynamic structure factor and EISF. We have seen that the OU pro-
cess belongs to Gaussian models, for which the intermediate self-correlation
function can be expressed in terms of the MSD. The same is unfortunately not
true for its fractional counterpart, but an expression in terms of series can be

been devoted to investigate relatively fast, ‘‘liquid-like’’ and
vibrational motions, as well as the coupling between solvent
and protein dynamics. In the following it will be shown that
MD simulations can also reveal the presence of very slow
relaxation modes, which are a priori too slow to be fully seen
on the MD/QENS time scale.

B. Anomalous diffusion

One of the very first analyses of a MD simulation is the
calculation of the average mean-square displacement of all or
a part of the atoms in the simulated system,

WðtÞ ¼ 1

N

XN

j¼1

wjh½RjðtÞ % Rjð0Þ&2i: ð4:52Þ

Here N is the number of atoms under consideration, and wj are
appropriate weights, with

PN
j¼1wj ¼ N. Fig. 13 shows the

simulated average mean-square displacement of a lysozyme
protein in solution at ambient temperature and pressure. The
protein is depicted in Fig. 12. The simulation has been per-
formed for one lysozyme protein in a solution of 3403 water
molecules in a rectangular box of 6.16 ' 4.19 ' 4.61 nm3 at
ambient temperature and pressure, using the Amber94 poten-
tial which includes an adapted TIP3P water model.51 More
details can be found in ref. 52 and will be published elsewhere.
The weights in (4.52) have been chosen proportional to the
squared incoherent scattering lengths of the 1960 explicit
lysozyme atoms, wj p bj,inc

2 . This weighting scheme corre-
sponds in practise to considering only the hydrogen atoms,
since the bound incoherent scattering cross section, sH,inc ¼
4pbH,inc

2 , is much larger than all other scattering cross sec-
tions.38,39 It is important to note that global translations and

rotations of the lysozyme molecule have been subtracted prior
to analysis. In this way only internal protein motions are left.
The subtraction of global motions has been achieved by
performing for each time frame of the original MD trajectory
a rigid-body fit of the lysozyme structure onto the initial
structure in the trajectory.53

The solid line in Fig. 13 shows the neutron-weighted average
mean-square displacement of the atoms in lysozyme together
with a fit of the FBD model (3.38). Assuming isotropic diffu-
sion, the mean square fluctuation hx2i is here to be replaced by
hu2i, where hu2i ¼ hx2i þ hy2i þ hz2i is the position fluctuation
in Cartesian coordinates. One writes thus,

W(t) ¼ 2hu2i (1 % Ea(%[t/t]a)). (4.53)

where t corresponds to the relaxation time scale ta,1 defined in
eqn. (3.47). The fit has been performed for the parameters t
and a only, providing hu2i ¼ 0.019 nm2 from a separate
calculation from the MD trajectory. The resulting parameters
are t ¼ 33.5 ps and a ¼ 0.49. These values are remarkebly
similar to those found in Table 1 and which correspond to the
fit of the QENS data for myoglobin shown in Fig. 8. The
inconsistent behaviour of the simulated mean-square displace-
ment with respect to the plateau value W(N) ¼ 2(u2) (hori-
zontal dotted line) is typical for MD simulations and indicates
that the simulation is not long enough to establish the con-
vergence of W(t) to the plateau value predicted by the same
simulation. It must be emphasised that the latter is a purely

1

5

10

15

20

25

30

35

40

45

50

55

60

65

70

1

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Fig. 9 Left: protein backbone of myoglobin. Right: 31 selected side
chains.

Fig. 10 EISF of myoglobin from simulation40 at T ¼ 300 K (solid line
and dashed line) and experiment3 (squares¼ 277 K, triangles¼ 320 K).
The solid line shows the result obtained from straightforward analysis
of the MD trajectory and the dashed line has been obtained by filtering
out internal motions of the protein side-chains.

Fig. 11 Results for the quasielastic spectrum corresponding to
Fig. 10, where the experimental data are given for 300 K. In contrast
to the simulated spectrum, the experimental spectrum has been mod-
ified by subtracting a vibrational background.3

Fig. 12 A lysozyme molecule represented by its covalent bond
structure (left) and a cartoon showing the secondary structure elements
(right).
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been devoted to investigate relatively fast, ‘‘liquid-like’’ and
vibrational motions, as well as the coupling between solvent
and protein dynamics. In the following it will be shown that
MD simulations can also reveal the presence of very slow
relaxation modes, which are a priori too slow to be fully seen
on the MD/QENS time scale.

B. Anomalous diffusion

One of the very first analyses of a MD simulation is the
calculation of the average mean-square displacement of all or
a part of the atoms in the simulated system,

WðtÞ ¼ 1

N

XN

j¼1

wjh½RjðtÞ % Rjð0Þ&2i: ð4:52Þ

Here N is the number of atoms under consideration, and wj are
appropriate weights, with

PN
j¼1wj ¼ N. Fig. 13 shows the

simulated average mean-square displacement of a lysozyme
protein in solution at ambient temperature and pressure. The
protein is depicted in Fig. 12. The simulation has been per-
formed for one lysozyme protein in a solution of 3403 water
molecules in a rectangular box of 6.16 ' 4.19 ' 4.61 nm3 at
ambient temperature and pressure, using the Amber94 poten-
tial which includes an adapted TIP3P water model.51 More
details can be found in ref. 52 and will be published elsewhere.
The weights in (4.52) have been chosen proportional to the
squared incoherent scattering lengths of the 1960 explicit
lysozyme atoms, wj p bj,inc

2 . This weighting scheme corre-
sponds in practise to considering only the hydrogen atoms,
since the bound incoherent scattering cross section, sH,inc ¼
4pbH,inc

2 , is much larger than all other scattering cross sec-
tions.38,39 It is important to note that global translations and

rotations of the lysozyme molecule have been subtracted prior
to analysis. In this way only internal protein motions are left.
The subtraction of global motions has been achieved by
performing for each time frame of the original MD trajectory
a rigid-body fit of the lysozyme structure onto the initial
structure in the trajectory.53

The solid line in Fig. 13 shows the neutron-weighted average
mean-square displacement of the atoms in lysozyme together
with a fit of the FBD model (3.38). Assuming isotropic diffu-
sion, the mean square fluctuation hx2i is here to be replaced by
hu2i, where hu2i ¼ hx2i þ hy2i þ hz2i is the position fluctuation
in Cartesian coordinates. One writes thus,

W(t) ¼ 2hu2i (1 % Ea(%[t/t]a)). (4.53)

where t corresponds to the relaxation time scale ta,1 defined in
eqn. (3.47). The fit has been performed for the parameters t
and a only, providing hu2i ¼ 0.019 nm2 from a separate
calculation from the MD trajectory. The resulting parameters
are t ¼ 33.5 ps and a ¼ 0.49. These values are remarkebly
similar to those found in Table 1 and which correspond to the
fit of the QENS data for myoglobin shown in Fig. 8. The
inconsistent behaviour of the simulated mean-square displace-
ment with respect to the plateau value W(N) ¼ 2(u2) (hori-
zontal dotted line) is typical for MD simulations and indicates
that the simulation is not long enough to establish the con-
vergence of W(t) to the plateau value predicted by the same
simulation. It must be emphasised that the latter is a purely
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Fig. 9 Left: protein backbone of myoglobin. Right: 31 selected side
chains.

Fig. 10 EISF of myoglobin from simulation40 at T ¼ 300 K (solid line
and dashed line) and experiment3 (squares¼ 277 K, triangles¼ 320 K).
The solid line shows the result obtained from straightforward analysis
of the MD trajectory and the dashed line has been obtained by filtering
out internal motions of the protein side-chains.

Fig. 11 Results for the quasielastic spectrum corresponding to
Fig. 10, where the experimental data are given for 300 K. In contrast
to the simulated spectrum, the experimental spectrum has been mod-
ified by subtracting a vibrational background.3

Fig. 12 A lysozyme molecule represented by its covalent bond
structure (left) and a cartoon showing the secondary structure elements
(right).
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• Correlation function

• Memory function from AR model [1]

It is important to note that there is no continuous transi-

tion from !FBD(t) to the memory function for normal Brown-
ian dynamics. Equation "17# shows that !̂FBD(s)$s

1!%, such

that !̂FBD(0)"0 for any % with 0#%#1. In contrast,

!̂FBD(s)"1/& for %"1, such that !̂FBD(0)"1/& . In the latter
case

!BD" t #"&!1'" t #. "23#

This is exactly the definition of the memory function for

classical Brownian motion.

III. SIMULATION STUDY OF LYSOZYME

A. Dynamical variable

In order to study the collective internal dynamics of a

lysozyme protein in solution we use the fluctuation of the

Fourier transformed particle density as dynamical variable,

'("q,t #"("q,t #!)("q,t #*

with ("q,t #"+
j"1

N

wi exp, iq"Rj" t #- . "24#

Here Rj is the position of atom j and wj is a weighting factor

which is chosen to be proportional to the coherent neutron

scattering length of atom j.19 The choice of wj allows to

compare later with experimental data. The autocorrelation

function of '((q,t) is the intermediate scattering function

."q,t #")'("q,t #'("!q,0#* , "25#

and the associated memory function is defined through
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B. Numerical approach

In order to compute the memory function associated

with .(q,t) we use the method described in Ref. 14, which
we summarize here only briefly.

1. Discretized memory function equation

We start from the discretized version of the memory

function equation "26# which reads
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Applying a unilateral z transform, which is defined by
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for an arbitrary discrete function f (n)1 f (n/t), the differ-
ence equation "27# can be solved for 2%(z):
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The above considerations show that the one-sided

z-transform plays the same role for discrete signals as the

Laplace transform for continuous signals.

2. Autoregressive model

For Eq. "29# to be useful one needs the z-transformed
autocorrelation function 3%(q,z). As described in Ref. 14,

this can be accomplished by using an autoregressive "AR#
model for the underlying dynamical variable,

'("q,t #" +
k"1

P

ak"q#'("q,t!k/t #$4"q,t #. "30#

Here P is the order of the AR process, /t is the sampling
time step, and 5ak(q)6 are constants which depend para-
metrically on q. The signal 4(q,t) is white noise of zero
mean and variance 72(q). The parameter sets 5ak(q),7

2(q)6
have been obtained from the MD data using the Burg algo-

rithm which is efficient and stable.20,21 Within the AR model

the one-sided z transform of the autocorrelation function of

the dynamical variable under consideration has the simple

form
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and 5zk(q)6 are the roots of the characteristic polynomial

p"z;q#"zP! +
k"1

P

ak"q#zP!k.

Inserting Eq. "31# into the general expression "29# yields an
explicit expression for the z-transformed memory function.

Applying polynomial division yields the memory function in

time, using that 2%(z)"+n"0
0 !(n)z!n.

Finally, we note that .AR(q,n)1.AR(q,n/t) is a mul-
tiexponential function

.AR"q,n #" +
k"1

P

%k"q#zk"q# $n$, "33#

and that its Fourier spectrum, which is defined as

SAR"q,:#"/t +
n"!0

$0

.AR"q,n #exp"!i:n/t #, "34#

has ‘‘all-pole’’ form
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Density fluctuations

It is important to note that there is no continuous transi-
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ρ(q, t) =
∑

α

exp(iq.Rα(t))density

Collective motions



SAR!q,"#!
$t%2!q#

&1"'k!1
P ak!q#exp!"i"k$t #(&1"'m!1

P am*!q#exp! i"m$t #(
. !35#

Here " is a continuous variable with !"!#)/$t . Spectral
estimation by fitting of an AR processes to a given time
series is known as the maximum entropy method.20

3. Simulation

To analyze the memory function associated with *(q,t)
we have performed molecular dynamics simulations of one
lysozyme molecule in a solvent of 3403 water molecules for
a total length of 1.2 ns after equilibration. An NpT ensemble
at ambient temperature !300 K# and normal pressure !1 atm#
was created using the extended systems method implemented
in a velocity-Verlet integrator. The simulation was run using
the simulation library MMTK !Ref. 22# and the AMBER94
force field23 with an integration time step of 1 fs.

In order to extract the memory function from the mo-
lecular dynamics trajectories we used autoregressive models
of orders P!400 and P!1000, with a sampling step of $t
!0.4 ps. The corresponding maximum relaxation times P$t
are thus, 160 and 400 ps, respectively. In order to ensure a
sufficient statistical accuracy of the numerical calculations
the value of P$t should be clearly shorter than the simula-
tion length of 1.2 ns.

