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CHAPTER 2

Diffusion processes and the Fokker-Planck equation

1. Stochastic processes

We will now approach the theoretical description of Brownian dynamics
by using the concept of stochastic processes and corresponding probability
densities.

1.1. Definition of a stochastic process. The concept of a function of a sto-
chastic variable (see Appendix) allows to introduce stochastic processes. Con-
sider a function Y = f(X) which depends on a parameter t, signifying time,

Y = f(X, t) (II.1)

According to (A1.53) one obtains

pY (y, t) =

∫ +∞

−∞
dx δ

(
y − f(x, t)

)
pX(x) (II.2)

for the probability density of Y = f(X, t). The latter is also written as pY (y, t) ≡
p1(y, t), indicating that one considers the realisation of Y at one particular time.
The probability to find a realisation of Y in the interval [y, y + dy] at time t is
given by p1(y, t)dy. The definition (II.1) of the stochastic variable shows that
each realisation of X yields a different function y(t), which is the the realisation
of Y . This point can be illustrated for the function

Y = sin(2πt) + sin(4πt + X), (II.3)

where X is a random phase. Let the probability density for X be given by

pX(x) =

{
1
2π x ∈ [0, 2π],

0 otherwise.
(II.4)

Each realisation x ∈ [0, 2π] of the phase X has thus equal probability and leads
to a different function y(t).

One also define probability densities of order n,

p(Y )
n (yn, tn; . . . ; y1, t1) =

∫ +∞

−∞
dx δ

(
y1 − f(x, t1)

)
. . . δ

(
yn − f(x, tn)

)
pX(x)

(II.5)
29
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FIGURE II.1. Two different realisations of the stochastic process
Y = sin(2πt) + sin(4πt + X).

Formally p(Y )
n (yn, tn; . . . ; y1, t1) is a probability density in n variables, where tk is

a parameter which is associated with yk (k = 1, . . . , n). Here t1 < t2 < . . . < tn.
Here the order of the variables in the argument of p(Y )

n is inverted with respect
to the usual notation for multivariate probability densities. Definition (II.5)
can be generalised to the case where Y is a function of m variables Xj ,

Y = f(X1, . . . , Xm, t) (II.6)

In this case one writes

p(Y )
n (yn, tn; . . . ; y1, t1) =

∫ +∞

−∞
dx1 . . .

∫ +∞

−∞
dxm δ

(
y1 − f(x1, . . . , xm, t1)

)
. . .

× δ
(
yn − f(x1, . . . , xm, tn)

)
p(X)

m (x1, . . . , xm). (II.7)

It is important to understand that the definitions (II.5) and (II.7) have often no
practical significance, since one does not know the “hidden” variables {Xj}
which define the stochastic process Y .

The hierarchy of the p(Y )
n allow to compute all sorts of moments

〈Y m1(t1) . . . Y mk(tk)〉 =

∫ +∞

−∞
. . .

∫ +∞

−∞
ym1

1 . . . ymk
k p(Y )

n (yn, tn; . . . ; y1, t1) (II.8)
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Several “hidden” variables
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Correlation functions

2. MARKOV PROCESSES 31

the most important of which are the mean value 〈Y (t1)〉 and the autocorrela-
tion function

cyy(t2, t1) := 〈(Y (t2)− 〈Y (t2)〉)(Y (t1)− 〈Y (t1)〉)〉 (II.9)

An important class of stochastic processes are the stationary stochastic pro-
cesses. A stochastic process is stationary if all densities p(Y )

n are invariant with
respect to a translation τ of the parameters {tk},

p(Y )
n (yn, tn; . . . ; y1, t1) = p(Y )

n (yn, tn + τ ; . . . ; y1, t1 + τ) (II.10)

This means in particular that 〈Y (t1)〉 ≡ 〈Y 〉 does not depend on time, and that
correlation functions depend only on time differences

cyy(t2, t1) = cyy(|t2 − t1|, 0) ≡ cyy(t2 − t1) (II.11)

2. Markov processes

The Markov property of stochastic process concerns its “memory” which is
defined by the conditional probability densities. In the following we consider
always a stochastic process Y (t), and the abbreviated notation

p(Y )
n (yn, tn; . . . ; y1, t1) ≡ pn(yn, tn; . . . ; y1, t1)

will be used. Conditional probability densities are defined by the relations

pr|n−r(yn, tn; . . . ; yn−r+1, tn−r+1|yn−r, tn−r; . . . ; y1, t1)

:=
pn(yn, tn; . . . ; y1, t1)

pn−r(yn−r, tn−r; . . . ; y1, t1)
(II.12)

where all arguments right of the vertical bar describe the past. A Markov
process is defined by the property

p1|n−1(yn, tn|yn−1, tn−1; . . . ; y1, t1) = p1|1(yn, tn|yn−1, tn−1) (II.13)

It is not difficult to show that a Markov process is completely described by
its one-point and two-point probability densities p1(y1, t1) and p1|1(y2, t2|y1, t1),
respectively. To see this one writes first

pn(yn, tn; . . . ; y1, t1) = p1|n−1(yn, tn|yn−1, tn−1; . . . ; y1, t1)pn−1(yn−1, tn−1; . . . ; y1, t1)

= p1|1(yn, tn|yn−1, tn−1)pn−1(yn−1, tn−1; . . . ; y1, t1)

and performs the same procedure successively for pn−1, pn−2 etc., arriving fi-
nally at p1. The final result is what is often called a Markov chain:

pn(yn, tn; . . . ; y1, t1) = p1|1(yn, tn|yn−1, tn−1) . . . p1|1(y2, t2|y1, t1)p1(y1, t1) (II.14)
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32 2. DIFFUSION PROCESSES AND THE FOKKER-PLANCK EQUATION

3. Chapman-Kolmogorov equation

The Markov property of a stochastic process has an important consequence
for the densities p1|1 themselves. For three times t1 < t2 < t3 the density p3 can
be written in the form

p3(y3, t3; y2, t2; y1, t1) = p1|1(y3, t3|y2, t2)p1|1(y2, t2|y1, t1)p1(y1, t1).

Integration over y2 yields p2(y3, t3; y1, t1), and consequently

p2(y3, t3; y1, t1) = p1|1(y3, t3|y1, t1)p1(y1, t1)

=

{∫ ∗∞

−∞
dy2 p1|1(y3, t3|y2, t2)p1|1(y2, t2|y1, t1)

}
p1(y1, t1).

Dividing this identity by p1(y1, t1) yields the Chapman-Kolmogorov equation,

p1|1(y3, t3|y1, t1) =

∫ +∞

−∞
dy2 p1|1(y3, t3|y2, t2)p1|1(y2, t2|y1, t1) (II.15)

Fig. II.2 illustrates this relation. Each path (y1, t1) → (y3, t3)
which passes through the intermediate point (y2, t2) is weighted by
p1|1(y3, t3; y2, t2)p1|1(y2, t2; y1, t1), and the density p1|1(y3, t3; y1, t1) is obtained
by integration over all intermediate points. This procedure can be repeated
for the densities p1|1(y3, t3; y2, t2) and p1|1(y3, t3; y2, t2) and so forth, creating
a fine-grained grid of points where ti − ti−1 tends to zero. The result is a
path integral representation of p1|1(y3, t3; y1, t1) [14, 15]. Relation (II.15) can
be interpreted as a matrix relation, with p1|1 as elements of a matrix with
continuous indices. If Y is a discrete process, one has indeed pik =

∑
j pijpjk.

4. Master equation

In the following we consider a stationary, markovian stochastic process.
The two-point conditional probability density has thus the property

p1|1(y2, t2|y1, t1) = p1|1(y2, t2 − t1|y1, 0). (II.16)
Setting τ ≡ t2 − t1 we define the transition probability density

T (y2, τ |y1) ≡ p1|1(y2, τ |y1, 0), (II.17)
which describes a transition from y1 y ∈ [y2, y2 + dy] within time τ . It fulfils
the relations ∫ +∞

−∞
dy2 T (y2, τ |y1) = 1, (II.18)

lim
τ→0

T (y2, τ |y1) = δ(y2 − y1). (II.19)

If τ is small, T can be written in the form

T (y2, τ |y1) ≈
(
1− τa0(y1)

)
δ(y2 − y1) + τW (y2|y1), (II.20)
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FIGURE II.2. Illustration of the Chapman-Kolmogorov equa-
tion. Each path (y1, t1) → (y2, t2) → (y3, t3) with fixed end points
(y1, t1) and (y3, t3) is weighted by p1|1(y3, t3; y2, t2)p1|1(y2, t2; y1, t1).

where W (y2|y1)dy2 is a rate for the transition y1 → y ∈ [y2, y2 + dy]. It follows
from the normalisation condition (II.18) that

a0(y1) =

∫ +∞

−∞
dy2 W (y2|y1). (II.21)

Rewriting the Chapman-Kolmogorov equation (II.15) in the form

p1|1(y3, τ + τ ′|y1, 0) =

∫ +∞

−∞
dy2 p1|1(y3, τ + τ ′|y2, τ)p1|1(y2, τ |y1, 0),

it follows that for small τ ′

T (y3, τ + τ ′|y1) =

∫ +∞

−∞
dy2 T (y3, τ

′|y2)T (y2, τ |y1)

=

∫ +∞

−∞
dy2

{(
1− τ ′a0(y2)

)
δ(y3 − y2) + τ ′W (y3|y2)

}
T (y2, τ |y1).