IV. RESULTS AND DISCUSSION

Figures 3 and 4 show the extracted memory functions
and the corresponding fits of the FBD model !15# for two q
values (q!10 nm"1 and q!16 nm"1). Here q+!q! and the
numerical results for each q value have been obtained by
performing an isotropic average over the memory functions
corresponding to 30 different q vectors in a q interval of
$q!0.2 Å"1, centred on the respective q value. The fits of

the FBD model have been performed by minimizing a
weighted sum of errors for the memory function and corre-
sponding model spectrum, SFBD(q,"). The memory func-
tions are effectively considered for t#5 ps, since the relative
statistical error becomes too large beyond that limit. The re-
sults show a satisfactory agreement of MD data and the FBD
model. It should be noted that the memory function, which is
reliably known only for relatively short times, is consistent
with the behavior of S(q,") over the whole frequency range.
For very small frequencies the FBD model must be consid-
ered a model for the trend of the dynamic structure factor,
and collective vibrational modes lead to oscillations about
that trend. In order to estimate the numerical accuracy of the
AR model we show in Fig. 5 a comparison of calculations
with 1000 and 400 poles. In both cases q!10 nm"1, as in
Fig. 3. The memory functions in the short time regime,
which has been used to fit the FBD model, can be considered
identical and their numerical deviation may be used to esti-
mate error bars. As one would expect, there is a systematic
deviation of the spectra for low frequencies, since the slow-
est motions are better described with a memory function of
long range. In this context we refer to an earlier study where
we have shown that the memory function obtained from the
AR model decays exponentially for t$P$t .14 Within certain
limits the fits of the memory function are insensitive to the
length of the time window used. One can, for example, use a
time window of 10 ps instead of 5 ps. It must, however, been
emphasized that it makes no sense to include too many
points, since the memory functions attain rapidly a statisti-
cally nonsignificant range where they oscillate around zero.
On the other hand, one cannot use a time window signifi-
cantly shorter than 5 ps, since too few points are included in

FIG. 3. Log-log plot of the coherent dynamic structure factor of lysozyme
as a function of frequency for q!10 nm"1. The solid line represents the
simulation results and the dashed line the fitted FBD model. The parameters
of the fit are ,!4.0 ps and -!0.5.

FIG. 4. As Fig. 3, but for q!16 nm"1. The parameters of the fit are here
,!3.1 ps and -!0.6.
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FIGURE IV.8. Left: The function Eα(−[t/τ ]α) for α = 1/2 (solid
line), the stretched exponential exp(−[t/τ ]α) for α = 1/2 (dashed-
dotted line), and the normal expoential exp(−[t/τ ]). The inset
shows the memory function associated with Eα(−[t/τ ]α). Right:
Fourier spectra associated with the correlation function shown
in the left part.

Ordering the eigenvalues λn such that λ0 < λ1 < λ2 . . ., where λ0 = 0, it fol-
lows from the proportionality relation (IV.56) that also λα,0 < λα,1 < λα,2 . . .,
and in particular λα,0 = λ0 = 0. This shows that the equilibrium solution of a
FFPE is the same as the one of the corresponding standard FPE,

Peq(y) = lim
t→∞

P (y, t) = P0(y) (IV.58)

3.3. Correlation function and its Fourier spectrum. From the general
form (IV.57) of the solution of a FFPE one can derive a formula for the cor-
relation function
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dy0dy yy0P (y, t|y0, 0)Peq(y0)

=
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n=1

(∫
dy yPn(y)
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Eα (−λα,nt
α) . (IV.59)

which is the generalisation of (II.159) for normal FPEs.
From the Laplace transformed form of Eα (−λα,ntα) the Fourier transform

of the autocorrelation function can be straightforwardly derived, noting that
f̃(ω) = 2"{f̂(iω)} for even functions f(t) = f(−t). One obtains [47]

c̃yy(ω) =
∞∑

n=1

(∫
dy yPn(y)

)2

Lα(ω; τα,n), (IV.60)
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FIGURE IV.11. Dynamic structure factor for the fractional OU
process for α = 0.5. The ω-axis and the ordinate are on a loga-
rithmic scale. The series (IV.81) has been truncated after n = 20.

obtained from (IV.57). In analogy with (IV.59) one writes

I(q, t) =

∫ ∫
dx0dx exp(iq[x− x0])P (x, t|x0, 0)Peq(x0)

=
∞∑

n=0

∣∣∣∣
∫

dx exp(iqx)Pn(x)

∣∣∣∣
2

Eα (−λα,nt
α) . (IV.77)

In contrast to eq. (IV.59) the sum in (IV.77) runs from 0 to∞, since the term with
n = 0 does not vanish here. This term yields in effect the elastic incoherent
structure factor (EISF),

EISF (q) =

∣∣∣∣
∫

dx exp(iqx)P0(x)

∣∣∣∣
2

. (IV.78)

If the dynamical model is the fractional Ornstein-Uhlenbeck process, the
intermediate scattering function takes the form

I(q, t) = exp(−q2〈x2〉)
∞∑

n=0

q2n〈x2〉n

n!
Eα (−nηαtα) (IV.79)

Since the EISF is a static average, we obtain the same result as for the normal
OU process – see Eq. (IV.43),

EISF (q) = lim
t→∞

I(q, t) = exp
(
−q2〈x2〉

)
(IV.80)
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Since the EISF is a static average, we obtain the same result as for the normal
OU process – see Eq. (IV.43),

EISF (q) = lim
t→∞

I(q, t) = exp
(
−q2〈x2〉

)
(IV.80)
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FIGURE IV.11. Dynamic structure factor for the fractional OU
process for α = 0.5. The ω-axis and the ordinate are on a loga-
rithmic scale. The series (IV.81) has been truncated after n = 20.

obtained from (IV.57). In analogy with (IV.59) one writes

I(q, t) =

∫ ∫
dx0dx exp(iq[x− x0])P (x, t|x0, 0)Peq(x0)

=
∞∑

n=0

∣∣∣∣
∫

dx exp(iqx)Pn(x)

∣∣∣∣
2

Eα (−λα,nt
α) . (IV.77)

In contrast to eq. (IV.59) the sum in (IV.77) runs from 0 to∞, since the term with
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G.R. Kneller. PCCP, 7:2641 – 2655, 2005.
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Dynamic structure factor
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In the limit where α tends to 1 we have Eα (−nηαtα) → exp(−nηt), and
since exp(−nηt) = exp(−ηt)n, the series in (IV.79) represents the function
exp(q2〈x2〉 exp[−ηt]). One retrieves thus the intermediate scattering function
corresponding to the standard OU process given in (IV.42). In the general
case, where 0 < α < 1, a closed form cannot be given, since Eα (−nηαtα) %=
Eα (−ηαtα)n.

The dynamic structure factor is obtained by the Fourier transform (IV.33),
inserting expression (IV.79):

S(q, ω) = exp(−q2〈x2〉)
{

δ(ω) +
∞∑

n=1

q2n〈x2〉n

n!

1

2π
Lα(ω; τα,n)

}
(IV.81)

The generalized Lorentzians Lα(ω; τ) are given by (IV.61). Combining (IV.56),
(IV.62) and (II.164) one finds that the relaxation rates are given by

τα,n =
τ̃

(nητ̃)1/α
(IV.82)

Fig. IV.11 shows the dynamic structure factor given in Eq. (IV.81) for α = 0.5,
using the first 20 terms in the series. The convergence has been checked em-
pirically. One notices that the dynamic structure factor has a very weak q-
dependence.

4.6. Fitting neutron scattering data. Let us now see how the model (IV.81)
fits to experimental data. For this purpose we take the reference data from
Doster et al. for myoglobin [61]. These data have been obtained from a hy-
drated myoglobin powder. This type of sample has been often used in the past
in order to suppress global translations and rotations of the proteins. In this
way only the dynamics of interest, namely the internal dynamics of proteins is
seen in the neutron scattering experiments.

4.6.1. Using the EISF. Expression (IV.81) depends formally on three param-
eters, which are α, τ , and the position fluctuation 〈x2〉. Since the integral∫ +∞
−∞ dω S(q, ω) cannot be obtained with certainty from experiment, there is

even a fourth fit parameter – the amplitude of S(q, ω). The dynamic struc-
ture factor can nevertheless be fitted with three parameters, since the position
fluctuation can be obtained separately from a measurement of the EISF. The
latter has the Gaussian form (IV.80) for the model discussed here. Fig. IV.12
shows the EISF obtained from a hydrated myoglobin powder for T = 277 K
and T = 320 K. The curves have been re-plotted from the data presented
in [61]. The solid line represents the EISF at T = 300 K obtained from an MD
simulation of a single myoglobin molecule [62]. Global translations and rota-
tions have been subtracted prior to the calculation of the EISF.

It should be noted that q is to be considered as an experimental parameter
and that the elastic approximation (IV.41) is strictly valid for the EISF, since
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where Lα(·; ·) are the generalised Lorentzians

Lα(ω; τ) =
2τ sin(απ/2)

|ωτ | (|ωτ |α + 2 cos(απ/2) + |ωτ |−α)
, 0 < α ≤ 1 (IV.61)

The relaxation times τα,n are defined as

τα,n = λ−(1/α)
α,n , n "= 0 (IV.62)

with λα,n from Eq. (IV.56). Note that Lα(ω; τ) is singular at ω = 0 if α "= 1.
This is due to the fact that Eα(−(t/τ)α) is a self-similar function which has no
characteristic time scale. The limiting behaviour for large frequencies is

Lα(ω; τ) ∝ ω−(1+α) (IV.63)

In contrast to the generalised stretched exponential, Eα(−tα), whose
Fourier spectrum have in general a simple analytical form – but not the func-
tion itself – the inverse is true for the normal stretched exponential, ψSE(t; α) ≡
exp(−tα). The α = 1/2 is one of the exceptions for which the Fourier spectrum
of the latter can be computed analytically. In this case the Laplace transform
has the form

ψ̂SE(s; 1/2) = 1− 1

2

√
π

s
exp

(
1

4s

)
erfc

(
1

2
√

s

)
, (IV.64)

and the corresponding Fourier spectrum is again obtained from the relation
f̃(ω) = 2'{f̂(iω)} for even functions f(t).

The right part of Fig. IV.8 shows the Fourier spectra of E1/2(−|t|1/2),
exp(t−1/2), and exp(−t) which are depicted in the left part. One recognises
that the Fourier spectrum of E1/2(−|t|1/2) is almost featureless. This illustrates
the self-similarity of dynamical processes described by FFPEs – any zoom on
the frequency scale yields a similar pattern of the Fourier spectrum.

4. Fractional OU process and applications

4.1. Description of the model and solution of the FFPE. We try now to
find a simple analytical model which aims to describe with a few parameters
the diffusive dynamics of an atom in a protein. The model must describe a
stochastic process which leads to confined motions in space and to the non-
exponential relaxation processes seen in Figs. IV.6 and IV.7. A candidate is the
fractional version of the OU process discussed earlier. The latter is a model for
diffusive motion in a harmonic potential which is schematically depicted in the
left part of Fig. IV.9. Due to the form of the potential the resulting motions are
confined in space. One can imagine that the anomalous diffusion described by
its fractional counterpart is caused by a highly irregular, “rugged” version of
the harmonic potential, which is shown in the right part of Fig. IV.9. A similar
qualitative description of the potential energy surface for a protein has been
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At this point one can make use of the relation

Eα (−tα) =
1

2πi

∮

C

ds
exp(st)

s(1 + s−α)
, (IV.52)

where Eα(z) is the Mittag-Leffler function [58]

Eα(z) =
∞∑

k=0

zk

Γ(1 + αk)
(IV.53)

One recognises that Eα(z) is a generalised exponential, where the Gamma
function Γ(1 + αk) replaces the factorial k! in the series representation of a
normal exponential function. The functions Eα (−tα) may be considered as
generalised stretched exponential functions, where the normal stretched exponen-
tial is defined as exp (−tα) and has been used in the Kohlrausch-Williams-Watt
model for dielectric relaxation [59]. The left part of Fig. IV.8 shows the func-
tions Eα (−tα) and exp (−tα) for α = 1/2 together with a normal exponential
function, exp(−t). Here it has been used that [58]

E1/2

(
−t1/2

)
= exp(t)erfc(t1/2). (IV.54)

The memory function shown in the inset will be discussed later. The gen-
eralised stretched exponential functions decay monotonically to zero with
t→∞, and for large times one can make the approximation

Eα (−λα,nt
α) ≈

λ−1
n,αt−α

Γ(1− α)
(IV.55)

Using the above relations and the rescaled eigenvalues

λα,n := τ̃ 1−αλn (IV.56)

the inverse Laplace transform of (IV.51) can be cast into the form

P (y, t) =
∑

n

Pn(y)Qn(y0)Eα (−λα,nt
α) (IV.57)

Due to (IV.55) the solution of a FFPE has thus by construction an algebraic
long time tail. In the limit α → 1 each generalised stretched exponential
in (IV.57) is replaced by exp(−λnt), and one retrieves the eigenfunction repre-
sentation (II.156) for the solution of a standard FPE. The transition from a FPE
to its fractional counterpart leads thus to the replacement of exp(−λnt) −→
Eα (−λα,ntα) in the eigenfunction expansion of the general solution.

If the Fokker-Planck operator describes a system close to thermal equilib-
rium, it possesses only negative eigenvalues, except for one which is zero and
which is associated to the eigenfunction P0(y) = Peq(y), representing the equi-
librium density. The corresponding left eigenfunction is given by Q0(y) = 1.

λn = nη



value for q the data listed in the above reference for the
experiment on IN6 have been used. The incident wavelength
was l0 ¼ 0.51 nm, and the scattering angle y ¼ 58.81.
Approximating q E qel ¼ 2k0sin(y/2), where qel is the elastic
momentum transfer, and k ¼ 2p/l0 is the wavenumber corre-
sponding to the wavelength of the incident neutrons, one finds
q ¼ 12.04 nm"1 and q2hx2i ¼ 0.181.