The last line can be simplified by using the properties of the Dirac distribution,

T (y3, τ + τ ′|y1) =
(
1− τ ′a0(y3)

)
T (y3, τ |y1) + τ ′

∫ +∞

−∞
dy2 W (y3|y2)T (y2, τ |y1).
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For short times

• W (y2|y1) is a transition rate for the transition y1 → y2 ∈ [y2, y2 + dy2]

• a0(y1) =

∫ +∞

−∞

dy2 W (y2|y1)
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FIGURE II.2. Illustration of the Chapman-Kolmogorov equa-
tion. Each path (y1, t1) → (y2, t2) → (y3, t3) with fixed end points
(y1, t1) and (y3, t3) is weighted by p1|1(y3, t3; y2, t2)p1|1(y2, t2; y1, t1).

where W (y2|y1)dy2 is a rate for the transition y1 → y ∈ [y2, y2 + dy]. It follows
from the normalisation condition (II.18) that

a0(y1) =

∫ +∞

−∞
dy2 W (y2|y1). (II.21)

Rewriting the Chapman-Kolmogorov equation (II.15) in the form

p1|1(y3, τ + τ ′|y1, 0) =

∫ +∞

−∞
dy2 p1|1(y3, τ + τ ′|y2, τ)p1|1(y2, τ |y1, 0),

it follows that for small τ ′

T (y3, τ + τ ′|y1) =

∫ +∞

−∞
dy2 T (y3, τ

′|y2)T (y2, τ |y1)

=

∫ +∞

−∞
dy2

{(
1− τ ′a0(y2)

)
δ(y3 − y2) + τ ′W (y3|y2)

}
T (y2, τ |y1).

The last line can be simplified by using the properties of the Dirac distribution,

T (y3, τ + τ ′|y1) =
(
1− τ ′a0(y3)

)
T (y3, τ |y1) + τ ′

∫ +∞

−∞
dy2 W (y3|y2)T (y2, τ |y1).
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Relation (II.21) yields

T (y3, τ + τ ′|y1)− T (y3, τ |y1)

τ ′
=

−
{∫ +∞

−∞
dy2 W (y2|y3)

}

︸ ︷︷ ︸
a0(y3)

T (y3, τ |y1) +

∫ +∞

−∞
dy2 W (y3|y2)T (y2, τ |y1).

If τ ′ can be considered as infinitesimal, the above result can be written in the
form

∂T (y3, τ |y1)

∂τ
=

∫ +∞

−∞
dy2

{
W (y3|y2)T (y2, τ |y1)−W (y2|y3)T (y3, τ |y1)

}
(II.22)

This is the Master equation which owes its name to the fact that it is the starting
point for different approximations, such as the Fokker-Planck equation which
will be discussed later.

The Master equation is often written using a simplified notation where the
argument y1 is omitted. Using the definition

P (y, t) ≡ T (y, t|y′), lim
t→0

P (y, t) = δ(y − y′). (II.23)

one writes

∂P (y, t)

∂t
=

∫ +∞

−∞
dy′

{
W (y|y′)P (y′, t)−W (y′|y)P (y, t)

}
(II.24)

It must be emphasised that this form is “dangerous” since one can easily forget
that P is effectively a transition probability and not a one-point probability
density. I note finally that the Master equation for discrete stochastic processes
has the form

dPn

dt
=

∑

k

{
WnkPk −WknPn

}
(II.25)

This form shows more clearly that the Master equation has the form of a “gain-
loss” equation. Here W is a matrix in which the sum of all elements in a
columns equals one, ∑

n

Wnk = 1. (II.26)

This is a normalisation condition which corresponds to relation (II.18).

5. Fokker-Planck equation

We will now discuss an approximation of the Master equation which is
valid if W (y|y′) tends rapidly to zero with increasing distance y − y′. In this

τ
′ small
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Compact notation
P (y, t) ≡ T (y, t|y0), P (y, 0) = δ(y − y0)
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case it is convenient to introduce the function

Ω(y − y′, y′) = W (y|y′) (II.27)

instead of W (y|y′). With this definition and ζ(y′) ≡ y − y′ the Master equation
may be expressed in the form

∂P (y, t)

∂t
=

∫ +∞

−∞
dζ

{
Ω(ζ, y − ζ)P (y − ζ, t)− Ω(−ζ, y)P (y, t)

}
. (II.28)

At this point the following approximation is made,

Ω(ζ, y − ζ)P (y − ζ, t) ≈ Ω(ζ, y)P (y, t)

− ζ
∂

∂y

{
Ω(ζ, y)P (y, t)

}
+

ζ2

2

∂2

∂y2

{
Ω(ζ, y)P (y, t)

}
.

This is not a straightforward expansion in ζ , but a Taylor expansion in ζ with
respect to the argument y − ζ . Using this development and the identity

∫ +∞

−∞
dζ Ω(−ζ, y) =

∫ +∞

−∞
dζ Ω(ζ, y),

one obtains the Fokker-Planck equation

∂P (y, t)

∂t
= − ∂

∂y

{
a1(y)P (y, t)

}
+

1

2

∂2

∂y2

{
a2(y)P (y, t)

}
(II.29)

The quantities ak(y) are the moments

ak(y) =

∫ +∞

−∞
dζ ζkΩ(ζ, y) (II.30)

It is worthwhile mentioning that this definition includes the one given in
Eq. (II.21).

5.1. Stochastic equations of motion. It will now be shown how the
Langevin equation and similar stochastic equations of motion are obtained
from a Fokker-Planck equation. For this purpose the following moment-
generating function is introduced

G(k, t) =

∫ +∞

−∞
dy exp(−iky)P (y, t). (II.31)

For a small time step ∆t the density P (y, t) can be approximated by a develop-
ment of first order, and one obtains for the corresponding moment generating
function,

G(k, ∆t) ≈
∫ +∞

−∞
dy exp(−iky)

{
P (y, 0) + ∆t

∂P (y, t)

∂t

∣∣∣∣
t=0

}
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respect to the argument y − ζ . Using this development and the identity
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one obtains the Fokker-Planck equation
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The quantities ak(y) are the moments

ak(y) =

∫ +∞

−∞
dζ ζkΩ(ζ, y) (II.30)

It is worthwhile mentioning that this definition includes the one given in
Eq. (II.21).

5.1. Stochastic equations of motion. It will now be shown how the
Langevin equation and similar stochastic equations of motion are obtained
from a Fokker-Planck equation. For this purpose the following moment-
generating function is introduced

G(k, t) =

∫ +∞

−∞
dy exp(−iky)P (y, t). (II.31)

For a small time step ∆t the density P (y, t) can be approximated by a develop-
ment of first order, and one obtains for the corresponding moment generating
function,

G(k, ∆t) ≈
∫ +∞

−∞
dy exp(−iky)

{
P (y, 0) + ∆t

∂P (y, t)

∂t

∣∣∣∣
t=0

}
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case it is convenient to introduce the function

Ω(y − y′, y′) = W (y|y′) (II.27)

instead of W (y|y′). With this definition and ζ(y′) ≡ y − y′ the Master equation
may be expressed in the form
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}
. (II.28)
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The quantities ak(y) are the moments
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It is worthwhile mentioning that this definition includes the one given in
Eq. (II.21).

5.1. Stochastic equations of motion. It will now be shown how the
Langevin equation and similar stochastic equations of motion are obtained
from a Fokker-Planck equation. For this purpose the following moment-
generating function is introduced
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The quantities ak(y) are the moments
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It is worthwhile mentioning that this definition includes the one given in
Eq. (II.21).

5.1. Stochastic equations of motion. It will now be shown how the
Langevin equation and similar stochastic equations of motion are obtained
from a Fokker-Planck equation. For this purpose the following moment-
generating function is introduced
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For a small time step ∆t the density P (y, t) can be approximated by a develop-
ment of first order, and one obtains for the corresponding moment generating
function,
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The quantities ak(y) are the moments

ak(y) =

∫ +∞

−∞
dζ ζkΩ(ζ, y) (II.30)

It is worthwhile mentioning that this definition includes the one given in
Eq. (II.21).

5.1. Stochastic equations of motion. It will now be shown how the
Langevin equation and similar stochastic equations of motion are obtained
from a Fokker-Planck equation. For this purpose the following moment-
generating function is introduced

G(k, t) =

∫ +∞
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dy exp(−iky)P (y, t). (II.31)

For a small time step ∆t the density P (y, t) can be approximated by a develop-
ment of first order, and one obtains for the corresponding moment generating
function,
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The quantities ak(y) are the moments

ak(y) =
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dζ ζkΩ(ζ, y) (II.30)

It is worthwhile mentioning that this definition includes the one given in
Eq. (II.21).

5.1. Stochastic equations of motion. It will now be shown how the
Langevin equation and similar stochastic equations of motion are obtained
from a Fokker-Planck equation. For this purpose the following moment-
generating function is introduced

G(k, t) =

∫ +∞
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dy exp(−iky)P (y, t). (II.31)

For a small time step ∆t the density P (y, t) can be approximated by a develop-
ment of first order, and one obtains for the corresponding moment generating
function,
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The quantities ak(y) are the moments
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It is worthwhile mentioning that this definition includes the one given in
Eq. (II.21).

5.1. Stochastic equations of motion. It will now be shown how the
Langevin equation and similar stochastic equations of motion are obtained
from a Fokker-Planck equation. For this purpose the following moment-
generating function is introduced

G(k, t) =
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dy exp(−iky)P (y, t). (II.31)

For a small time step ∆t the density P (y, t) can be approximated by a develop-
ment of first order, and one obtains for the corresponding moment generating
function,
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The quantities ak(y) are the moments

ak(y) =
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It is worthwhile mentioning that this definition includes the one given in
Eq. (II.21).

5.1. Stochastic equations of motion. It will now be shown how the
Langevin equation and similar stochastic equations of motion are obtained
from a Fokker-Planck equation. For this purpose the following moment-
generating function is introduced

G(k, t) =

∫ +∞
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dy exp(−iky)P (y, t). (II.31)

For a small time step ∆t the density P (y, t) can be approximated by a develop-
ment of first order, and one obtains for the corresponding moment generating
function,
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The quantities ak(y) are the moments
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It is worthwhile mentioning that this definition includes the one given in
Eq. (II.21).

5.1. Stochastic equations of motion. It will now be shown how the
Langevin equation and similar stochastic equations of motion are obtained
from a Fokker-Planck equation. For this purpose the following moment-
generating function is introduced

G(k, t) =

∫ +∞
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dy exp(−iky)P (y, t). (II.31)

For a small time step ∆t the density P (y, t) can be approximated by a develop-
ment of first order, and one obtains for the corresponding moment generating
function,

G(k, ∆t) ≈
∫ +∞

−∞
dy exp(−iky)

{
P (y, 0) + ∆t

∂P (y, t)

∂t

∣∣∣∣
t=0

}

36 2. DIFFUSION PROCESSES AND THE FOKKER-PLANCK EQUATION

Here one can make use of the Fokker-planck equation and of the initial condi-
tion P (y, 0) = δ(y − y0), where y0 corresponds to time t = 0,

G(k, ∆t) ≈
∫ +∞

−∞
dy exp(−iky)

{
δ(y − y0) + ∆t

(
− ∂

∂y

[
a1(y)P (y, t)

]

+
1

2

∂2

∂y2

[
a2(y)P (y, t)

])∣∣∣∣
t=0

}
.

This integral can be evaluated by partial integration, using that P (+∞, t) =
P (−∞, t) = 0. For the term containing a1(y) one obtains for example

∫ +∞

−∞
dy exp(−iky)

(
− ∂

∂y

[
a1(y)P (y, t)

])∣∣∣∣
t=0

=

∫ +∞

−∞
dy

[
∂

∂y
exp(−iky)

] (
a1(y)P (y, t)

)∣∣∣
t=0

=

∫ +∞

−∞
dy

[
∂

∂y
exp(−iky)

]
a1(y)δ(y − y0) = −ika1(y0) exp(−iky0).

In the same way one obtains
∫ +∞

−∞
dy exp(−iky)

(
1

2

∂2

∂y2

[
a2(y)P (y, t)

])∣∣∣∣
t=0

= −1

2
k2a2(y0) exp(−iky0).

The moment-generating function takes thus the form

G(k, ∆t) ≈
(

1− ika1(y0)∆t− k2

2
a2(y0)∆t

)
exp(−iky0) (II.32)

and one obtains for for the first two moments

〈y〉 = i
∂

∂k
G(k, ∆t)

∣∣∣∣
k=0

= y0 + ∆ta1(y0), (II.33)

〈y2〉 = i2
∂2

∂k2
G(k, ∆t)

∣∣∣∣
k=0

= y2
0 + ∆ta2(y0) + 2∆ta1(y0)y0. (II.34)

An equivalent form is

〈y − y0〉 = ∆ta1(y0) (II.35)
〈(y − y0)

2〉 = ∆ta2(y0). (II.36)

Be cause of these relations a0 is called the drift coefficient of the Fokker-Planck
equation and a2(y0) is the fluctuation coefficient. The relations (II.35) and (II.36)
can be combined into a stochastic equation of motion:

y(t0 + ∆t) = y(t0) + ∆ta1(y(t0)) + ξ (II.37)
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The moment-generating function takes thus the form
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2
a2(y0)∆t

)
exp(−iky0) (II.32)

and one obtains for for the first two moments

〈y〉 = i
∂

∂k
G(k, ∆t)

∣∣∣∣
k=0

= y0 + ∆ta1(y0), (II.33)

〈y2〉 = i2
∂2

∂k2
G(k, ∆t)

∣∣∣∣
k=0

= y2
0 + ∆ta2(y0) + 2∆ta1(y0)y0. (II.34)

An equivalent form is

〈y − y0〉 = ∆ta1(y0) (II.35)
〈(y − y0)

2〉 = ∆ta2(y0). (II.36)

Be cause of these relations a0 is called the drift coefficient of the Fokker-Planck
equation and a2(y0) is the fluctuation coefficient. The relations (II.35) and (II.36)
can be combined into a stochastic equation of motion:

y(t0 + ∆t) = y(t0) + ∆ta1(y(t0)) + ξ (II.37)
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can be combined into a stochastic equation of motion:
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Here ξ is a stochastic displacement with zero mean and standard deviation
∆ta2(y(t0)),

ξ = 0 and ξ2 = ∆ta2(y(t0)) (II.38)
The bar indicates a mean over the possible realisations of ξ and not a mean
over time.

5.2. Equation of continuity and equilibrium. The meaning of the func-
tion ak(y) is also reflected in the Fokker-Planck equation itself. If one intro-
duces the current density

J(y, t) = a1(y)P (y, t)− a2(y)

2

∂P (y, t)

∂y
(II.39)

the Fokker-Planck equation (II.29) takes the form

∂P (y, t)

∂t
+

∂J(y, t)

∂y
= 0 (II.40)

In the multidimensional case one has ∂tP +#∇· #J = 0. The current density J(y, t)
can be decomposed into a deterministic component which leads to a systematic
drift,

Jd(y, t) = a1(y)P (y, t), (II.41)
and an entropic component which drives P (y, t) towards a constant density,

Je(y, t) = −a2(y)

2

∂P (y, t)

∂y
. (II.42)

The equilibrium is characterised by the condition

Jeq(y) ≡ lim
t→∞

J(y, t) = 0 (II.43)

This shows that the equilibrium density, which is defined by
Peq(y) = lim

t→∞
P (y, t), (II.44)

must be a solution of the differential equation (a2(y) $= 0)
∂Peq(y)

∂y
=

2a1(y)

a2(y)
Peq(y) (II.45)

The solution can be obtained by separation of variables:

Peq(y) = C exp

(∫ y

−∞
dy′

2a1(y′)

a2(y′)

)
(II.46)

Here one supposes that y ∈ (−∞, +∞) and that there exists a constant C with
0 < C < ∞, such that Peq(y) is normalised. It is important to recall that
P (y, t) ≡ p(y, t|y0), such that Peq(y) ≡ limt→∞ p(y, t|y0) is a priori a function of
the initial value y0. On the other hand, y0 does not appear in the Fokker-Planck
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and one obtains for for the first two moments
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= y2
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An equivalent form is
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Be cause of these relations a0 is called the drift coefficient of the Fokker-Planck
equation and a2(y0) is the fluctuation coefficient. The relations (II.35) and (II.36)
can be combined into a stochastic equation of motion:

y(t0 + ∆t) = y(t0) + ∆ta1(y(t0)) + ξ (II.37)

Realization for a stochastic process
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Here ξ is a stochastic displacement with zero mean and standard deviation
∆ta2(y(t0)),

ξ = 0 and ξ2 = ∆ta2(y(t0)) (II.38)
The bar indicates a mean over the possible realisations of ξ and not a mean
over time.

5.2. Equation of continuity and equilibrium. The meaning of the func-
tion ak(y) is also reflected in the Fokker-Planck equation itself. If one intro-
duces the current density

J(y, t) = a1(y)P (y, t)− a2(y)

2

∂P (y, t)

∂y
(II.39)

the Fokker-Planck equation (II.29) takes the form

∂P (y, t)

∂t
+

∂J(y, t)

∂y
= 0 (II.40)

In the multidimensional case one has ∂tP +#∇· #J = 0. The current density J(y, t)
can be decomposed into a deterministic component which leads to a systematic
drift,

Jd(y, t) = a1(y)P (y, t), (II.41)
and an entropic component which drives P (y, t) towards a constant density,

Je(y, t) = −a2(y)

2

∂P (y, t)

∂y
. (II.42)

The equilibrium is characterised by the condition

Jeq(y) ≡ lim
t→∞

J(y, t) = 0 (II.43)

This shows that the equilibrium density, which is defined by
Peq(y) = lim

t→∞
P (y, t), (II.44)

must be a solution of the differential equation (a2(y) $= 0)
∂Peq(y)

∂y
=

2a1(y)

a2(y)
Peq(y) (II.45)

The solution can be obtained by separation of variables:

Peq(y) = C exp

(∫ y

−∞
dy′

2a1(y′)

a2(y′)

)
(II.46)

Here one supposes that y ∈ (−∞, +∞) and that there exists a constant C with
0 < C < ∞, such that Peq(y) is normalised. It is important to recall that
P (y, t) ≡ p(y, t|y0), such that Peq(y) ≡ limt→∞ p(y, t|y0) is a priori a function of
the initial value y0. On the other hand, y0 does not appear in the Fokker-Planck
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Here ξ is a stochastic displacement with zero mean and standard deviation
∆ta2(y(t0)),

ξ = 0 and ξ2 = ∆ta2(y(t0)) (II.38)
The bar indicates a mean over the possible realisations of ξ and not a mean
over time.

5.2. Equation of continuity and equilibrium. The meaning of the func-
tion ak(y) is also reflected in the Fokker-Planck equation itself. If one intro-
duces the current density

J(y, t) = a1(y)P (y, t)− a2(y)

2

∂P (y, t)

∂y
(II.39)
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In the multidimensional case one has ∂tP +#∇· #J = 0. The current density J(y, t)
can be decomposed into a deterministic component which leads to a systematic
drift,

Jd(y, t) = a1(y)P (y, t), (II.41)
and an entropic component which drives P (y, t) towards a constant density,

Je(y, t) = −a2(y)
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The equilibrium is characterised by the condition

Jeq(y) ≡ lim
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J(y, t) = 0 (II.43)

This shows that the equilibrium density, which is defined by
Peq(y) = lim
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must be a solution of the differential equation (a2(y) $= 0)
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(∫ y

−∞
dy′

2a1(y′)

a2(y′)

)
(II.46)

Here one supposes that y ∈ (−∞, +∞) and that there exists a constant C with
0 < C < ∞, such that Peq(y) is normalised. It is important to recall that
P (y, t) ≡ p(y, t|y0), such that Peq(y) ≡ limt→∞ p(y, t|y0) is a priori a function of
the initial value y0. On the other hand, y0 does not appear in the Fokker-Planck
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Here ξ is a stochastic displacement with zero mean and standard deviation
∆ta2(y(t0)),

ξ = 0 and ξ2 = ∆ta2(y(t0)) (II.38)
The bar indicates a mean over the possible realisations of ξ and not a mean
over time.
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duces the current density
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can be decomposed into a deterministic component which leads to a systematic
drift,
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and an entropic component which drives P (y, t) towards a constant density,
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The equilibrium is characterised by the condition

Jeq(y) ≡ lim
t→∞

J(y, t) = 0 (II.43)

This shows that the equilibrium density, which is defined by
Peq(y) = lim
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must be a solution of the differential equation (a2(y) $= 0)
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=
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Here one supposes that y ∈ (−∞, +∞) and that there exists a constant C with
0 < C < ∞, such that Peq(y) is normalised. It is important to recall that
P (y, t) ≡ p(y, t|y0), such that Peq(y) ≡ limt→∞ p(y, t|y0) is a priori a function of
the initial value y0. On the other hand, y0 does not appear in the Fokker-Planck
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Here ξ is a stochastic displacement with zero mean and standard deviation
∆ta2(y(t0)),

ξ = 0 and ξ2 = ∆ta2(y(t0)) (II.38)
The bar indicates a mean over the possible realisations of ξ and not a mean
over time.