The value for q2hx2i obtained from the EISF can now be
used for the fit of the FBD model in eqn. (3.46). Table 1 shows
the parameters a and t as a function of the number nc of terms
which is considered in eqn. (3.46). For the nc ¼ 5 the series has
practically converged. One finds that a E 0.5 and t E 23 ps.
The amplitude factors are not shown here.

Since the fractional Ornstein–Uhlenbeck process is a model
which is based on the representation of protein dynamics by an
‘‘effective’’ atom, localised specific motions cannot be de-
scribed within the model and only low frequencies, describing
slow relaxation processes, should be considered. Fig. 8 gives an
idea how the experimental data could be extrapolated to
frequencies below the resolution limit, which is indicated by
the vertical dashed line. The latter refers to the IN13 spectro-
meter which has been used in the low frequency region. It
should be noted that o in Fig. 8 is an angular frequency.

IV. Simulation-based modelling of protein
dynamics

A. Motivation for combined neutron scattering and simulation
experiments

With the development of computers in the early 1950’s simula-
tion methods have become an indispensable tool for theorists
and experimentalists, which allow to study condensed matter
systems on an intermediate complexity scale between an ana-
lytical model and a real system. Since the pioneering work of
Rahman on liquid argon,41 molecular dynamics (MD) simula-
tions have been used in a vast number of applications in solid
state physics, physical chemistry, and in biology. A compila-

tion of early papers can be found,42 and textbook references on
the molecular dynamics and Monte Carlo simulations are in
refs. 43 and 44. The combination of neutron scattering experi-
ments and MD simulations is a particularly powerful method
to study the structure and dynamics of condensed matter on
the atomic scale. Both methods cover the same time and length
scales, roughly 1 Å to 100 Å and 1 ps to 10 ns, respectively, and
the comparison is very direct since neutrons interact with the
atomic nuclei, which are the simulated objects. If recoil effects
can be neglected in the scattering experiment45 and if the
dynamics of the scattering system is determined by the laws
of classical mechanics, the coherent and the incoherent inter-
mediate scattering functions can be computed from MD
simulations via

Icohðq; tÞ ¼
1

N

X

i;j

bi;cohbj;cohhexpðiqT % ½RiðtÞ " Rjð0Þ'Þi;

ð4:50Þ

Iincðq; tÞ ¼
1

N

X

i

b2i;inchexpðiq
T % ½RiðtÞ " Rið0Þ'Þi: ð4:51Þ

Here Ri(t) are the trajectories of the N atomic positions and
bi,coh and bi,inc are, respectively, the coherent and incoherent
scattering lengths of atom i.38,39 The symbol T denotes a
transposition. MD simulations have the enormous advantage
that information on the simulated system is available at all
description levels, ranging from the trajectory of an individual
atom to averages and correlation functions involving the whole
simulated system. In the recent past they have been used to
interpret neutron scattering experiments from systems ranging
from molecular liquids to proteins. A broader overview on
combined neutron scattering and simulation studies can be
found in ref. 46 and an update will appear soon. In the context
of this paper the articles40,47–49 and the review50 are of interest.
A simple application in which MD simulations are used to

interpret QENS from proteins has been published in ref. 40.
The basic question addressed in this article is which type of
motion contributes most to the quasielastic scattering spectrum
of neutrons from myoglobin at room temperature. The experi-
mental data which have been used in ref. 40 are the same as
those used above to fit the FBD model.3 Figs. 10 and 11
confront the simulation results with the experimental data,
using two different trajectories for data analysis: the ‘‘raw’’
MD trajectory, and a trajectory in which internal side-chain
motions have been filtered out and only rigid-body motions of
the side chains are left. One notices first that the EISF is well
estimated by the raw simulation data, which indicates that the
atomic fluctuations measured by elastic neutron scattering and
those obtained from simulation are very similar. The agree-
ment of the QENS spectra is less good for o4 0.5 meV, which
may be explained by the fact that the experimental spectrum
has been modified by subtracting a vibrational background.3

In any case the agreement is excellent in the safe quasielastic
region. The rigid body trajectories have been produced by
fitting to each side chain and each time frame a respective
reference structure, which was taken to be the initial structure
in the MD production run. The simulation results show that
elastic and quasielastic neutron scattering from myoglobin
(and quite probably from all globular proteins) is essentially
produced by rigid-body small-step diffusion of whole residues
(see Fig. 9). Internal motions on the residue scale do almost not
contribute to quasielastic and elastic neutron scattering. This
interpretation of the QENS results is very different from the
one in ref. 3, where the EISF is fitted by an asymmetric two-site
jump model, thus assuming jump diffusion and not a contin-
uous diffusion process.
Most, if not all combined MD and neutron scattering studies

of protein dynamics, which have been published so far, have
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Table 1 Parameters for the fit of the fractional Ornstein–Uhlenbeck
model shown in Fig. 8

nc ¼ 1 nc ¼ 2 nc ¼ 5 nc ¼ 10

a 0.501 0.508 0.509 0.509
t/ps 20.9 23.1 23.3 23.3

Fig. 8 Fit of the model in eqn. (3.46) to the experimental QENS data
in ref. 3 at 300 K (solid line and squares, respectively). Here the energy
transfer is given in THz (angular frequency). Apart from a global
amplitude factor, the fitted parameters are t ¼ 24.12 ps and a ¼ 0.51.
More explanations are given in the text. The vertical dashed line
indicates the resolution of the spectrometer IN13 at the Institut
Laue-Langevin in Grenoble, which is 8 meV E 0.012 THz (angular
frequency).

P h y s . C h e m . C h e m . P h y s . , 2 0 0 5 , 7 , 1 – 1 5 7T h i s j o u r n a l i s & T h e O w n e r S o c i e t i e s 2 0 0 5

[1] W. Doster, S. Cusack, and W. Petry. Nature, 337:754–756, 1989.
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region. The rigid body trajectories have been produced by
fitting to each side chain and each time frame a respective
reference structure, which was taken to be the initial structure
in the MD production run. The simulation results show that
elastic and quasielastic neutron scattering from myoglobin
(and quite probably from all globular proteins) is essentially
produced by rigid-body small-step diffusion of whole residues
(see Fig. 9). Internal motions on the residue scale do almost not
contribute to quasielastic and elastic neutron scattering. This
interpretation of the QENS results is very different from the
one in ref. 3, where the EISF is fitted by an asymmetric two-site
jump model, thus assuming jump diffusion and not a contin-
uous diffusion process.
Most, if not all combined MD and neutron scattering studies
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Table 1 Parameters for the fit of the fractional Ornstein–Uhlenbeck
model shown in Fig. 8

nc ¼ 1 nc ¼ 2 nc ¼ 5 nc ¼ 10

a 0.501 0.508 0.509 0.509
t/ps 20.9 23.1 23.3 23.3

Fig. 8 Fit of the model in eqn. (3.46) to the experimental QENS data
in ref. 3 at 300 K (solid line and squares, respectively). Here the energy
transfer is given in THz (angular frequency). Apart from a global
amplitude factor, the fitted parameters are t ¼ 24.12 ps and a ¼ 0.51.
More explanations are given in the text. The vertical dashed line
indicates the resolution of the spectrometer IN13 at the Institut
Laue-Langevin in Grenoble, which is 8 meV E 0.012 THz (angular
frequency).
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value for q the data listed in the above reference for the
experiment on IN6 have been used. The incident wavelength
was l0 ¼ 0.51 nm, and the scattering angle y ¼ 58.81.
Approximating q E qel ¼ 2k0sin(y/2), where qel is the elastic
momentum transfer, and k ¼ 2p/l0 is the wavenumber corre-
sponding to the wavelength of the incident neutrons, one finds
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should be noted that o in Fig. 8 is an angular frequency.

IV. Simulation-based modelling of protein
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A. Motivation for combined neutron scattering and simulation
experiments
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Icohðq; tÞ ¼
1

N

X

i;j

bi;cohbj;cohhexpðiqT % ½RiðtÞ " Rjð0Þ'Þi;

ð4:50Þ

Iincðq; tÞ ¼
1

N

X

i

b2i;inchexpðiq
T % ½RiðtÞ " Rið0Þ'Þi: ð4:51Þ

Here Ri(t) are the trajectories of the N atomic positions and
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the side chains are left. One notices first that the EISF is well
estimated by the raw simulation data, which indicates that the
atomic fluctuations measured by elastic neutron scattering and
those obtained from simulation are very similar. The agree-
ment of the QENS spectra is less good for o4 0.5 meV, which
may be explained by the fact that the experimental spectrum
has been modified by subtracting a vibrational background.3

In any case the agreement is excellent in the safe quasielastic
region. The rigid body trajectories have been produced by
fitting to each side chain and each time frame a respective
reference structure, which was taken to be the initial structure
in the MD production run. The simulation results show that
elastic and quasielastic neutron scattering from myoglobin
(and quite probably from all globular proteins) is essentially
produced by rigid-body small-step diffusion of whole residues
(see Fig. 9). Internal motions on the residue scale do almost not
contribute to quasielastic and elastic neutron scattering. This
interpretation of the QENS results is very different from the
one in ref. 3, where the EISF is fitted by an asymmetric two-site
jump model, thus assuming jump diffusion and not a contin-
uous diffusion process.
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model shown in Fig. 8
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Fig. 8 Fit of the model in eqn. (3.46) to the experimental QENS data
in ref. 3 at 300 K (solid line and squares, respectively). Here the energy
transfer is given in THz (angular frequency). Apart from a global
amplitude factor, the fitted parameters are t ¼ 24.12 ps and a ¼ 0.51.
More explanations are given in the text. The vertical dashed line
indicates the resolution of the spectrometer IN13 at the Institut
Laue-Langevin in Grenoble, which is 8 meV E 0.012 THz (angular
frequency).
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medium was heavy water which was isolated from the sam-
ple by a Teflon piston (see Fig. 1). The strong scattering by
the pressure cell was corrected for. Moreover, QENS data
were corrected for detector efficiency, normalized to the
integrated vanadium intensity, converted to the energy
scale as well as converted from constant scattering angle
h to constant momentum transfer q.

2.2. Simulations

The simulated system consists of one lysozyme molecule
and 3403 H2O molecules in a box of dimensions
6.15 · 4.10 · 4.61 nm3. The protein structure was taken
from the Brookhaven protein databank [12] (code 193L
[13]), to which the hydrogen atoms were added according
to standard criteria concerning the chemical bond structure
of amino acids. This leads to 1960 atoms for the lysozyme
molecule and to 12,169 atoms in total for the simulated sys-
tem. All simulations have been performed in the thermody-
namic NpT-ensemble, using the program package MMTK
[14] with the AMBER94 force field [15] for molecular sim-
ulations of proteins. Within the AMBER force field the
H2O molecules are modeled by the TIP3P potential. Since
we were not interested in the solvent dynamics, we avoided
the adaptation of the TIP3P potential to model heavy
water, which was used in the experiments, and simulated
light water instead. We note that only the dynamics of
the slow, large amplitude motions of a protein is influenced
by the solvent [16], and one can consider that it is essen-
tially the viscosity of the solvent which has a major effect
in this context. Since the viscosities of light and heavy
water are similar, the replacement D2O ! H2O in the sim-
ulation is thus justified.

The long-range electrostatic forces and energies have
been computed with a modified Ewald summation proce-
dure [17]. In contrast to the experimental conditions, where
each lysozyme molecules carries a charge of 11e (pD 4.6),
the simulated lysozyme molecule was kept neutral to ensure
global neutrality of the simulated system. This is necessary

because the system is too small to model protein–protein
interactions and the buffer realistically. The trajectories
used for this article have been recorded with a sampling
step of Dt = 0.04 ps. The water trajectories were not stored
and for subsequent analyses global translations and rota-
tions of the simulated lysozyme molecule have been filtered
out by performing for each sampling time step an optimal
superposition of the molecular structure with the corre-
sponding initial structure [18]. The generated trajectories
thus describe only the internal dynamics of the simulated
lysozyme molecule.

3. A simple model for protein dynamics

To interpret both the simulated and experimental data,
we use the fractional Ornstein–Uhlenbeck (OU) process
[19] as an analytical model for the atomic motions in a pro-
tein. The model describes anomalous diffusion in a har-
monic potential, where the latter accounts for the fact
that atomic motions in a protein are confined in space.
The anomalous diffusion describes slow, non-exponential
structural relaxation in the functional dynamics of pro-
teins, which has been observed in the past on the microsec-
ond to second time scale by fluorescence correlation
spectroscopy [20] and by kinetic studies [21]. The existence
of fractional Brownian dynamics in proteins on the nano-
second time scale has been recently demonstrated by anal-
yses of molecular dynamics simulations [22] and the
fractional OU process has been introduced in [23] for the
interpretation of QENS spectra from proteins. It can be
considered as an extension of a simple harmonic protein
model, which has been used in the past to describe elastic
neutron scattering profiles, in particular to extract the
‘‘resilience’’ of the protein under consideration in terms
of an average force constant [24]. The fractional OU pro-
cess adds to this a description of the relaxation dynamics,
which is measured in QENS experiments.

3.1. Time-dependent mean-square displacement

The most elementary quantity to be considered in the
context of diffusion processes is the time-dependent
mean-square displacement (MSD),

W ðtÞ :¼ h½xðtÞ % xð0Þ&2i; ð1Þ

where x is the position of the diffusing particle and the
brackets indicate a thermal average. In case that the
dynamics of the particle is confined in space, the MSD will
tend to a plateau value, which is given by 2hx2i. This fol-
lows simply from definition (1), assuming a stationary sto-
chastic process, such that W(t) = 2(hx2i % hx(t)x(0)i),
where hx2i is finite due to the confinement. Using that
any position autocorrelation function hx(t)x(0)i tends to
zero for t! 1, one obtains thus limt!1W(t) = 2hx2i.
For the fractional OU process one has

hxðtÞxð0Þi ¼ hx2iEað%½t=s&aÞ; 0 < a 6 1; ð2Þ

Fig. 1. Scheme of Ti–Zr high pressure cell.
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displacements depicted in Fig. 4 for t > 100 ps illustrates
this point. Such a behavior indicates free diffusion and is
clearly an artefact, since the motions of atoms in a protein
are confined.

4.3. Collective dynamics

In Fig. 5 we show the results for the coherent dynamic
structure factor for lysozyme in solution at p = 1 bar (thin

black line) and p = 3 kbar (thick grey line). The coherent
dynamic structure factor is here defined as Fourier trans-
form of c(q, t) with respect to time. To interpret the data
in terms of an analytical model we use again the fractional
Ornstein–Uhlenbeck process, except that the dynamical
variable is here the Fourier transformed atomic density,
i.e. a dynamical variable describing collective motions,
and not the position of a single atom. Using this model,
we assume that there is an effective force proportional to
dq which drives the latter back to zero, i.e. to a homoge-

Fig. 3. Left: Secondary structure of lysozyme and difference distance plot for the Ca-atoms at ambient pressure and at p = 2 kbar given in Ref. [23] (with
permission from Elsevier). The coloring scheme uses red for a reduction of the distance under pressure and blue for an increase. Right: The corresponding
difference distance plot obtained from the MD structures averaged over the respective trajectories.
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Fig. 4. Mean square displacement of lysozyme in solution obtained from
MD simulation at p = 1 bar (diamonds) and at p = 3 kbar (circles). The
fitted solid and broken line display, respectively, the mean square
displacement according to the model of fractional Brownian dynamics
for p = 1 bar (a = 0.51, sa = 32.03 ps) and p = 3 kbar (a = 0.55,
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values which have been estimated by a separate calculation from the MD
trajectories.

-3 -2 -1
log10(ν ps)

-1

0

1

lo
g 10

 S
(q

, ν
)

-2 -1.5 -1 -0.5 0
log10(ωτ)

simulation 1 bar
simulation 3 kbar
fractional BD

0 1 2 3 4 5
time [ps]

-1

-0.8

-0.6

-0.4

-0.2

0

Fig. 5. Fourier spectrum of the autocorrelation function c(q, t) for the
atomic density fluctuation of lysozyme at jqj = 10 nm!1. The thin black
line corresponds to p = 1 bar and the thick grey line to p = 3 kbar. The
broken line corresponds to a fit of the model spectrum (2.18) correspond-
ing to the model of fractional Brownian motion for dq(q, t), and the inset
shows the corresponding memory functions.

4422 V. Hamon et al. / Journal of Non-Crystalline Solids 352 (2006) 4417–4423

NMR1 Simulation2

[1] M. Refaee, T. Tezuka, K. Akasaka, and M.P. Williamson. J. Mol. Biol., 327:857–865, 2003.

[2] V.  Hamon, P.  Calligari, K.  Hinsen, and G.R. Kneller. Journal of Non-Crystalline solids, 
352:4417–4423, 2006.

Compression:

∆Vexp

Vexp
= −2%

∆VMD

VMD
= −2.25%

Change of volume and structure



Author's personal copy

and the MSD takes the form

W ðtÞ ¼ 2hx2i 1$ Eað$½t=s&aÞð Þ: ð3Þ

Here Ea(z) is the Mittag–Leffler function [25]

EaðzÞ ¼
X1

k¼0

zk

Cð1þ akÞ ; ð4Þ

where C(Æ) denotes the generalized factorial [26]. One recog-
nizes that for a = 1, where C(1 + ak) = C(1 + k) = k!, the
exponential function is retrieved from expression (4), i.e.
E1(z) = exp(z). In this case the fractional OU process be-
comes the well-known Markovian OU process [27–29].
As indicated in [23], the fractional counterpart is character-
ized by non-Markovian memory effects, which lead to non-
exponential correlation functions.

Expressions (2) and (3) show that the proposed model
contains three parameters:

(1) the position fluctuation hx2i,
(2) the parameter a indicating the deviation from Mar-

kovian behavior,
(3) the time scale parameter s.

3.2. Relaxation rate spectrum

The function Ea($[t/s]a) appearing in (2) and (3) can be
considered as a ‘‘stretched’’ generalized exponential func-
tion. The non-exponential character of this function can
be most easily visualized by writing it as a superposition
of normal exponential functions. Using for simplicity a
dimensionless time variable we have

Eað$taÞ ¼
Z 1

0

dkpaðkÞ expð$ktÞ; ð5Þ

where pa(k) is a normalized and positive distribution func-
tion, which is of the form [21,23]

paðkÞ ¼
1

p
ka$1 sinðpaÞ

k2a þ 2ka cosðpaÞ þ 1
; 0 < a < 1: ð6Þ

In the limit a ! 1 we have [23]

lim
a!1

paðkÞ ¼ dðk$ 1Þ; ð7Þ

in agreement with lima!1Ea($ta) = exp($t).

3.3. Modeling incoherent neutron scattering

We consider in the following the dynamic structure fac-
tor for incoherent neutron scattering:

Sðq;xÞ ¼ 1

2p

Z þ1

$1
dt expð$ixtÞIðq; tÞ; ð8Þ

where I(q, t) is the incoherent intermediate scattering
function, which depends on the position of the scattering
atom

Iðq; tÞ ¼ hexpðiq½xðtÞ $ xð0Þ&Þi: ð9Þ

Here q = jqj is the modulus of the momentum transfer
which the neutron transfers to scattering atom in the scat-
tering process. Within the model we assume that the system
under consideration is isotropic and that the protein
dynamics, which is seen in incoherent neutron scattering,
can be described by one ‘‘representative’’ atom. In this case
it suffices to consider one coordinate of the scattering atom,
which is chosen to be the x-coordinate. In view of the pre-
dominance of incoherent scattering by hydrogen atoms, the
representative atom in the model is a representative hydro-
gen atom.
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Fig. 2. Simulated EISF of lysozyme for p = 0.1 MPa (bullets) and p = 300 MPa (squares). The inset shows the position fluctuations derived from
expression (13).
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Within the model the intermediate scattering function
has the form

Iðq; tÞ ¼ expð$q2hx2iÞ
X1

n¼0

q2nhx2in

n!
Ea $½t=sn&að Þ; 0< a6 1;

ð10Þ

where sn is given by

sn ¼ sn$1=a: ð11Þ

Static correlation functions obtained from the model are
the same as for the standard OU process. In the context
of neutron scattering this concerns the elastic incoherent
structure factor (EISF),

EISFðqÞ ¼ lim
t!1

Iðq; tÞ ¼ expð$q2hx2iÞ; ð12Þ

which has Gaussian form. In reality the Gaussian approx-
imation holds strictly only for q ! 0 [30]. Calculating hx2i
via

hx2i ¼ $ lnðEISF½q&Þ=q2 ð13Þ

one obtains a strongly q-dependent position fluctuation.
Fig. 2 illustrates this aspect. Therefore, in the following
hx2i, as well as the parameters a and s of the fractional
OU process are considered q-dependent.

The dynamic structure factor associated with the inter-
mediate scattering function (10) reads

Sðq;xÞ ¼ expð$q2hx2iÞ dðxÞ þ
X1

n¼1

q2nhx2in

n!2p
La;snðxÞ

( )

;

ð14Þ

where La,s(Æ) is the generalized Lorentzian [22]

La;sðxÞ ¼
2s sinðap=2Þ

xs ðxsÞa þ 2 cosðap=2Þ þ ðxsÞ$að Þ
; 0 < a 6 1:

ð15Þ

4. Data analysis and results

4.1. Fitting simulated time correlation functions

The ‘‘natural’’ quantities for the analysis of MD simula-
tions are MSDs and time correlation functions, which can
be directly computed from the trajectories. In the present
study we used the MD analysis package nMoldyn for this
purpose [31]. To fit expressions (3) or (10) to the corre-
sponding simulated functions one needs thus to evaluate
functions of the type Ea($ta). We found the following pro-
cedure satisfactory. Starting from the decomposition (5) we
perform the variable change u = ka to obtain

Eað$taÞ ¼ 1

pa

Z 1

0

du
sinðpaÞ

u2 þ 2u cosðpaÞ þ 1
expð$u1=atÞ;

ð16Þ

where the integral is evaluated numerically. The variable
change k ! u leads to a well-behaved, non-singular inte-

grand and allows to compute Ea($ta) for large arguments
t, where the series expansion (4) converges extremely
slowly. The method can be tested for the special case
a = 1/2, for which an analytical solution is known:
E1=2ð$t1=2Þ ¼ expðtÞerfcð

ffiffi
t

p
Þ [25].

4.2. Fitting QENS spectra

The model introduced in Section 3 describes internal
protein dynamics and to be useful for the interpretation
of QENS spectra of protein solutions the effects of global
diffusion and of finite instrumental resolution must be
incorporated. Neglecting multiple scattering effects and
absorption, and assuming that global diffusion of the lyso-
zyme molecules and internal motions are decoupled, we
write the measured dynamic structure factor as convolu-
tion product (defining ðf ( gÞðxÞ ¼

Rþ1
$1 dx0f ðx$ x0Þ

gðx0Þ):

Smðq; tÞ ¼ ðS ( l ( rÞðxÞ: ð17Þ

Here S stands for the dynamic structure factor of the mod-
el, l is a Lorentzian describing translational diffusion (D is
the diffusion constant),

lðxÞ ¼ 1

p
Dq2

ðDq2Þ2 þ x2
ð18Þ

and r is the resolution function, which is well described by a
Gaussian,

rðxÞ ¼
exp $ x2

2r2

" #

ffiffiffiffiffiffi
2p

p
r

; ð19Þ

with r > 0 and a half width at half maximum (HWHM) of
DE ) 1.17r. Both r(Æ) and l(Æ) are normalized such thatRþ1
$1 dxrðxÞ ¼ 1 and

Rþ1
$1 dxlðxÞ ¼ 1.

From light scattering experiments one can estimate the
relevance of translational diffusion for QENS spectra. In
the work of Nystrom and Roots [10], which has been per-
formed in similar conditions, the diffusion coefficient at
p = 0.1 MPa and p = 300 MPa is found to be D =
1.45 · 10$4 nm2/ps and D = 1.25 · 10$4 nm2/ps, respec-
tively. The width of the corresponding Lorentzian being
Dq2, we obtain for q = 20 nm$1 and p = 0.1 MPa a width
Dq2 = 0.038 meV, which is comparable to the instrumental
resolution. To estimate the influence of rotational diffusion
on the measured QENS spectra we use the diffusion con-
stant for rotational diffusion [32], assuming that the protein
under consideration has spherical shape,

cr ¼
kBT
4pga3

: ð20Þ

Here a is the radius of the protein and g is the shear viscos-
ity of the solvent (water). For lysozyme, which has a radius
of a = 1.45 nm, one obtains cr = 1.06 · 108 s$1 at T =
293 K. This corresponds to a width of 7 · 10$5 meV, which
is far below the instrumental resolution. Rotational diffu-
sion needs therefore not be considered in the model.
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has the form
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where sn is given by
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Static correlation functions obtained from the model are
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structure factor (EISF),
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which has Gaussian form. In reality the Gaussian approx-
imation holds strictly only for q ! 0 [30]. Calculating hx2i
via
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one obtains a strongly q-dependent position fluctuation.
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tions are MSDs and time correlation functions, which can
be directly computed from the trajectories. In the present
study we used the MD analysis package nMoldyn for this
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expð$u1=atÞ;

ð16Þ

where the integral is evaluated numerically. The variable
change k ! u leads to a well-behaved, non-singular inte-

grand and allows to compute Ea($ta) for large arguments
t, where the series expansion (4) converges extremely
slowly. The method can be tested for the special case
a = 1/2, for which an analytical solution is known:
E1=2ð$t1=2Þ ¼ expðtÞerfcð

ffiffi
t

p
Þ [25].