5.2. Equation of continuity and equilibrium. The meaning of the func-
tion ak(y) is also reflected in the Fokker-Planck equation itself. If one intro-
duces the current density

J(y, t) = a1(y)P (y, t)− a2(y)

2
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(II.39)

the Fokker-Planck equation (II.29) takes the form

∂P (y, t)

∂t
+
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= 0 (II.40)

In the multidimensional case one has ∂tP +#∇· #J = 0. The current density J(y, t)
can be decomposed into a deterministic component which leads to a systematic
drift,

Jd(y, t) = a1(y)P (y, t), (II.41)
and an entropic component which drives P (y, t) towards a constant density,

Je(y, t) = −a2(y)

2

∂P (y, t)

∂y
. (II.42)

The equilibrium is characterised by the condition

Jeq(y) ≡ lim
t→∞

J(y, t) = 0 (II.43)

This shows that the equilibrium density, which is defined by
Peq(y) = lim

t→∞
P (y, t), (II.44)

must be a solution of the differential equation (a2(y) $= 0)
∂Peq(y)

∂y
=

2a1(y)

a2(y)
Peq(y) (II.45)

The solution can be obtained by separation of variables:

Peq(y) = C exp

(∫ y

−∞
dy′

2a1(y′)

a2(y′)

)
(II.46)

Here one supposes that y ∈ (−∞, +∞) and that there exists a constant C with
0 < C < ∞, such that Peq(y) is normalised. It is important to recall that
P (y, t) ≡ p(y, t|y0), such that Peq(y) ≡ limt→∞ p(y, t|y0) is a priori a function of
the initial value y0. On the other hand, y0 does not appear in the Fokker-Planck
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equation (II.45), neither in the boundary conditions for Peq(y). This shows that
that Peq(y) cannot depend on y0. This property has a physical interpretation:
In the limit t →∞ the system has “forgotten” its initial state.

It should be noted that equilibrium and stationarity, which is simply char-
acterized by the condition

∂P (y, t)

∂t
= 0, (II.47)

are not equivalent. In the latter case one imposes ∂J(y, t)/∂y = 0, but not that
J(y, t) ≡ 0. The stationary non-equilibrium solution is characterized by

Js(y) ≡ lim
t→∞

J(y, t),
∂Js(y)

∂y
= 0 (II.48)

Clearly, equilibrium implies stationarity, but not vice-versa.

6. Fokker-Planck equation for many variables

The Fokker-Planck equation can be generalised to multi-component sto-
chastic processes, where one considers the dynamical variables y1, . . . , yn. The
corresponding Fokker-Planck equation reads

∂P ({y}, t)
∂t

= − ∂

∂yi

{
a(1)

i ({y})P ({y}, t)
}

+
1

2

∂2

∂yi∂yj

{
a(2)

ij ({y})P ({y}, t)
}

(II.49)
Here and in the following I use the Einstein summation convention, where
summation over two identical indices is implicitly assumed. Sometimes it is
also convenient to use matrix notation for the Fokker-Planck equation,

∂P (y, t)

∂t
= − ∂

∂y
·
{
a(1)(y)P (y, t)

}
+

1

2

∂

∂y
·
{ ∂

∂y
· a(2)(y)P (y, t)

}
(II.50)

Here y = (y1, . . . , yn)T is a column vector of dimension n (T denotes a transpo-
sition), a(1)(y) is also a column vector of dimension n, and a(2)(y) is a quadratic
matrix of dimensions (n, n).

〈y − y0〉 = ∆t a(1)(y0) (II.51)
〈(y − y0) · (y − y0)

T 〉 = ∆t a(2)(y0). (II.52)

The stochastic equation of motion associated with (II.50) reads

y(t0 + ∆t) = y(t0) + ∆t a(1)(y(t0)) + ξ (II.53)

where the stochastic displacement ξ is again Gaussian white noise with

ξ = 0 and ξ · ξT = ∆t a(2)(y(t0)) (II.54)

Stationary regime

systematic entropic
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7. Free diffusion – Wiener process

7.1. Definition. The most simple Fokker-Planck equation is obtained for
the case

a1(y) = 0, a2(y) = 2D = const. (II.55)
With this definition for the coefficients ak(y) the Fokker-Planck equation (II.29)
takes the form of the well-known diffusion equation,

∂P (y, t)

∂t
= D

∂2P (y, t)

∂y2
(II.56)

which is to be solved with the initial condition
P (y, 0) = δ(y − y0) (II.57)

The corresponding stochastic equation of motion has the simple form

y(t0 + ∆t) = y(0) + ξ (II.58)

where the displacement ξ is Gaussian white noise with

ξ = 0 and ξ2 = 2D∆t (II.59)

The equations (II.58) and (II.59) define the Wiener process1.
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This inverse Fourier transform can be easily performed2 and one finds
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FIGURE II.3. The Gaussian P (y, t) given by Eq. (II.60) for y0 =
0, D = 1 and t = 0.005, t = 0.1, t = 0.5, respectively (from top to
bottom).

The density P (y, t) is a Gaussian whose width grows ∝ t (see Fig II.3). In
the limit t → ∞ one obtains an increasingly broader distribution which tends
to a constant which is given by the inverse macroscopic size volume L of the
system,

Peq(y) = lim
t→∞

P (y, t) =
1

L
. (II.61)

This finding is in agreement with relation (II.46) which stipulates that Peq(y) =
const. since a1(y) = 0.

7.3. Mean square displacement. The probabilistic definition of the MSD
is

W (t) :=

∫ +∞

−∞

∫ +∞

−∞
dytdy0 (yt − y0)

2p(yt, t; y0, 0) (II.62)

Here one writes p(yt, t; y0, 0) = p(yt, t|y0, 0)peq(y0), where peq(y0) = 1/L. Since
P (yt, t) ≡ p(yt, t|y0, 0) depends here on yt − y0 according to (II.60), one can
perform a corresponding change of variables, (yt, y0)→ (y = yt− y0, y0) which
yields

W (t) =

∫ +∞

−∞
dy y2P (y, t) = 2Dt (II.63)●

●
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This is the famous Einstein diffusion law. It is useful to recall that this relation
follows also from the Langevin equation in the limit t ! γ−1 – see Eq. (I.48).
The diffusion coefficient can be related to the microscopic displacement via the
relations (II.55) and (II.36) :

D =
〈{y(∆t)− y(0)}2〉

2∆t
(II.64)

8. Ornstein-Uhlenbeck process

8.1. Definition. The Ornstein-Uhlenbeck process is defined by the follow-
ing choice of the drift and fluctuation coefficients,

a1(y) = −ηy, a2(y) = 2D (II.65)

Here η is an inverse relaxation time and D is again a diffusion coefficient. In
this case the Fokker-Planck equation takes the form

∂P (y, t)

∂t
= η

∂

∂y

{
yP (y, t)

}
+ D

∂2P (y, t)

∂y2
(II.66)

and the initial condition is again P (y, 0) = δ(y − y0).
The Ornstein-Uhlenbeck process describes the diffusion of a Brownian par-

ticle in presence of a systematic driving force ∝ y, which tries to bring the par-
ticle back to the equilibrium value y = 0 of the variable y under consideration,

y(t0 + ∆t) = y(t0)−∆tηy(t0) + ξ (II.67)

As for free diffusion, stochastic displacement ξ verifies

ξ = 0 and ξ2 = 2D∆t (II.68)

8.2. Solution of the Fokker-Planck equation. It is again convenient to
solve Fokker-planck equation by Fourier transform. Starting from (II.66) one
finds

∂P̃ (k, t)

∂t
= −ηk

∂P̃ (k, t)

∂k
−Dk2P̃ (k, t). (II.69)

Suppose now that P (y, t) has still Gaussian shape,

P (y, t) =
1√

2πσ(t)
exp

(
−{y −M(y0, t)}2

2σ(t)

)
(II.70)

The width of that Gaussian is
√

σ(t), and the mean value M(y0, t) depends
initial value y0 of y. The Fourier transform of P (y, t) is again Gaussian and has
the form

P̃ (k, t) = exp

(
−ikM(y0, t)−

k2

2
σ(t)

)
.
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4πDt
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−(y − y0)2

4Dt

)
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1Norbert Wiener, American mathematician, 1894 – 1964.
2One uses that f(x) = 1√

2πσ
exp

(
− x2

2σ2

)
↔ f̃(k) = exp

(
−σ2k2

2
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If this expression is now inserted into equation (II.69) one obtains
(
−ik

dM

dt
− k2

2

dσ

dt

)
P̃ = −ηk(−iM − kσ)P̃ −Dk2P̃ .