4.2. Fitting QENS spectra

The model introduced in Section 3 describes internal
protein dynamics and to be useful for the interpretation
of QENS spectra of protein solutions the effects of global
diffusion and of finite instrumental resolution must be
incorporated. Neglecting multiple scattering effects and
absorption, and assuming that global diffusion of the lyso-
zyme molecules and internal motions are decoupled, we
write the measured dynamic structure factor as convolu-
tion product (defining ðf ( gÞðxÞ ¼

Rþ1
$1 dx0f ðx$ x0Þ

gðx0Þ):

Smðq; tÞ ¼ ðS ( l ( rÞðxÞ: ð17Þ

Here S stands for the dynamic structure factor of the mod-
el, l is a Lorentzian describing translational diffusion (D is
the diffusion constant),

lðxÞ ¼ 1

p
Dq2

ðDq2Þ2 þ x2
ð18Þ

and r is the resolution function, which is well described by a
Gaussian,

rðxÞ ¼
exp $ x2

2r2

" #

ffiffiffiffiffiffi
2p

p
r

; ð19Þ

with r > 0 and a half width at half maximum (HWHM) of
DE ) 1.17r. Both r(Æ) and l(Æ) are normalized such thatRþ1
$1 dxrðxÞ ¼ 1 and

Rþ1
$1 dxlðxÞ ¼ 1.

From light scattering experiments one can estimate the
relevance of translational diffusion for QENS spectra. In
the work of Nystrom and Roots [10], which has been per-
formed in similar conditions, the diffusion coefficient at
p = 0.1 MPa and p = 300 MPa is found to be D =
1.45 · 10$4 nm2/ps and D = 1.25 · 10$4 nm2/ps, respec-
tively. The width of the corresponding Lorentzian being
Dq2, we obtain for q = 20 nm$1 and p = 0.1 MPa a width
Dq2 = 0.038 meV, which is comparable to the instrumental
resolution. To estimate the influence of rotational diffusion
on the measured QENS spectra we use the diffusion con-
stant for rotational diffusion [32], assuming that the protein
under consideration has spherical shape,

cr ¼
kBT
4pga3

: ð20Þ

Here a is the radius of the protein and g is the shear viscos-
ity of the solvent (water). For lysozyme, which has a radius
of a = 1.45 nm, one obtains cr = 1.06 · 108 s$1 at T =
293 K. This corresponds to a width of 7 · 10$5 meV, which
is far below the instrumental resolution. Rotational diffu-
sion needs therefore not be considered in the model.
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Within the model the intermediate scattering function
has the form

Iðq; tÞ ¼ expð$q2hx2iÞ
X1

n¼0

q2nhx2in

n!
Ea $½t=sn&að Þ; 0< a6 1;

ð10Þ

where sn is given by

sn ¼ sn$1=a: ð11Þ

Static correlation functions obtained from the model are
the same as for the standard OU process. In the context
of neutron scattering this concerns the elastic incoherent
structure factor (EISF),

EISFðqÞ ¼ lim
t!1

Iðq; tÞ ¼ expð$q2hx2iÞ; ð12Þ

which has Gaussian form. In reality the Gaussian approx-
imation holds strictly only for q ! 0 [30]. Calculating hx2i
via

hx2i ¼ $ lnðEISF½q&Þ=q2 ð13Þ

one obtains a strongly q-dependent position fluctuation.
Fig. 2 illustrates this aspect. Therefore, in the following
hx2i, as well as the parameters a and s of the fractional
OU process are considered q-dependent.

The dynamic structure factor associated with the inter-
mediate scattering function (10) reads

Sðq;xÞ ¼ expð$q2hx2iÞ dðxÞ þ
X1

n¼1

q2nhx2in

n!2p
La;snðxÞ

( )

;

ð14Þ

where La,s(Æ) is the generalized Lorentzian [22]

La;sðxÞ ¼
2s sinðap=2Þ

xs ðxsÞa þ 2 cosðap=2Þ þ ðxsÞ$að Þ
; 0 < a 6 1:

ð15Þ

4. Data analysis and results

4.1. Fitting simulated time correlation functions

The ‘‘natural’’ quantities for the analysis of MD simula-
tions are MSDs and time correlation functions, which can
be directly computed from the trajectories. In the present
study we used the MD analysis package nMoldyn for this
purpose [31]. To fit expressions (3) or (10) to the corre-
sponding simulated functions one needs thus to evaluate
functions of the type Ea($ta). We found the following pro-
cedure satisfactory. Starting from the decomposition (5) we
perform the variable change u = ka to obtain

Eað$taÞ ¼ 1

pa

Z 1

0

du
sinðpaÞ

u2 þ 2u cosðpaÞ þ 1
expð$u1=atÞ;

ð16Þ

where the integral is evaluated numerically. The variable
change k ! u leads to a well-behaved, non-singular inte-

grand and allows to compute Ea($ta) for large arguments
t, where the series expansion (4) converges extremely
slowly. The method can be tested for the special case
a = 1/2, for which an analytical solution is known:
E1=2ð$t1=2Þ ¼ expðtÞerfcð

ffiffi
t

p
Þ [25].

4.2. Fitting QENS spectra

The model introduced in Section 3 describes internal
protein dynamics and to be useful for the interpretation
of QENS spectra of protein solutions the effects of global
diffusion and of finite instrumental resolution must be
incorporated. Neglecting multiple scattering effects and
absorption, and assuming that global diffusion of the lyso-
zyme molecules and internal motions are decoupled, we
write the measured dynamic structure factor as convolu-
tion product (defining ðf ( gÞðxÞ ¼

Rþ1
$1 dx0f ðx$ x0Þ

gðx0Þ):

Smðq; tÞ ¼ ðS ( l ( rÞðxÞ: ð17Þ

Here S stands for the dynamic structure factor of the mod-
el, l is a Lorentzian describing translational diffusion (D is
the diffusion constant),

lðxÞ ¼ 1

p
Dq2

ðDq2Þ2 þ x2
ð18Þ

and r is the resolution function, which is well described by a
Gaussian,

rðxÞ ¼
exp $ x2

2r2

" #

ffiffiffiffiffiffi
2p

p
r

; ð19Þ

with r > 0 and a half width at half maximum (HWHM) of
DE ) 1.17r. Both r(Æ) and l(Æ) are normalized such thatRþ1
$1 dxrðxÞ ¼ 1 and

Rþ1
$1 dxlðxÞ ¼ 1.

From light scattering experiments one can estimate the
relevance of translational diffusion for QENS spectra. In
the work of Nystrom and Roots [10], which has been per-
formed in similar conditions, the diffusion coefficient at
p = 0.1 MPa and p = 300 MPa is found to be D =
1.45 · 10$4 nm2/ps and D = 1.25 · 10$4 nm2/ps, respec-
tively. The width of the corresponding Lorentzian being
Dq2, we obtain for q = 20 nm$1 and p = 0.1 MPa a width
Dq2 = 0.038 meV, which is comparable to the instrumental
resolution. To estimate the influence of rotational diffusion
on the measured QENS spectra we use the diffusion con-
stant for rotational diffusion [32], assuming that the protein
under consideration has spherical shape,

cr ¼
kBT
4pga3

: ð20Þ

Here a is the radius of the protein and g is the shear viscos-
ity of the solvent (water). For lysozyme, which has a radius
of a = 1.45 nm, one obtains cr = 1.06 · 108 s$1 at T =
293 K. This corresponds to a width of 7 · 10$5 meV, which
is far below the instrumental resolution. Rotational diffu-
sion needs therefore not be considered in the model.
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Within the model the intermediate scattering function
has the form

Iðq; tÞ ¼ expð$q2hx2iÞ
X1

n¼0

q2nhx2in

n!
Ea $½t=sn&að Þ; 0< a6 1;

ð10Þ

where sn is given by

sn ¼ sn$1=a: ð11Þ

Static correlation functions obtained from the model are
the same as for the standard OU process. In the context
of neutron scattering this concerns the elastic incoherent
structure factor (EISF),

EISFðqÞ ¼ lim
t!1

Iðq; tÞ ¼ expð$q2hx2iÞ; ð12Þ

which has Gaussian form. In reality the Gaussian approx-
imation holds strictly only for q ! 0 [30]. Calculating hx2i
via

hx2i ¼ $ lnðEISF½q&Þ=q2 ð13Þ

one obtains a strongly q-dependent position fluctuation.
Fig. 2 illustrates this aspect. Therefore, in the following
hx2i, as well as the parameters a and s of the fractional
OU process are considered q-dependent.

The dynamic structure factor associated with the inter-
mediate scattering function (10) reads

Sðq;xÞ ¼ expð$q2hx2iÞ dðxÞ þ
X1

n¼1

q2nhx2in

n!2p
La;snðxÞ

( )

;

ð14Þ

where La,s(Æ) is the generalized Lorentzian [22]

La;sðxÞ ¼
2s sinðap=2Þ

xs ðxsÞa þ 2 cosðap=2Þ þ ðxsÞ$að Þ
; 0 < a 6 1:

ð15Þ

4. Data analysis and results

4.1. Fitting simulated time correlation functions

The ‘‘natural’’ quantities for the analysis of MD simula-
tions are MSDs and time correlation functions, which can
be directly computed from the trajectories. In the present
study we used the MD analysis package nMoldyn for this
purpose [31]. To fit expressions (3) or (10) to the corre-
sponding simulated functions one needs thus to evaluate
functions of the type Ea($ta). We found the following pro-
cedure satisfactory. Starting from the decomposition (5) we
perform the variable change u = ka to obtain

Eað$taÞ ¼ 1

pa

Z 1

0

du
sinðpaÞ

u2 þ 2u cosðpaÞ þ 1
expð$u1=atÞ;

ð16Þ

where the integral is evaluated numerically. The variable
change k ! u leads to a well-behaved, non-singular inte-

grand and allows to compute Ea($ta) for large arguments
t, where the series expansion (4) converges extremely
slowly. The method can be tested for the special case
a = 1/2, for which an analytical solution is known:
E1=2ð$t1=2Þ ¼ expðtÞerfcð

ffiffi
t

p
Þ [25].

4.2. Fitting QENS spectra

The model introduced in Section 3 describes internal
protein dynamics and to be useful for the interpretation
of QENS spectra of protein solutions the effects of global
diffusion and of finite instrumental resolution must be
incorporated. Neglecting multiple scattering effects and
absorption, and assuming that global diffusion of the lyso-
zyme molecules and internal motions are decoupled, we
write the measured dynamic structure factor as convolu-
tion product (defining ðf ( gÞðxÞ ¼

Rþ1
$1 dx0f ðx$ x0Þ

gðx0Þ):

Smðq; tÞ ¼ ðS ( l ( rÞðxÞ: ð17Þ

Here S stands for the dynamic structure factor of the mod-
el, l is a Lorentzian describing translational diffusion (D is
the diffusion constant),

lðxÞ ¼ 1

p
Dq2

ðDq2Þ2 þ x2
ð18Þ

and r is the resolution function, which is well described by a
Gaussian,

rðxÞ ¼
exp $ x2

2r2

" #

ffiffiffiffiffiffi
2p

p
r

; ð19Þ

with r > 0 and a half width at half maximum (HWHM) of
DE ) 1.17r. Both r(Æ) and l(Æ) are normalized such thatRþ1
$1 dxrðxÞ ¼ 1 and

Rþ1
$1 dxlðxÞ ¼ 1.

From light scattering experiments one can estimate the
relevance of translational diffusion for QENS spectra. In
the work of Nystrom and Roots [10], which has been per-
formed in similar conditions, the diffusion coefficient at
p = 0.1 MPa and p = 300 MPa is found to be D =
1.45 · 10$4 nm2/ps and D = 1.25 · 10$4 nm2/ps, respec-
tively. The width of the corresponding Lorentzian being
Dq2, we obtain for q = 20 nm$1 and p = 0.1 MPa a width
Dq2 = 0.038 meV, which is comparable to the instrumental
resolution. To estimate the influence of rotational diffusion
on the measured QENS spectra we use the diffusion con-
stant for rotational diffusion [32], assuming that the protein
under consideration has spherical shape,

cr ¼
kBT
4pga3

: ð20Þ

Here a is the radius of the protein and g is the shear viscos-
ity of the solvent (water). For lysozyme, which has a radius
of a = 1.45 nm, one obtains cr = 1.06 · 108 s$1 at T =
293 K. This corresponds to a width of 7 · 10$5 meV, which
is far below the instrumental resolution. Rotational diffu-
sion needs therefore not be considered in the model.
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Within the model the intermediate scattering function
has the form

Iðq; tÞ ¼ expð$q2hx2iÞ
X1

n¼0

q2nhx2in

n!
Ea $½t=sn&að Þ; 0< a6 1;

ð10Þ

where sn is given by

sn ¼ sn$1=a: ð11Þ

Static correlation functions obtained from the model are
the same as for the standard OU process. In the context
of neutron scattering this concerns the elastic incoherent
structure factor (EISF),

EISFðqÞ ¼ lim
t!1

Iðq; tÞ ¼ expð$q2hx2iÞ; ð12Þ

which has Gaussian form. In reality the Gaussian approx-
imation holds strictly only for q ! 0 [30]. Calculating hx2i
via

hx2i ¼ $ lnðEISF½q&Þ=q2 ð13Þ

one obtains a strongly q-dependent position fluctuation.
Fig. 2 illustrates this aspect. Therefore, in the following
hx2i, as well as the parameters a and s of the fractional
OU process are considered q-dependent.

The dynamic structure factor associated with the inter-
mediate scattering function (10) reads

Sðq;xÞ ¼ expð$q2hx2iÞ dðxÞ þ
X1

n¼1

q2nhx2in

n!2p
La;snðxÞ

( )

;

ð14Þ

where La,s(Æ) is the generalized Lorentzian [22]

La;sðxÞ ¼
2s sinðap=2Þ

xs ðxsÞa þ 2 cosðap=2Þ þ ðxsÞ$að Þ
; 0 < a 6 1:

ð15Þ

4. Data analysis and results

4.1. Fitting simulated time correlation functions

The ‘‘natural’’ quantities for the analysis of MD simula-
tions are MSDs and time correlation functions, which can
be directly computed from the trajectories. In the present
study we used the MD analysis package nMoldyn for this
purpose [31]. To fit expressions (3) or (10) to the corre-
sponding simulated functions one needs thus to evaluate
functions of the type Ea($ta). We found the following pro-
cedure satisfactory. Starting from the decomposition (5) we
perform the variable change u = ka to obtain

Eað$taÞ ¼ 1

pa

Z 1

0

du
sinðpaÞ

u2 þ 2u cosðpaÞ þ 1
expð$u1=atÞ;

ð16Þ

where the integral is evaluated numerically. The variable
change k ! u leads to a well-behaved, non-singular inte-

grand and allows to compute Ea($ta) for large arguments
t, where the series expansion (4) converges extremely
slowly. The method can be tested for the special case
a = 1/2, for which an analytical solution is known:
E1=2ð$t1=2Þ ¼ expðtÞerfcð

ffiffi
t

p
Þ [25].

4.2. Fitting QENS spectra

The model introduced in Section 3 describes internal
protein dynamics and to be useful for the interpretation
of QENS spectra of protein solutions the effects of global
diffusion and of finite instrumental resolution must be
incorporated. Neglecting multiple scattering effects and
absorption, and assuming that global diffusion of the lyso-
zyme molecules and internal motions are decoupled, we
write the measured dynamic structure factor as convolu-
tion product (defining ðf ( gÞðxÞ ¼

Rþ1
$1 dx0f ðx$ x0Þ

gðx0Þ):

Smðq; tÞ ¼ ðS ( l ( rÞðxÞ: ð17Þ

Here S stands for the dynamic structure factor of the mod-
el, l is a Lorentzian describing translational diffusion (D is
the diffusion constant),

lðxÞ ¼ 1

p
Dq2

ðDq2Þ2 þ x2
ð18Þ

and r is the resolution function, which is well described by a
Gaussian,

rðxÞ ¼
exp $ x2

2r2

" #

ffiffiffiffiffiffi
2p

p
r

; ð19Þ

with r > 0 and a half width at half maximum (HWHM) of
DE ) 1.17r. Both r(Æ) and l(Æ) are normalized such thatRþ1
$1 dxrðxÞ ¼ 1 and

Rþ1
$1 dxlðxÞ ¼ 1.

From light scattering experiments one can estimate the
relevance of translational diffusion for QENS spectra. In
the work of Nystrom and Roots [10], which has been per-
formed in similar conditions, the diffusion coefficient at
p = 0.1 MPa and p = 300 MPa is found to be D =
1.45 · 10$4 nm2/ps and D = 1.25 · 10$4 nm2/ps, respec-
tively. The width of the corresponding Lorentzian being
Dq2, we obtain for q = 20 nm$1 and p = 0.1 MPa a width
Dq2 = 0.038 meV, which is comparable to the instrumental
resolution. To estimate the influence of rotational diffusion
on the measured QENS spectra we use the diffusion con-
stant for rotational diffusion [32], assuming that the protein
under consideration has spherical shape,

cr ¼
kBT
4pga3

: ð20Þ

Here a is the radius of the protein and g is the shear viscos-
ity of the solvent (water). For lysozyme, which has a radius
of a = 1.45 nm, one obtains cr = 1.06 · 108 s$1 at T =
293 K. This corresponds to a width of 7 · 10$5 meV, which
is far below the instrumental resolution. Rotational diffu-
sion needs therefore not be considered in the model.
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Within the model the intermediate scattering function
has the form

Iðq; tÞ ¼ expð$q2hx2iÞ
X1

n¼0

q2nhx2in

n!
Ea $½t=sn&að Þ; 0< a6 1;

ð10Þ

where sn is given by

sn ¼ sn$1=a: ð11Þ

Static correlation functions obtained from the model are
the same as for the standard OU process. In the context
of neutron scattering this concerns the elastic incoherent
structure factor (EISF),

EISFðqÞ ¼ lim
t!1

Iðq; tÞ ¼ expð$q2hx2iÞ; ð12Þ

which has Gaussian form. In reality the Gaussian approx-
imation holds strictly only for q ! 0 [30]. Calculating hx2i
via

hx2i ¼ $ lnðEISF½q&Þ=q2 ð13Þ

one obtains a strongly q-dependent position fluctuation.
Fig. 2 illustrates this aspect. Therefore, in the following
hx2i, as well as the parameters a and s of the fractional
OU process are considered q-dependent.

The dynamic structure factor associated with the inter-
mediate scattering function (10) reads

Sðq;xÞ ¼ expð$q2hx2iÞ dðxÞ þ
X1

n¼1

q2nhx2in

n!2p
La;snðxÞ

( )

;

ð14Þ

where La,s(Æ) is the generalized Lorentzian [22]

La;sðxÞ ¼
2s sinðap=2Þ

xs ðxsÞa þ 2 cosðap=2Þ þ ðxsÞ$að Þ
; 0 < a 6 1:

ð15Þ

4. Data analysis and results

4.1. Fitting simulated time correlation functions

The ‘‘natural’’ quantities for the analysis of MD simula-
tions are MSDs and time correlation functions, which can
be directly computed from the trajectories. In the present
study we used the MD analysis package nMoldyn for this
purpose [31]. To fit expressions (3) or (10) to the corre-
sponding simulated functions one needs thus to evaluate
functions of the type Ea($ta). We found the following pro-
cedure satisfactory. Starting from the decomposition (5) we
perform the variable change u = ka to obtain

Eað$taÞ ¼ 1

pa

Z 1

0

du
sinðpaÞ

u2 þ 2u cosðpaÞ þ 1
expð$u1=atÞ;

ð16Þ

where the integral is evaluated numerically. The variable
change k ! u leads to a well-behaved, non-singular inte-

grand and allows to compute Ea($ta) for large arguments
t, where the series expansion (4) converges extremely
slowly. The method can be tested for the special case
a = 1/2, for which an analytical solution is known:
E1=2ð$t1=2Þ ¼ expðtÞerfcð

ffiffi
t

p
Þ [25].

4.2. Fitting QENS spectra

The model introduced in Section 3 describes internal
protein dynamics and to be useful for the interpretation
of QENS spectra of protein solutions the effects of global
diffusion and of finite instrumental resolution must be
incorporated. Neglecting multiple scattering effects and
absorption, and assuming that global diffusion of the lyso-
zyme molecules and internal motions are decoupled, we
write the measured dynamic structure factor as convolu-
tion product (defining ðf ( gÞðxÞ ¼

Rþ1
$1 dx0f ðx$ x0Þ

gðx0Þ):

Smðq; tÞ ¼ ðS ( l ( rÞðxÞ: ð17Þ

Here S stands for the dynamic structure factor of the mod-
el, l is a Lorentzian describing translational diffusion (D is
the diffusion constant),

lðxÞ ¼ 1

p
Dq2

ðDq2Þ2 þ x2
ð18Þ

and r is the resolution function, which is well described by a
Gaussian,

rðxÞ ¼
exp $ x2

2r2
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ffiffiffiffiffiffi
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p
r

; ð19Þ

with r > 0 and a half width at half maximum (HWHM) of
DE ) 1.17r. Both r(Æ) and l(Æ) are normalized such thatRþ1
$1 dxrðxÞ ¼ 1 and

Rþ1
$1 dxlðxÞ ¼ 1.

From light scattering experiments one can estimate the
relevance of translational diffusion for QENS spectra. In
the work of Nystrom and Roots [10], which has been per-
formed in similar conditions, the diffusion coefficient at
p = 0.1 MPa and p = 300 MPa is found to be D =
1.45 · 10$4 nm2/ps and D = 1.25 · 10$4 nm2/ps, respec-
tively. The width of the corresponding Lorentzian being
Dq2, we obtain for q = 20 nm$1 and p = 0.1 MPa a width
Dq2 = 0.038 meV, which is comparable to the instrumental
resolution. To estimate the influence of rotational diffusion
on the measured QENS spectra we use the diffusion con-
stant for rotational diffusion [32], assuming that the protein
under consideration has spherical shape,

cr ¼
kBT
4pga3

: ð20Þ

Here a is the radius of the protein and g is the shear viscos-
ity of the solvent (water). For lysozyme, which has a radius
of a = 1.45 nm, one obtains cr = 1.06 · 108 s$1 at T =
293 K. This corresponds to a width of 7 · 10$5 meV, which
is far below the instrumental resolution. Rotational diffu-
sion needs therefore not be considered in the model.
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meters are very similar to the ones found by imposing hx2i
obtained from the EISF. In view of these findings the fitted
values for a and s for the MSD at p = 300 MPa, which
have been published in [35], must be considered erroneous.

Fig. 4 shows the intermediate scattering function and
the fitted model for q = 6 nm!1 and q = 20 nm!1 for the
two pressures of p = 0.1 MPa and p = 300 MPa, respec-
tively. The corresponding model parameters are listed in
Table 3. The fits were performed with expression (10),
using eight terms in the sum. As already indicated, I(q, t)
has been fitted by using the q-dependent position fluctua-
tions shown in Fig. 2.

Fig. 5 displays experimental QENS spectra at q =
20 nm!1 and the corresponding fit of expression (21),
which accounts for finite instrumental resolution and for
free translational diffusion of the lysozyme molecules in
the solution. As for the fits of the simulated intermediate
scattering functions, the position fluctuations have been
read off from Fig. 2. The fit parameters a, s and the diffu-
sion coefficient D are given in Table 4 for two q-values:
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Fig. 4. Fit of the simulated incoherent dynamic structure factor (solid
lines) with expression (10) (broken lines) for p = 0.1 MPa (upper part) and
p = 300 MPa (lower part). The parameters are given in Table 3.
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Fig. 5. Log–log plot of experimental QENS spectra for q = 20 nm!1

(bullets) at ambient pressure (top) and at p = 300 MPa (bottom) as a
function of x (angular frequency). The solid lines represent the fits of the
analytical model defined in Eq. (14) using the parameters given in Table 4.

Table 4
Parameters obtained from a fit of expression (21) to the experimental
QENS spectra

Sinc(20 nm
!1,x) Sinc(22 nm

!1,x)

0.1 MPa hx2i (nm2) 2.57 · 10!3 2.41 · 10!3

a 0.35(2) 0.40(2)
s (ps) 3(2) 3(1)
D ðnm2 ps!1Þ 0.53(3) · 10!4

300 MPa hx2i (nm2) 2.21 · 10!3 2.08 · 10!3

a 0.52(1) 0.55(1)
s (ps) 5.2(2) 4.7(3)
D ðnm2 ps!1Þ 0.50(3) · 10!4

The value of hx2i is fixed according to Eq. (13).
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meters are very similar to the ones found by imposing hx2i
obtained from the EISF. In view of these findings the fitted
values for a and s for the MSD at p = 300 MPa, which
have been published in [35], must be considered erroneous.

Fig. 4 shows the intermediate scattering function and
the fitted model for q = 6 nm!1 and q = 20 nm!1 for the
two pressures of p = 0.1 MPa and p = 300 MPa, respec-
tively. The corresponding model parameters are listed in
Table 3. The fits were performed with expression (10),
using eight terms in the sum. As already indicated, I(q, t)
has been fitted by using the q-dependent position fluctua-
tions shown in Fig. 2.

Fig. 5 displays experimental QENS spectra at q =
20 nm!1 and the corresponding fit of expression (21),
which accounts for finite instrumental resolution and for
free translational diffusion of the lysozyme molecules in
the solution. As for the fits of the simulated intermediate
scattering functions, the position fluctuations have been
read off from Fig. 2. The fit parameters a, s and the diffu-
sion coefficient D are given in Table 4 for two q-values:
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Table 4
Parameters obtained from a fit of expression (21) to the experimental
QENS spectra

Sinc(20 nm
!1,x) Sinc(22 nm

!1,x)

0.1 MPa hx2i (nm2) 2.57 · 10!3 2.41 · 10!3

a 0.35(2) 0.40(2)
s (ps) 3(2) 3(1)
D ðnm2 ps!1Þ 0.53(3) · 10!4

300 MPa hx2i (nm2) 2.21 · 10!3 2.08 · 10!3

a 0.52(1) 0.55(1)
s (ps) 5.2(2) 4.7(3)
D ðnm2 ps!1Þ 0.50(3) · 10!4

The value of hx2i is fixed according to Eq. (13).
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meters are very similar to the ones found by imposing hx2i
obtained from the EISF. In view of these findings the fitted
values for a and s for the MSD at p = 300 MPa, which
have been published in [35], must be considered erroneous.