Division by P̃ ≡ P̃ (k, t) #= 0 and comparison of the real and imaginary parts
on both sides of the equation yields a differential equation for both M(y0, t)
and σ(t):

dM(y0, t)

dt
= −ηM(y0, t), (II.71)

dσ(t)

dt
= −2ησ(t) + 2D. (II.72)

Since P (y, 0) = δ(y − y0) one sets M(y0, 0) = y0 and W (0) = 0 as initial condi-
tions. This leads to

M(y0, t) = y0 exp(−ηt), (II.73)

σ(t) =
D

η

{
1− exp(−2ηt)

}
. (II.74)

The explicit solution for P (y, t) is thus

P (y, t) =

√
η

2πD{1− exp(−2ηt)} exp

(
−η{y − y0 exp(−ηt)}2

2D{1− exp(−2ηt)}

)
(II.75)

Using that limη→0 σ(t) = 2Dt, the transition probability density for free diffu-
sion is retrieved,

lim
η→0

P (y, t) =
1√

4πDt
exp

(
−(y − y0)2

4Dt

)
(II.76)

8.3. Limiting cases. One sees from expression (II.74) for σ(t) that

σ(t) ≈ 2Dt si t& η−1, (II.77)

σ(t) ≈ D

η
si t' η−1. (II.78)

This shows that the diffusion of a particle can be considered as free of the
t & η−1 and D is thus the short-time diffusion coefficient. Consequently P (y, t)
has the form (II.60) in this case, which is mathematically equivalent to the limit
η → 0.

In contrast, σ(t) approaches the plateau value D/η if t ' η−1. In this case
one obtains the equilibrium density

Peq(y) =

√
η

2πD
exp

(
−ηy2

2D

)
(II.79)
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“free” diffusion
P (y, t) ≈ 1√

4πDt
exp

(
− (y − y0)2

4Dt

)●
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Short and long time limits 
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which is in agreement with the general definition (II.46). It is easy to see that

〈y2〉eq =

∫ +∞

−∞
dy y2Peq(y) =

D

η
(II.80)

is the mean square value of y, and one can also write

σ(∞) = 〈y2〉eq. (II.81)

As in the case of free diffusion, the equilibrium density does not depend on y0.

8.4. Autocorrelation function. We consider now the autocorrelation func-
tion which is associated with the Ornstein-Uhlenbeck process,

cyy(t) ≡ 〈y(t)y(0)〉 =

∫ +∞

−∞

∫ +∞

−∞
dytdy0 yty0p(yt, t; y0, 0) (II.82)

In contrast to the case of free diffusion such a correlation function can be de-
fined since cyy(0) = 〈y2〉 is bound.

For the following considerations we will need the moment-generating
function

p̃(kt, t; k0, 0) =

∫ +∞

−∞

∫ +∞

−∞
dytdy0 exp(−i[ktyt + k0y0])p(yt, t; y0, 0), (II.83)

from which cyy(t) is obtained through

cyy(t) = − ∂2

∂kt∂k0
p̃(kt, t; k0, 0)

∣∣∣∣
kt=0,k0=0

. (II.84)

The moment generating function can be easily obtained. Here one uses that the
Fourier transform of Gaussian is again a Gaussian. Using the decomposition
p(yt, t; y0, 0) = p(yt, t|y0, 0)peq(y0) allows to write

p̃(kt, t; k0, 0) =

∫ +∞

−∞
dy0 exp(−ik0y0)peq(y0)

∫ +∞

−∞
dyt exp(−iktyt)p(yt, t; y0, 0)

︸ ︷︷ ︸
exp(−iM(t,y0)− 1

2k2
t σ(t))

= exp

(
−1

2
k2

t σ(t)

) ∫ +∞

−∞
dy0 exp(−i[k0 + kt exp(−ηt)]y0)peq(y0)

︸ ︷︷ ︸
exp(− 1

2 〈y2〉eq [k0+kt exp(−ηt)]2)

.

Since σ(t) = 〈y2〉eq{1− exp(−2ηt)} it follows that

p̃(kt, t; k0, 0) = exp

(
−1

2
〈y2〉eq

{
(k2

t + k2
0) + 2k0kt exp(−ηt)

})
. (II.85)

Using now relation (II.84) yields the autocorrelation function

cyy(t) = 〈y2〉eq exp(−ηt) (II.86)
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which is in agreement with the general definition (II.46). It is easy to see that

〈y2〉eq =

∫ +∞

−∞
dy y2Peq(y) =

D

η
(II.80)

is the mean square value of y, and one can also write

σ(∞) = 〈y2〉eq. (II.81)

As in the case of free diffusion, the equilibrium density does not depend on y0.

8.4. Autocorrelation function. We consider now the autocorrelation func-
tion which is associated with the Ornstein-Uhlenbeck process,

cyy(t) ≡ 〈y(t)y(0)〉 =

∫ +∞

−∞

∫ +∞

−∞
dytdy0 yty0p(yt, t; y0, 0) (II.82)

In contrast to the case of free diffusion such a correlation function can be de-
fined since cyy(0) = 〈y2〉 is bound.

For the following considerations we will need the moment-generating
function

p̃(kt, t; k0, 0) =

∫ +∞

−∞

∫ +∞

−∞
dytdy0 exp(−i[ktyt + k0y0])p(yt, t; y0, 0), (II.83)

from which cyy(t) is obtained through

cyy(t) = − ∂2

∂kt∂k0
p̃(kt, t; k0, 0)

∣∣∣∣
kt=0,k0=0

. (II.84)
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The autocorrelation function for the Ornstein-Uhlenbeck process is a simple
exponential.

8.5. Mean-square displacement. The MSD can be calculated from the
identity

〈{y(t)− y(0)}2〉 = 〈y2(t) + y2(0)− 2y(t)y(0)〉 = 2〈y2〉eq − 2cyy(t).

which holds for any motion which is confined in space. With (II.86) one finds

W (t) = 2〈y2〉eq{1− exp(−ηt)} (II.87)

For small times W (t) can be approximated by W (t) ≈ 2〈y2〉eqηt, which yields
the short-time diffusion coefficient

D ≈ 2〈y2〉eqη, t % η−1 (II.88)

In contrast, the long-time diffusion coefficient is zero,

lim
t→∞

D(t) = 0, (II.89)

since W (t) approaches a plateau value for long times, as for the Langevin os-
cillator (see Eq. (I.62)).

8.6. Diffusion in a harmonic potential. In case that y ≡ x is the position
of a Brownian particle, the Ornstein-Uhlenbeck process describes a diffusion
process in a parabolic potential. This is seen from the equilibrium density,
which can be obtained independently from equilibrium statistical mechanics,

peq(x) =
exp

(
−V (x)

kBT

)

Zc
, (II.90)

where Zc =
∫ +∞
−∞ dx peq(x) is the partition function. If V (x) has parabolic shape

V (x) =
1

2
Kx2, K > 0 (II.91)

the equilibrium density peq(x) takes the form of a Gaussian,

peq(x) =

√
K

2πkBT
exp

(
− Kx2

2kBT

)
.

Comparing with the general expression (II.79) (replace y → x) shows that

D

η
=

kBT

K
(II.92)

This shows in particular that

〈x2〉eq =
kBT

K
(II.93)
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Short time diffusion coefficient
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If this expression is now inserted into equation (II.69) one obtains
(
−ik

dM

dt
− k2

2

dσ

dt

)
P̃ = −ηk(−iM − kσ)P̃ −Dk2P̃ .

Division by P̃ ≡ P̃ (k, t) #= 0 and comparison of the real and imaginary parts
on both sides of the equation yields a differential equation for both M(y0, t)
and σ(t):

dM(y0, t)

dt
= −ηM(y0, t), (II.71)

dσ(t)

dt
= −2ησ(t) + 2D. (II.72)

Since P (y, 0) = δ(y − y0) one sets M(y0, 0) = y0 and W (0) = 0 as initial condi-
tions. This leads to

M(y0, t) = y0 exp(−ηt), (II.73)

σ(t) =
D

η

{
1− exp(−2ηt)

}
. (II.74)

The explicit solution for P (y, t) is thus

P (y, t) =

√
η

2πD{1− exp(−2ηt)} exp

(
−η{y − y0 exp(−ηt)}2

2D{1− exp(−2ηt)}

)
(II.75)

Using that limη→0 σ(t) = 2Dt, the transition probability density for free diffu-
sion is retrieved,

lim
η→0

P (y, t) =
1√

4πDt
exp

(
−(y − y0)2

4Dt

)
(II.76)

8.3. Limiting cases. One sees from expression (II.74) for σ(t) that

σ(t) ≈ 2Dt si t& η−1, (II.77)

σ(t) ≈ D

η
si t' η−1. (II.78)

This shows that the diffusion of a particle can be considered as free of the
t & η−1 and D is thus the short-time diffusion coefficient. Consequently P (y, t)
has the form (II.60) in this case, which is mathematically equivalent to the limit
η → 0.

In contrast, σ(t) approaches the plateau value D/η if t ' η−1. In this case
one obtains the equilibrium density

Peq(y) =

√
η

2πD
exp

(
−ηy2

2D

)
(II.79)
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peq(x) =
√

η

2πD
exp

(
−ηx2

2D

)

〈x2〉eq =
D

η
=

kBT

K

Here y≡x is the position of a Brownian particle

On the other hand

Boltzmann weight:



O.U. process for the velocity of a particle
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Using the above identities, the general solution (II.75) may be written in the
form

P (x, t) =

√
1

2〈x2〉{1− exp(−2ηt)} exp

(
− {x− x0 exp(−ηt)}2

2〈x2〉{1− exp(−2ηt)}

)
(II.94)

8.7. Ornstein-Uhlenbeck process in velocity space. The Ornstein-
Uhlenbeck process can also be considered in velocity space. Now y ≡ v repre-
sents the velocity of a Brownian particle, and one defines

a1(v) = −γv, a2(v) = 2γ
kBT
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With respect to the definition (II.65) of the moments ak one makes substitutions
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and the stochastic equation of motion associated with the above Fokker-Planck
equation is the Langevin equation,

v(t0 + ∆t) = v(t0)−∆tγv(t0) + ξ (II.97)

Here ξ is a stochastic displacement in velocity space, with

ξ = 0 and ξ2 = 2γ
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According to (II.86) the VACF becomes

cvv(t) = 〈v2〉eq exp(−γt) (II.101)

and relation (II.80) yields here the mean square velocity,

〈v2〉eq =
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M
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With respect to the definition (II.65) of the moments ak one makes substitutions
η → γ and D → γkBT/M . The corresponding Fokker-Planck equation takes
the form

∂P (v, t)

∂t
= γ

∂

∂v

{
vP (v, t)

}
+ γ

kBT

M

∂2P (v, t)

∂v2
(II.96)

and the stochastic equation of motion associated with the above Fokker-Planck
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and the stochastic equation of motion associated with the above Fokker-Planck
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v(t0 + ∆t) = v(t0)−∆tγv(t0) + ξ (II.97)

Here ξ is a stochastic displacement in velocity space, with
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Here one has the initial condition limt→0 P (v, t) = δ(v − v0), and in the limit
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lim
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and relation (II.80) yields here the mean square velocity,
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3. WIENER-KHINTCHINE THEOREM 7

any interval τ , and the same is true for the integral
∫ τ/2

−τ/2 dt Fs(t + t1)Fs(t + t0)

if t1 != t0. If, however, t1 = t0, the product Fs(t + t1)Fs(t + t0) is always positive
and will not average to zero. This can be taken into account by writing

〈Fs(t1)Fs(t0)〉τ = lim
T→∞

1

T

∫ T/2

−T/2

dt Fs(t + t0)
2δ(t1 − t0) = C(t0)δ(t1 − t0).

In thermal equilibrium C does not depend of the choice of t0 and is thus a
constant. The relation C = 2kBTα will be justified later.

In the following we will consider the velocity autocorrelation function
(VACF) and its normalised form,

cvv(t) := 〈v(t)v(0)〉τ , (I.8)

ψ(t) :=
〈v(t)v(0)〉τ

〈v2〉τ
. (I.9)

It is convenient to introduce the mass-weighted friction constant γ = α/M ,
which has the dimension 1/s in SI units and the stochastic acceleration fs(t) =
Fs(t)/M . With these definitions Eq. (I.1) takes the form

v̇ + γv = fs(t) (I.10)

Multiplying this equation by v(0) and averaging over t, one can derive a dif-
ferential equation for the VACF and its normalised form:

ψ̇ + γψ = 0 (I.11)

The important relation which leads to an independent differential equation for
the VACF is 〈v(0)fs(t)〉τ = 0. The solution of (I.11) yields

ψ(t) = exp(−γt) (I.12)

with the initial condition ψ(0) = 1. The VACF of a Brownian particle is thus
an exponential function. Exponential relaxation with a single relaxation time
τ = γ−1 is characteristic for “slow”dynamical variables which are coupled to
many “fast” variables whose characteristic time scales are much shorter.

3. Wiener-Khintchine theorem

The Wiener-Khintchine theorem relies the Fourier spectrum of an autocor-
relation function to the Fourier spectrum of the corresponding dynamical vari-
able itself. In the following the Fourier transform of a function f and its inverse
are defined by

f̃(ω) =

∫ +∞

−∞
dt f(t) exp(−iωt), (I.13)

f(t) =
1

2π

∫ +∞

−∞
dt f̃(ω) exp(iωt). (I.14)

Langevin equation
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Using the above identities, the general solution (II.75) may be written in the
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8.7. Ornstein-Uhlenbeck process in velocity space. The Ornstein-
Uhlenbeck process can also be considered in velocity space. Now y ≡ v repre-
sents the velocity of a Brownian particle, and one defines

a1(v) = −γv, a2(v) = 2γ
kBT
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(II.95)

With respect to the definition (II.65) of the moments ak one makes substitutions
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and the stochastic equation of motion associated with the above Fokker-Planck
equation is the Langevin equation,

v(t0 + ∆t) = v(t0)−∆tγv(t0) + ξ (II.97)

Here ξ is a stochastic displacement in velocity space, with

ξ = 0 and ξ2 = 2γ
kBT

M
∆t. (II.98)

All preceding results from the solution of the Fokker-Planck equation describ-
ing an Ornstein-Uhlenbeck process can be used, making the the replacements
η → γ and D → γkBT/M , as indicated above. One obtains

P (v, t) =
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2πkBT{1− exp(−2γt)} exp

(
−M{v − v0 exp(−γt)}2
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Here one has the initial condition limt→0 P (v, t) = δ(v − v0), and in the limit
t →∞ one obtains the Maxwell distribution,

lim
t→∞

P (v, t) ≡ Peq(v) =
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exp

(
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(II.100)

According to (II.86) the VACF becomes

cvv(t) = 〈v2〉eq exp(−γt) (II.101)

and relation (II.80) yields here the mean square velocity,
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and the stochastic equation of motion associated with the above Fokker-Planck
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and relation (II.80) yields here the mean square velocity,
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Eq. (II.101) shows that
τv = γ−1 (II.103)

is the characteristic time for the velocity relaxation, or equivalently thermali-
sation of a Brownian particle.

9. Ornstein-Uhlenbeck process in phase space

9.1. Fokker-Planck equation. The last two applications for the Ornstein-
Uhlenbeck process lead naturally to considering an Ornstein-Uhlenbeck pro-
cess in phase space. The latter is described by a stochastic two-component
process, y = (x, v)T , where x is the position of a Brownian particle and v its
velocity. The matrices a(1)(y) and a(2)(y) are defined as

a(1)(y) = −A · y and a(2)(y) = 2B, (II.104)

where A and B have the form
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and corresponds to the equation of motion of a Langevin oscillator (see
Eq. (I.52))

ẍ + γẋ + ω2
0x = fs(t).

9.2. Solution of the Fokker-Planck equation. As in the case of a single-
component process one finds the solution of the Fokker-Planck equation by
Fourier transformation techniques. The Fourier transform of the density
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ẍ + γẋ + ω2
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● Fokker-Planck equation
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ẍ + γẋ + ω2
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and the initial condition P (y, t) = δ(y − y0). The Fourier transform P̃ (k, t),

P̃ (k, t) = exp

(
−ikT · M(t)− 1

2
kT · σ(t) · k

)
.

must be a solution of the Fourier transformed Fokker-Planck equation

∂P̃ (k, t)

∂t
= −kT · A · ∂P̃ (k, t)

∂k
− 1

2
kT · A · k P̃ (k, t).

Insertion of P̃ (k, t) in this equation yields
{
−ikT · dM

dt
− 1

2
kT · dσ

dt
· k

}
P̃ =

{
kT · A · (iM + σ · k)− kT · A · k

}
P̃ .

The following differential equations must be verified by M(t) and σ(t):
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dσ(t)

dt
= −
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A · σ(t) + σ(t) · AT
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+ 2B. (II.110)

Imposing the initial conditions M(0) = y0 et σ(0) = 0, and defining the propa-
gator

G(t) = exp(−At) (II.111)
one obtains the solutions

M(t) = G(t) · y0, (II.112)

σ(t) = 2

∫ t

0

dτ G(τ) · B · GT (τ). (II.113)

The equilibrium density is given by

Peq(y) =
1

2π
√

det(σ(∞))
exp

(
−1

2
yT · σ−1(∞) · y

)
(II.114)

where the matrix σ(∞) has the form

σ(∞) =
kBT

M

(
ω−2

0 0
0 1

)
(II.115)

and yields directly the equilibrium fluctuation matrix

σ(∞) = 〈y · yT 〉 (II.116)

Insertion in (II.114) yields the familiar form for the equilibrium density in
phase space for a particle moving in a harmonic potential,

Peq(x, v) =
Mω0

2πkBT
exp

(
− 1

kBT

{
Mv2

2
+

Mω2
0x

2

2

})
(II.117)
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σ(∞) =
kBT

M

(
ω−2

0 0
0 1

)
= 〈y · yT 〉
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The above density is also obtained for a particle whose dynamics is described
in the framework of Hamiltonian mechanics. In this case Peq(·) is proportional
to the Boltzmann factor, exp(−H(p, x)/kBT ), where p = Mv is the momentum
of the particle and H(p, x) is the corresponding Hamiltonian.

9.3. Autocorrelation matrix and tensorial MSD. Generalising definition
(II.82) of an autocorrelation function we define here the autocorrelation matrix

cyy(t) ≡ 〈y(t) · y(0)T 〉 =

∫ +∞

−∞
. . .

∫ +∞

−∞
d2ytd

2y0 yt · yT
0 p(yt, t;y0, 0) (II.118)

The calculation of cyy(t) follows the same lines as in the case of one-
dimensional motion, and one obtains instead of (II.86)

cyy(t) = G(t) · 〈y · yT 〉 (II.119)

In analogy with cyy(t) one defines the tensorial MSD

W(t) = 〈[y(t)− y(0)] · [y(t)− y(0)]T 〉 (II.120)

Using the general form (II.119) for cyy(t) one obtains

W(t) = 2cyy(0)− cyy(t)− cT
yy(t) (II.121)

Note that cT
yy(t) %= cyy(t).