Fig. 4 shows the intermediate scattering function and
the fitted model for q = 6 nm!1 and q = 20 nm!1 for the
two pressures of p = 0.1 MPa and p = 300 MPa, respec-
tively. The corresponding model parameters are listed in
Table 3. The fits were performed with expression (10),
using eight terms in the sum. As already indicated, I(q, t)
has been fitted by using the q-dependent position fluctua-
tions shown in Fig. 2.

Fig. 5 displays experimental QENS spectra at q =
20 nm!1 and the corresponding fit of expression (21),
which accounts for finite instrumental resolution and for
free translational diffusion of the lysozyme molecules in
the solution. As for the fits of the simulated intermediate
scattering functions, the position fluctuations have been
read off from Fig. 2. The fit parameters a, s and the diffu-
sion coefficient D are given in Table 4 for two q-values:
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D ðnm2 ps!1Þ 0.50(3) · 10!4

The value of hx2i is fixed according to Eq. (13).
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meters are very similar to the ones found by imposing hx2i
obtained from the EISF. In view of these findings the fitted
values for a and s for the MSD at p = 300 MPa, which
have been published in [35], must be considered erroneous.

Fig. 4 shows the intermediate scattering function and
the fitted model for q = 6 nm!1 and q = 20 nm!1 for the
two pressures of p = 0.1 MPa and p = 300 MPa, respec-
tively. The corresponding model parameters are listed in
Table 3. The fits were performed with expression (10),
using eight terms in the sum. As already indicated, I(q, t)
has been fitted by using the q-dependent position fluctua-
tions shown in Fig. 2.

Fig. 5 displays experimental QENS spectra at q =
20 nm!1 and the corresponding fit of expression (21),
which accounts for finite instrumental resolution and for
free translational diffusion of the lysozyme molecules in
the solution. As for the fits of the simulated intermediate
scattering functions, the position fluctuations have been
read off from Fig. 2. The fit parameters a, s and the diffu-
sion coefficient D are given in Table 4 for two q-values:
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Within the model the intermediate scattering function
has the form

Iðq; tÞ ¼ expð$q2hx2iÞ
X1

n¼0

q2nhx2in

n!
Ea $½t=sn&að Þ; 0< a6 1;

ð10Þ

where sn is given by

sn ¼ sn$1=a: ð11Þ

Static correlation functions obtained from the model are
the same as for the standard OU process. In the context
of neutron scattering this concerns the elastic incoherent
structure factor (EISF),

EISFðqÞ ¼ lim
t!1

Iðq; tÞ ¼ expð$q2hx2iÞ; ð12Þ

which has Gaussian form. In reality the Gaussian approx-
imation holds strictly only for q ! 0 [30]. Calculating hx2i
via

hx2i ¼ $ lnðEISF½q&Þ=q2 ð13Þ

one obtains a strongly q-dependent position fluctuation.
Fig. 2 illustrates this aspect. Therefore, in the following
hx2i, as well as the parameters a and s of the fractional
OU process are considered q-dependent.

The dynamic structure factor associated with the inter-
mediate scattering function (10) reads

Sðq;xÞ ¼ expð$q2hx2iÞ dðxÞ þ
X1

n¼1

q2nhx2in

n!2p
La;snðxÞ

( )

;

ð14Þ

where La,s(Æ) is the generalized Lorentzian [22]

La;sðxÞ ¼
2s sinðap=2Þ

xs ðxsÞa þ 2 cosðap=2Þ þ ðxsÞ$að Þ
; 0 < a 6 1:

ð15Þ

4. Data analysis and results

4.1. Fitting simulated time correlation functions

The ‘‘natural’’ quantities for the analysis of MD simula-
tions are MSDs and time correlation functions, which can
be directly computed from the trajectories. In the present
study we used the MD analysis package nMoldyn for this
purpose [31]. To fit expressions (3) or (10) to the corre-
sponding simulated functions one needs thus to evaluate
functions of the type Ea($ta). We found the following pro-
cedure satisfactory. Starting from the decomposition (5) we
perform the variable change u = ka to obtain

Eað$taÞ ¼ 1

pa

Z 1

0

du
sinðpaÞ

u2 þ 2u cosðpaÞ þ 1
expð$u1=atÞ;

ð16Þ

where the integral is evaluated numerically. The variable
change k ! u leads to a well-behaved, non-singular inte-

grand and allows to compute Ea($ta) for large arguments
t, where the series expansion (4) converges extremely
slowly. The method can be tested for the special case
a = 1/2, for which an analytical solution is known:
E1=2ð$t1=2Þ ¼ expðtÞerfcð

ffiffi
t

p
Þ [25].

4.2. Fitting QENS spectra

The model introduced in Section 3 describes internal
protein dynamics and to be useful for the interpretation
of QENS spectra of protein solutions the effects of global
diffusion and of finite instrumental resolution must be
incorporated. Neglecting multiple scattering effects and
absorption, and assuming that global diffusion of the lyso-
zyme molecules and internal motions are decoupled, we
write the measured dynamic structure factor as convolu-
tion product (defining ðf ( gÞðxÞ ¼

Rþ1
$1 dx0f ðx$ x0Þ

gðx0Þ):

Smðq; tÞ ¼ ðS ( l ( rÞðxÞ: ð17Þ

Here S stands for the dynamic structure factor of the mod-
el, l is a Lorentzian describing translational diffusion (D is
the diffusion constant),

lðxÞ ¼ 1

p
Dq2

ðDq2Þ2 þ x2
ð18Þ

and r is the resolution function, which is well described by a
Gaussian,

rðxÞ ¼
exp $ x2

2r2

" #

ffiffiffiffiffiffi
2p

p
r

; ð19Þ

with r > 0 and a half width at half maximum (HWHM) of
DE ) 1.17r. Both r(Æ) and l(Æ) are normalized such thatRþ1
$1 dxrðxÞ ¼ 1 and

Rþ1
$1 dxlðxÞ ¼ 1.

From light scattering experiments one can estimate the
relevance of translational diffusion for QENS spectra. In
the work of Nystrom and Roots [10], which has been per-
formed in similar conditions, the diffusion coefficient at
p = 0.1 MPa and p = 300 MPa is found to be D =
1.45 · 10$4 nm2/ps and D = 1.25 · 10$4 nm2/ps, respec-
tively. The width of the corresponding Lorentzian being
Dq2, we obtain for q = 20 nm$1 and p = 0.1 MPa a width
Dq2 = 0.038 meV, which is comparable to the instrumental
resolution. To estimate the influence of rotational diffusion
on the measured QENS spectra we use the diffusion con-
stant for rotational diffusion [32], assuming that the protein
under consideration has spherical shape,

cr ¼
kBT
4pga3

: ð20Þ

Here a is the radius of the protein and g is the shear viscos-
ity of the solvent (water). For lysozyme, which has a radius
of a = 1.45 nm, one obtains cr = 1.06 · 108 s$1 at T =
293 K. This corresponds to a width of 7 · 10$5 meV, which
is far below the instrumental resolution. Rotational diffu-
sion needs therefore not be considered in the model.
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Fractional BD and solvent

Simulation study of 
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“Superdiffusion” - another type of anomalous diffusion

[1]

[1] C.P. Bacher et al. 4d single particle tracking of synthetic and proteinacous microspheres reveals preferential movement 
     of nuclear particles along chromatin - poor tracks. BMC Cell Biology, 5:45, 2004.
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A simple explanation for “superdiffusion”

Dear Spencer,

I read with a lot of interest your manuscript entitled Real time imaging and
automated 3D tracking of cytoplasmic and nuclear HIV-1 complexes.

Here are some comments and more questions:

1. You fitted the microtubuli-directed MSD of the virus particles with a
polynomial of order two, saying that this indicates directed movement.
Which means “directed” in this context ? The fact that the motion is
along a given curve – a microtubulus, or that there is a systematic drift
? Only in the second case I see a reason for “superdiffusive motion”,
where the MSD grows stronger that∝ t. What kind of diffusive process
do you assume ?
I made a simple calculation for a Brownian particle diffusing (continu-
ous small-step diffusion) in x-direction under the influence of a constant
force, F0. In this case I obtain a an polynomial of order two for the MSD,

〈[x(t)− x(0)]2〉 = 2Dt + v2
Dt2,

where D is the Diffusion coefficient and vD is the drift velocity on ac-
count of the external force F0,

vD =
DF0

kBT
.

Here kB is the Boltzmann constant and T the temperature in K. In the
limit D → 0 one obtaines the MSD for a particle in free flight.

2. How do you subtract a possible motion of the cell as a whole ? In case
you had a very slow, unwanted, diffusion of the whole cell, where the
observation time scale is not much longer than the relaxation time 1/γ of
the cell velocity, then

〈[x(t)− x(0)]2〉 = 2D
(

t− 1
γ

[1− exp(−γt)]
)

.

Here the diffusion is given by D = kBT
Mγ , where M is the mass of the

diffusing cell. For long times t & γ−1 the Einstein diffusion regime is
retrieved,

〈[x(t)− x(0)]2〉 ≈ 2Dt.

For small times t ( γ−1, in contrast, you obtain a parabolic form for the
MSD – similar as for directed motion, with the drift velocity replaced by
the thermal velocity vth =

√
kBT/M ,

〈[x(t)− x(0)]2〉 ≈ v2
tht2,

Can you exclude that you see also unwanted diffusion of the cell as a
whole?

3. Which model did you use to fit the MSD for confined diffusion in the
cell nucleus (Fig. 3) ?
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“Subdiffusion” could be explained by 
anomalous, fractinal Brownian dynamics in a 
crowded environment.

Drift under the influence of 
a constant external force
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5.4.1. Langevin equation and Fokker-Planck equation. Here the motion is
strongly overdamped and the acceleration term in the Langevin equa-
tion (IV.96) can be neglected,

γ · dx

dt
+ κ · x = fs(t). (IV.120)

In view of numerical applications it is convenient to consider mass- and
friction-weighted coordinates and stochastic forces, which are defined through

x̃ = γ1/2 · x, f̃s(t) = γ−1/2 · fs(t). (IV.121)

Introducing the matrices

η̃ = γ−1/2 · κ · γ−1/2, D̃ = kBT1. (IV.122)

the stochastic equation of motion becomes

dx̃

dt
+ η̃ · x̃ = f̃s(t) (IV.123)

where the mass- and friction-weighted stochastic force has the properties

〈f̃s(t)〉 = 0, 〈f̃s(t) · f̃T
s (t′)〉 = 2D̃ δ(t − t′) (IV.124)

The Fokker-Planck equation leading to the above equation of motion de-
scribes a multi-component Ornstein-Uhlenbeck process. In terms of mass- and
friction-weighted coordinates, where the fluctuation (diffusion) matrix is pro-
portional to the unit matrix, the corresponding Fokker-Planck equation reads

∂P (x̃, t)

∂t
=

∂

∂x̃
·
{

η̃ · x̃P (x̃, t)
}

+ kBT
∂

∂x̃
· ∂

∂x̃
P (x̃, t) (IV.125)

5.4.2. Correlation functions – Brownian modes. From the Gaussian solution
of the above Fokker-Planck equation we obtain position correlation matrix

cx̃x̃(t) = G(t) · 〈x̃ · x̃T 〉 (IV.126)

where the propagator is the matrix exponential

G(t) = exp(−η̃t) (IV.127)

and the position fluctuation matrix can be expressed as well in terms of η̃,

〈x̃ · x̃T 〉 = kBT η̃−1 (IV.128)

The fact that the propagator and the position fluctuation matrix are both
expressed in terms of the same matrix η̃ leads to a simple spectral decompo-
sition of the correlation matrix. The matrix η̃ plays thus the same role as the
force constant matrix κ in the case of vanishing friction. Since κ can be written
as η̃ = UT · U, where U = γ−1/2 · κ1/2, and γ as well as κ are positive definite,
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the same is true for η̃. In analogy with normal modes we can thus introduce
Brownian modes {uν} through

η̃ · uν = λνuν , ν = 1, . . . , 3N (IV.129)

The Brownian modes form an form an orthonormal basis, with uµ · uν = δµν .
One has thus the spectral decompositions

η̃ =
3N∑

ν=1

λνuν · uT
ν , {λν > 0}. (IV.130)

for η̃ and

G(t) =
3N∑

ν=1

exp(−λνt)uν · uT
ν (IV.131)

for the propagator. Using the orthogonality of the Brownian modes we obtain
from (IV.126)

cx̃x̃(t) = kBT
3N∑

ν=1

exp(−λνt)

λν
uν · uT

ν (IV.132)

for the mass- and friction-weighted position correlation matrix. The corre-
lation matrix of the mass- but not friction-weighted positions can be recon-
structed via

cxx(t) = γ−1/2 · cx̃x̃(t) · γ−1/2 (IV.133)

In order to compute the intermediate scattering function we redefine the
vectors Q(i) introduced in Eq. (IV.108)

Q(i) · x = m−1/2
i q · xi (IV.134)

and use the general expression (IV.109) and relation (IV.107) which expresses
the tensorial mean square displacement in terms of the correlation matrix.
With (IV.133) and (IV.132) we obtain

Iinc(q, t) =
1

N

N∑

i=1

|bi,inc|2 exp

(
−kBT

3N∑

ν=1

(1− exp[−λνt])

λν
(QT

i · γ−1/2 · uν)
2

)

(IV.135)
and the corresponding EISF reads

EISF (q) =
1

N

N∑

i=1

|bi,inc|2 exp

(
−kBT

3N∑

ν=1

λ−1
ν (QT

i · γ−1/2 · uν)
2

)
(IV.136)

It is easy to see that the EISF is the same as for vibrational motion, which
must be the case since static properties are described by the force constant

118 4. PROTEIN DYNAMICS

the same is true for η̃. In analogy with normal modes we can thus introduce
Brownian modes {uν} through

η̃ · uν = λνuν , ν = 1, . . . , 3N (IV.129)

The Brownian modes form an form an orthonormal basis, with uµ · uν = δµν .
One has thus the spectral decompositions

η̃ =
3N∑

ν=1

λνuν · uT
ν , {λν > 0}. (IV.130)

for η̃ and

G(t) =
3N∑

ν=1

exp(−λνt)uν · uT
ν (IV.131)

for the propagator. Using the orthogonality of the Brownian modes we obtain
from (IV.126)

cx̃x̃(t) = kBT
3N∑

ν=1

exp(−λνt)

λν
uν · uT

ν (IV.132)

for the mass- and friction-weighted position correlation matrix. The corre-
lation matrix of the mass- but not friction-weighted positions can be recon-
structed via

cxx(t) = γ−1/2 · cx̃x̃(t) · γ−1/2 (IV.133)

In order to compute the intermediate scattering function we redefine the
vectors Q(i) introduced in Eq. (IV.108)

Q(i) · x = m−1/2
i q · xi (IV.134)

and use the general expression (IV.109) and relation (IV.107) which expresses
the tensorial mean square displacement in terms of the correlation matrix.
With (IV.133) and (IV.132) we obtain

Iinc(q, t) =
1

N

N∑

i=1

|bi,inc|2 exp

(
−kBT

3N∑

ν=1

(1− exp[−λνt])

λν
(QT

i · γ−1/2 · uν)
2

)

(IV.135)
and the corresponding EISF reads

EISF (q) =
1

N

N∑

i=1

|bi,inc|2 exp

(
−kBT

3N∑

ν=1

λ−1
ν (QT

i · γ−1/2 · uν)
2

)
(IV.136)

It is easy to see that the EISF is the same as for vibrational motion, which
must be the case since static properties are described by the force constant



5. AN EFFECTIVE HARMONIC MODEL FOR PROTEIN DYNAMICS 111

x

U(x)

potential surface

local minimum harmonic approximation

effective harmonic potential approximation

FIGURE IV.16. Sketch of a harmonic double-well model for the
protein energy landscape.

where each each residue (amino acid) in a protein is represented by a mass
point, whose position coincides with the position of the respective Cα-atom –
see Fig. IV.15. In the following it will be shown that protein dynamics on the
residue level around a single native state is well described by a set of coupled
Langevin oscillators [62]. From that description one can obtain a discrete re-
laxation spectrum which has a similar qualitative behaviour as the relaxation
spectrum for the fractional Ornstein-Uhlenbeck process, which is given by ex-
pression (IV.155).

5.1. Double harmonic energy well. In order to describe protein dynamics
on the coarse-grained residue level we imagine two types of motions for the
point-like residues:

(1) Vibrations of finite life time in a local minimum of the potential energy
surface, which is approximated by a multidimensional parabola. The
local minimum of the potential energy is representative for one of the
many energetically almost equivalent conformational substates [56] in
which the protein can be in.

Effective harmonic potential
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FIGURE IV.17. Fit of a distance-dependent force constant to be
used with the empirical force law (IV.144).

and allows to determine y as a function of x, which is re-inserted into expres-
sion (IV.138) and yields a quadratic expression in x only,

Uloc(x) =
1

2
xT · Kloc · x (IV.142)

The reduced force matrix Kloc has the form

Kloc = Kxx −Kxy · K−1
yy · Kyx (IV.143)

In principle, the above calculation must be made for each protein, but this
problem can be circumvented by fitting the same empirical form to Uloc(x),
which was used earlier in Section 1.1.2, Eq. (IV.2), on the atomic level:

Uloc(x) =
1

2

∑

ij

k(|R(eq)
ij |)

(∣∣∣R(eq)
ij + xij

∣∣∣−
∣∣∣R(eq)

ij

∣∣∣
)2

(IV.144)

Here Rij = Ri − Rj etc. and k(r) is an empirical, distance-dependent force
constant, which depend on the equilibrium distances R(eq)

ij . In [62] we found
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(2) Purely diffusive motion in a global potential with a single minimum,
which is described as well in a harmonic approximation. The global
potential can be considered as an envelope potential for the true poten-
tial energy surface, and the presence of a single global minimum indi-
cates that the protein under consideration does not perform thermally
activated transitions between different well separated global minima
– for example allosteric transitions. The multiple transitions of the
residue conformations between slightly different conformational sub-
states, which are ongoing in reality, are resumed as diffusion process.

A schematic view of the model for the potential energy surface is shown in
Fig. IV.16.

The second approximation is that the envelope potential is just a copy of
the local harmonic potential where the curvature is reduced by a global scaling
parameter

Uglob(x) = λUloc(x), 0 < λ < 1 (IV.89)

Here we define x to be a 3N -dimensional column vector containing for all
(point-like residues) the position differences between the given conformation
R of the protein residues and the equilibrium conformation R

(eq), where the
potential energy takes its minimum value,

R = R
(eq)

+ x. (IV.90)

In the following we will use Latin indices to label the positions of individual
residues, i.e. , Ri, xi, etc. The bars in Ri etc. indicate that the corresponding
position are mean positions, referring to a centroid rather to an individual atom.
As already indicated, the centroids are here the Cα-atoms of the respective
residues.

A further bold assumption we use in the following is that the motions in
the local and global potential energy well, respectively, are not correlated. The
incoherent intermediate scattering function, which will be considered later,
has thus the form

I(q, t) = Ivib(q, t)IOU(q, t) (IV.91)

where “vib” indicates vibrational motions and “OU” the Ornstein-Uhlenbeck
process as dynamical model. In the following only the incoherent intermediate
scattering functions will be considered.

5.2. Langevin model.
5.2.1. Fokker-Planck equation and Langevin equation. Both the local weekly

damped vibrational motions and the diffusion in the harmonic envelope po-
tential can be derived from a multi-component Ornstein-Uhlenbeck process in
phase space. For one-dimensional motion the corresponding Fokker-Planck
equation has been discussed in Chapter 2, Section 9. The general form of the
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constant, which depend on the equilibrium distances R(eq)

ij . In [62] we found



Adapting the scaling parameter
122 4. PROTEIN DYNAMICS

0 100 200 300
Residue number

0

0.01

0.02

0.03

0.04

F
lu

c
tu

a
ti
o
n
s
 [
n
m

2
]

Scaled normal modes
Molecular Dynamics

FIGURE IV.19. Position fluctuations of the residues (Cα-atoms)
in C-phycocyanin from scaled effective normal modes, and MD
simulation.

in [62]. A seemingly contra-intuitive observation is that the friction is low in
regions of the protein which are in contact with the solvent. Usually friction
is associated to the solvent – like in the Langevin model –, but this is simply
since a Brownian particle is considered as a rigid object with no internal de-
grees of freedom. In a protein simulation atoms in the core of the protein are
treated in the same way as atoms on its surface, and what matters for friction is
the frequency of collisions with neighbouring atoms, no matter if these neigh-
bours are in the solvent or in the protein. The frequency of collisions, and thus
the friction will increase with the atomic density around a given atom. In the
coarse-grained model discussed here one has to consider the atomic density
around the Cα-atoms of the respective residues. The right part of Fig. IV.18
shows the figure shows, friction grows approximately linearly with the atomic
density. Having these considerations in mind, it is not surprising that the fric-
tion is higher in the core of a protein, where the atomic density is maximal,
than on the solvent-exposed surface.
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5.7. Application to C-phycocyanin. We will now see, how the coarse-
grained Langevin model works for a dimer of C-phycocyanin, comparing
the position fluctuations and the incoherent intermediate scattering function
predicted by the model with those obtained from MD simulations [62]. C-
phycocyanin forms the light-conducting antennas which direct photons to the
photosynthetic reaction centres in cyanobacteria. Using appropriate living
conditions for the bacteria which express this protein, the latter can be pro-
duced in completely deuterated form, where all hydrogen atoms are replaced
by deuterium (H → D). This feature is interesting for incoherent neutron
scattering experiments, since deuteration allows to mask the protein, and to
measure essentially incoherent scattering from the surrounding water [65].

The system used for the study presented here consists of two peptide
chains, each containing 174 amino acids. The simulation details are described
in [62] and are not important here, and we mention only the length of the sim-
ulation, which was 1.6 ns.

5.7.1. Position fluctuations. As indicated in Eq. (IV.89) we suppose that the
global envelope potential and the potential in a local minimum, which are
schematically depicted in Fig. IV.16, are related by a single scaling factor,
0 < λ < 1. The latter is a free parameter in the model and must be adapted by
comparing the position fluctuations of the model with those obtained directly
from MD simulations. The local potential function is computed by using the
effective harmonic approximation (IV.144). It is worthwhile to recall that the
latter has not been derived for the same protein, but for crambin, which has
only 46 amino acids. In contrast, the friction matrix has been constructed for
the same protein, and we remark here that preliminary studies have shown
that a corresponding transferrable model can be obtained from the linear rela-
tion between the friction constant and the atomic density, which is shown in
the right part of Fig. IV.18.

We consider first the position fluctuation of the residues, which are static
averages and do not depend on the friction matrix, as shows (Eq. IV.128).
Fig. IV.19 shows the comparison of the residue (Cα-atom) position fluctuations
in the simulated C-phycocyanin dimer obtained from the global harmonic po-
tential defined thriugh relation (IV.89), where a scaling factor of

λ = 0.115 (IV.147)

has been used. The plot shows that the effective harmonic model is very rea-
sonable, although quite drastic approximations were made.

5.7.2. Intermediate scattering function. Let us now turn to the analysis of the
incoherent scattering function, which is computed according to the product
ansatz (IV.91). Both the vibrational and the diffusional component are com-
puted according to the general expression (IV.109), where the tensorial mean
square displacement can be expressed in terms of the correlation matrix, using
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FIGURE IV.18. Left: Distribution of friction constants in a C-
phycocyanin dimer. Blue, green, red correspond respectively to
low, medium and high friction. Right: Linear fit of the residue
friction constant as a function of atomic density[62].

that k ∝ r for distances up to 0.4 nm and k ∝ r−6 for larger distances – see
Fig. IV.17. It is worthwhile noting that 0.4 nm correspond to the the distance
between the Cα-atoms of consecutive residues in a polypeptide chain. The
calculations have been made with crambin, a very small protein composed of
only 46 amino acids.

5.6. Constructing the friction matrix. In the following we will consider
an empirical model for the friction matrix, where the latter is assumed to be
diagonal [62] and each residue is assigned a friction constant. Setting γi = γi1,
where γi is the friction constant assigned to residue i and 1 is the 3 × 3 unit
matrix, we have

γ =





γ1 0 . . . 0
0 γ2 . . . 0
...

... . . . ...
0 0 . . . γN



 . (IV.145)

To obtain the friction constant for each residue, the latter are considered
as Langevin oscillators and expression (I.57) is fitted to the mean-square dis-
placement calculated from the MD trajectory of the corresponding Cα-atom.
The factor kBT/(Mω2

0) = 〈x2〉 is here fixed by a numerical value for the posi-
tion fluctuation 〈u2〉, which is computed separately. For short times the model
mean square displacement may be written as

W (t) ≈ 2〈u2〉γt (IV.146)
and γ can be obtained from a linear fit to the mean square displacement for
t < γ−1. The left part of Fig. IV.18 shows the distribution of the residue fric-
tion friction constants in a C-phycocyanin dimer. The simulation is described
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FIGURE IV.16. Sketch of a harmonic double-well model for the
protein energy landscape.

where each each residue (amino acid) in a protein is represented by a mass
point, whose position coincides with the position of the respective Cα-atom –
see Fig. IV.15. In the following it will be shown that protein dynamics on the
residue level around a single native state is well described by a set of coupled
Langevin oscillators [62]. From that description one can obtain a discrete re-
laxation spectrum which has a similar qualitative behaviour as the relaxation
spectrum for the fractional Ornstein-Uhlenbeck process, which is given by ex-
pression (IV.155).

5.1. Double harmonic energy well. In order to describe protein dynamics
on the coarse-grained residue level we imagine two types of motions for the
point-like residues:

(1) Vibrations of finite life time in a local minimum of the potential energy
surface, which is approximated by a multidimensional parabola. The
local minimum of the potential energy is representative for one of the
many energetically almost equivalent conformational substates [56] in
which the protein can be in.
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Fonction intermédiaire de diffusion
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