9.4. Spectral representation of the prapagator G(t). To obtain an explicit
expression for the propagator G(t) = exp(−At), one uses the spectral decom-
position of the matrix A 3. Since A is not symmetric one cannot chose an
orthonormal basis in which A is diagonal. It is, however, possible to construct
two bi-orthonormal bases, {u1,u2} and {v1,v2}, with

uT
i · vj = δij, (II.122)

such that
A =

∑

k

λkuk · vT
k . (II.123)

It is easy to see that the two bi-orthonormal bases are the right and left eigen-
vectors of A,

A · uk = λkuk, (II.124)
AT · vk = λkvk. (II.125)

With these definitions the propagator takes the simple form

G(t) =
∑

k

exp(−λkt)uk · vk
T . (II.126)

3The method presented here can be found in the book by Risken [14]

Bi-orthonormal systems 
of eigenvectors
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This matrix can be calculated from the eigenvalues of A,

λ1,2 = −γ

2
± iω̃0, ω̃0 =

√
ω2

0 −
γ2

4
, (II.127)

and from its left and right eigenvectors

u1 = (−1, λ1)
T , (II.128)

u2 = (−1, λ2)
T , (II.129)

v1 =
1

λ1 − λ2
(λ2, 1)T , (II.130)

v2 =
1

λ1 − λ2
(λ1, 1)T . (II.131)

Insertion of these expressions into (II.126) yields

G(t) =
exp(−λ1t)

λ1 − λ2

(
−λ2 −1
λ1λ2 λ1

)
+

exp(−λ2t)

λ1 − λ2

(
−λ1 −1
λ1λ2 λ2

)
. (II.132)

At this point all relevant elements are available which allow to calculate corre-
lation functions and mean square displacements.

9.5. Velocity autocorrelation function. Starting from expression (II.119)
for the correlation matrix cyy(t) and using expression (II.115) for the matrix
σ(∞) one obtains for example

cvv(t) =
kBT

M
G22(t). (II.133)

Here the spectral representation (II.132) of the propagator may be inserted to-
gether with the eigenvalues of the matrix A, which are given in (II.127),

cvv(t) =
kBT

M
exp

(
−γt

2

) {
cos(ω̃0t)−

γ

2ω̃0
sin(ω̃0t)

}
(II.134)

This result may compared to expression (I.57) which has been obtained from
the Langevin equation.

9.6. Position mean square displacement. The (position) MSD is read off
from element (1, 1) of the MSD matrix (II.121). Here one uses again expres-
sions (II.115 and (II.132) for the matrix σ(∞) and for the propagator, respec-
tively, to obtain

W (t) =
2kBT

Mω2
0

[
1− exp

(
−γt

2

) {
cos(ω̃0t) +

γ

2ω̃0
sin(ω̃0t)

}]
(II.135)

As for the VACF, the result (I.59) following from the Langevin equation is re-
trieved.
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Eq. (II.101) shows that
τv = γ−1 (II.103)

is the characteristic time for the velocity relaxation, or equivalently thermali-
sation of a Brownian particle.

9. Ornstein-Uhlenbeck process in phase space

9.1. Fokker-Planck equation. The last two applications for the Ornstein-
Uhlenbeck process lead naturally to considering an Ornstein-Uhlenbeck pro-
cess in phase space. The latter is described by a stochastic two-component
process, y = (x, v)T , where x is the position of a Brownian particle and v its
velocity. The matrices a(1)(y) and a(2)(y) are defined as

a(1)(y) = −A · y and a(2)(y) = 2B, (II.104)

where A and B have the form

A =

(
0 −1
ω2

0 γ

)
, B =

(
0 0
0 kBT

M γ

)
. (II.105)

With these definitions the Fokker-Planck equation takes the form

∂P (y, t)

∂t
=

∂

∂y
·
{
A · yP (y, t)

}
+

∂

∂y
·
{
B · ∂

∂y
P (y, t)

}
(II.106)

The stochastic equation of motion associated with (II.106) reads
(

x(t0 + ∆t)
v(t0 + ∆t)

)
=

(
x(t0)
v(t0)

)
+ ∆t

(
0 1
−ω2

0 −γ

)
·
(

x(t0)
v(t0)

)
+

(
0
ξ

)
. (II.107)

and corresponds to the equation of motion of a Langevin oscillator (see
Eq. (I.52))

ẍ + γẋ + ω2
0x = fs(t).

9.2. Solution of the Fokker-Planck equation. As in the case of a single-
component process one finds the solution of the Fokker-Planck equation by
Fourier transformation techniques. The Fourier transform of the density
P (y, t) is in particular given by

P̃ (k, t) =

∫ +∞

−∞

∫ +∞

−∞
dkxdkv exp(−ikT · y)P (y, t),

where k = (kx, kv)T . One uses again a Gaussian ansatz for P (y, t),

P (y, t) =
1

2π
√

det(σ(t))
exp

(
−1

2
{y −M(t)}T · σ−1(t) · {y −M(t)}

)

(II.108)

Left and right eigenvectors of A
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The above density is also obtained for a particle whose dynamics is described
in the framework of Hamiltonian mechanics. In this case Peq(·) is proportional
to the Boltzmann factor, exp(−H(p, x)/kBT ), where p = Mv is the momentum
of the particle and H(p, x) is the corresponding Hamiltonian.

9.3. Autocorrelation matrix and tensorial MSD. Generalising definition
(II.82) of an autocorrelation function we define here the autocorrelation matrix

cyy(t) ≡ 〈y(t) · y(0)T 〉 =

∫ +∞

−∞
. . .

∫ +∞

−∞
d2ytd

2y0 yt · yT
0 p(yt, t;y0, 0) (II.118)

The calculation of cyy(t) follows the same lines as in the case of one-
dimensional motion, and one obtains instead of (II.86)

cyy(t) = G(t) · 〈y · yT 〉 (II.119)

In analogy with cyy(t) one defines the tensorial MSD

W(t) = 〈[y(t)− y(0)] · [y(t)− y(0)]T 〉 (II.120)

Using the general form (II.119) for cyy(t) one obtains

W(t) = 2cyy(0)− cyy(t)− cT
yy(t) (II.121)

Note that cT
yy(t) %= cyy(t).

9.4. Spectral representation of the prapagator G(t). To obtain an explicit
expression for the propagator G(t) = exp(−At), one uses the spectral decom-
position of the matrix A 3. Since A is not symmetric one cannot chose an
orthonormal basis in which A is diagonal. It is, however, possible to construct
two bi-orthonormal bases, {u1,u2} and {v1,v2}, with

uT
i · vj = δij, (II.122)

such that
A =

∑

k

λkuk · vT
k . (II.123)

It is easy to see that the two bi-orthonormal bases are the right and left eigen-
vectors of A,

A · uk = λkuk, (II.124)
AT · vk = λkvk. (II.125)

With these definitions the propagator takes the simple form

G(t) =
∑

k

exp(−λkt)uk · vT
k . (II.126)

3The method presented here can be found in the book by Risken [14]
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Note that cT
yy(t) %= cyy(t).

9.4. Spectral representation of the prapagator G(t). To obtain an explicit
expression for the propagator G(t) = exp(−At), one uses the spectral decom-
position of the matrix A 3. Since A is not symmetric one cannot chose an
orthonormal basis in which A is diagonal. It is, however, possible to construct
two bi-orthonormal bases, {u1,u2} and {v1,v2}, with

uT
i · vj = δij, (II.122)

such that
A =

∑

k

λkuk · vT
k . (II.123)

It is easy to see that the two bi-orthonormal bases are the right and left eigen-
vectors of A,

A · uk = λkuk, (II.124)
AT · vk = λkvk. (II.125)

With these definitions the propagator takes the simple form

G(t) =
∑

k

exp(−λkt)uk · vT
k . (II.126)

3The method presented here can be found in the book by Risken [14]

48 2. DIFFUSION PROCESSES AND THE FOKKER-PLANCK EQUATION

The above density is also obtained for a particle whose dynamics is described
in the framework of Hamiltonian mechanics. In this case Peq(·) is proportional
to the Boltzmann factor, exp(−H(p, x)/kBT ), where p = Mv is the momentum
of the particle and H(p, x) is the corresponding Hamiltonian.

9.3. Autocorrelation matrix and tensorial MSD. Generalising definition
(II.82) of an autocorrelation function we define here the autocorrelation matrix

cyy(t) ≡ 〈y(t) · y(0)T 〉 =

∫ +∞

−∞
. . .

∫ +∞

−∞
d2ytd

2y0 yt · yT
0 p(yt, t;y0, 0) (II.118)

The calculation of cyy(t) follows the same lines as in the case of one-
dimensional motion, and one obtains instead of (II.86)

cyy(t) = G(t) · 〈y · yT 〉 (II.119)

In analogy with cyy(t) one defines the tensorial MSD

W(t) = 〈[y(t)− y(0)] · [y(t)− y(0)]T 〉 (II.120)

Using the general form (II.119) for cyy(t) one obtains

W(t) = 2cyy(0)− cyy(t)− cT
yy(t) (II.121)

Note that cT
yy(t) %= cyy(t).

9.4. Spectral representation of the prapagator G(t). To obtain an explicit
expression for the propagator G(t) = exp(−At), one uses the spectral decom-
position of the matrix A 3. Since A is not symmetric one cannot chose an
orthonormal basis in which A is diagonal. It is, however, possible to construct
two bi-orthonormal bases, {u1,u2} and {v1,v2}, with

uT
i · vj = δij, (II.122)

such that
A =

∑

k

λkuk · vT
k . (II.123)

It is easy to see that the two bi-orthonormal bases are the right and left eigen-
vectors of A,

A · uk = λkuk, (II.124)
AT · vk = λkvk. (II.125)

With these definitions the propagator takes the simple form

G(t) =
∑

k

exp(−λkt)uk · vT
k . (II.126)

3The method presented here can be found in the book by Risken [14]



9. ORNSTEIN-UHLENBECK PROCESS IN PHASE SPACE 49

This matrix can be calculated from the eigenvalues of A,

λ1,2 = −γ

2
± iω̃0, ω̃0 =

√
ω2

0 −
γ2

4
, (II.127)

and from its left and right eigenvectors

u1 = (−1, λ1)
T , (II.128)

u2 = (−1, λ2)
T , (II.129)

v1 =
1

λ1 − λ2
(λ2, 1)T , (II.130)

v2 =
1

λ2 − λ1
(λ1, 1)T . (II.131)

Insertion of these expressions into (II.126) yields

G(t) =
exp(−λ1t)

λ1 − λ2

(
−λ2 −1
λ1λ2 λ1

)
+

exp(−λ2t)

λ2 − λ1

(
−λ1 −1
λ1λ2 λ2

)
. (II.132)

At this point all relevant elements are available which allow to calculate corre-
lation functions and mean square displacements.

9.5. Velocity autocorrelation function. Starting from expression (II.119)
for the correlation matrix cyy(t) and using expression (II.115) for the matrix
σ(∞) one obtains for example

cvv(t) =
kBT

M
G22(t). (II.133)

Here the spectral representation (II.132) of the propagator may be inserted to-
gether with the eigenvalues of the matrix A, which are given in (II.127),

cvv(t) =
kBT

M
exp

(
−γt

2

) {
cos(ω̃0t)−

γ

2ω̃0
sin(ω̃0t)

}
(II.134)

This result may compared to expression (I.57) which has been obtained from
the Langevin equation.

9.6. Position mean square displacement. The (position) MSD is read off
from element (1, 1) of the MSD matrix (II.121). Here one uses again expres-
sions (II.115 and (II.132) for the matrix σ(∞) and for the propagator, respec-
tively, to obtain

W (t) =
2kBT

Mω2
0

[
1− exp

(
−γt

2

) {
cos(ω̃0t) +

γ

2ω̃0
sin(ω̃0t)

}]
(II.135)

As for the VACF, the result (I.59) following from the Langevin equation is re-
trieved.
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Here ξ is a stochastic displacement with zero mean and standard deviation
∆ta2(y(t0)),

ξ = 0 and ξ2 = ∆ta2(y(t0)) (II.38)
The bar indicates a mean over the possible realisations of ξ and not a mean
over time.

5.2. Equation of continuity and equilibrium. The meaning of the func-
tion ak(y) is also reflected in the Fokker-Planck equation itself. If one intro-
duces the current density

J(y, t) = a1(y)P (y, t)− a2(y)

2

∂P (y, t)

∂y
(II.39)

the Fokker-Planck equation (II.29) takes the form

∂P (y, t)

∂t
+

∂J(y, t)

∂y
= 0 (II.40)

In the multidimensional case one has ∂tP +#∇· #J = 0. The current density J(y, t)
can be decomposed into a deterministic component which leads to a systematic
drift,

Jd(y, t) = a1(y)P (y, t), (II.41)
and an entropic component which drives P (y, t) towards a constant density,

Je(y, t) = −a2(y)

2

∂P (y, t)

∂y
. (II.42)

The equilibrium is characterised by the condition

Jeq(y) ≡ lim
t→∞

J(y, t) = 0 (II.43)

This shows that the equilibrium density, which is defined by
Peq(y) = lim

t→∞
P (y, t), (II.44)

must be a solution of the differential equation (a2(y) $= 0)
∂Peq(y)

∂y
=

2a1(y)

a2(y)
Peq(y) (II.45)

The solution can be obtained by separation of variables:

Peq(y) = C exp

(∫ y

−∞
dy′

2a1(y′)

a2(y′)

)
(II.46)

Here one supposes that y ∈ (−∞, +∞) and that there exists a constant C with
0 < C < ∞, such that Peq(y) is normalised. It is important to recall that
P (y, t) ≡ p(y, t|y0), such that Peq(y) ≡ limt→∞ p(y, t|y0) is a priori a function of
the initial value y0. On the other hand, y0 does not appear in the Fokker-Planck

General form of the 
probability current

Diffusion in a harmonic 
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10. Smoluchowski equation and Kramers equation

The description of diffusion processes under the influence of a harmonic
potential can be generalised to include also non-harmonic potentials. Let us
first revisit the Ornstein-Uhlenbeck process in position space, where the dif-
fusing particle is subject to a systematic driving force

F (x) = −∂V (x)

∂x
= −Kx. (II.136)

The current density introduced in (II.39) can then be written in the form

J(x, t) = D

(
F (x)

kBT
P (y, t)− ∂P (x, t)

∂x

)
, (II.137)

where

vD =
DF (x)

kBT
(II.138)

represents the drift velocity, which is established under the influence of the sys-
tematic driving force F (x). If expression (II.137) is inserted into the continuity
equation (II.40) one obtains the Smoluchowski equation

∂P (x, t)

∂t
= D

∂

∂x

{
1

kBT

∂V (x)

∂x
P (x, t) +

∂P (x, t)

∂x

}
(II.139)

which describes also diffusion processes for particles moving in arbitrary po-
tentials.

In the same way as the Fokker-Planck equation for an Ornstein-Uhlenbeck
process in position space is generalised to the Smoluchowski equation, the
Fokker-planck equation for an Ornstein-Uhlenbeck process in phase space is
generalised to the Kramers equation. For this purpose we express the Fokker-
Planck equation (II.106) explicitly in the variables x and v and simply replace
ω2

0x by −(1/M)∂V (x)/∂x. The resulting equation can be rearranged to give
(the dependencies on x, v and t are omitted)

∂P

∂t
+ v

∂P

∂x
− 1

M

∂V

∂x

∂P

∂v
= γ

∂

∂v

{
vP +

kBT

M

∂P

∂v

}
(II.140)

Here one assumes again that the resulting equation holds for arbitrary poten-
tials V (x). Two important point should be observed:

(1) The r.h.s. of the Kramers equation and the Fokker-Planck equa-
tion (II.96), which describes diffusion in velocity space, are identical.

(2) For γ = 0 the Kramers equation takes the form

∂P

∂t
+ ẋ

∂P

∂x
+ v̇

∂P

∂v
= 0, (II.141)

Harmonic force

Smoluchowski equation for an 
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M

∂V
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∂P
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∂

∂v

{
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kBT

M

∂P

∂v

}
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Here one assumes again that the resulting equation holds for arbitrary poten-
tials V (x). Two important point should be observed:

(1) The r.h.s. of the Kramers equation and the Fokker-Planck equa-
tion (II.96), which describes diffusion in velocity space, are identical.

(2) For γ = 0 the Kramers equation takes the form
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Here ξ is a stochastic displacement with zero mean and standard deviation
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Eq. (II.101) shows that
τv = γ−1 (II.103)

is the characteristic time for the velocity relaxation, or equivalently thermali-
sation of a Brownian particle.

9. Ornstein-Uhlenbeck process in phase space

9.1. Fokker-Planck equation. The last two applications for the Ornstein-
Uhlenbeck process lead naturally to considering an Ornstein-Uhlenbeck pro-
cess in phase space. The latter is described by a stochastic two-component
process, y = (x, v)T , where x is the position of a Brownian particle and v its
velocity. The matrices a(1)(y) and a(2)(y) are defined as

a(1)(y) = −A · y and a(2)(y) = 2B, (II.104)

where A and B have the form

A =

(
0 −1
ω2

0 γ

)
, B =

(
0 0
0 kBT

M γ

)
. (II.105)

With these definitions the Fokker-Planck equation takes the form

∂P (y, t)

∂t
=

∂

∂y
·
{
A · yP (y, t)

}
+

∂

∂y
·
{
B · ∂

∂y
P (y, t)

}
(II.106)

The stochastic equation of motion associated with (II.106) reads
(

x(t0 + ∆t)
v(t0 + ∆t)

)
=

(
x(t0)
v(t0)

)
+ ∆t

(
0 1
−ω2

0 −γ

)
·
(

x(t0)
v(t0)

)
+

(
0
ξ

)
. (II.107)

and corresponds to the equation of motion of a Langevin oscillator (see
Eq. (I.52))

ẍ + γẋ + ω2
0x = fs(t).

9.2. Solution of the Fokker-Planck equation. As in the case of a single-
component process one finds the solution of the Fokker-Planck equation by
Fourier transformation techniques. The Fourier transform of the density
P (y, t) is in particular given by

P̃ (k, t) =

∫ +∞

−∞

∫ +∞

−∞
dkxdkv exp(−ikT · y)P (y, t),

where k = (kx, kv)T . One uses again a Gaussian ansatz for P (y, t),

P (y, t) =
1

2π
√

det(σ(t))
exp

(
−1

2
{y −M(t)}T · σ−1(t) · {y −M(t)}

)

(II.108)

ω2
0x→ 1

M

∂V

∂x

∂P

∂t
+ v

∂P

∂x
− ω2

0x
∂P

∂v
= γ

∂

∂v

{
vP +

kBT

M

∂P

∂v

}

∂P

∂t
+ v

∂P

∂x
− 1

M

∂V

∂x

∂P

∂v
= γ

∂

∂v

{
vP +

kBT

M

∂P

∂v

}
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If we start from the Hamiltonian H(p, x) = p2/2M + V (x) for a single
particle and the associated equations of motion

ẋ =
∂H

∂p
(II.142)

ṗ = −∂H

∂x
, (II.143)

Eq. (II.141) may be written as

∂P

∂t
+ {H, P} = 0, (II.144)

where {H, P} is the Poisson bracket

{H, P} :=
∂H

∂p

∂P

∂x
− ∂H

∂x

∂P

∂p
. (II.145)

Eq. (II.141) is thus nothing but the Liouville equation for the phase
flow of a single particle.

The zero-friction limit leads thus to the model of deterministic motion of a sin-
gle particle and the high friction limit, where the r.h.s. of the Kramers equation
dominates, describes free Brownian motion.

11. Eigenfunction expansion

11.1. Method. A useful concept for the solution of Fokker-Planck equa-
tions is to use an ansatz in terms of eigenfunctions of the respective Fokker-
Planck operator. Assuming that y is the stochastic variable under considera-
tion, the Fokker-Planck equation is written in the form

∂P (y, t)

∂t
= LFP P (y, t) (II.146)

where LFP is the differential operator

LFP = − ∂

∂y
a1(y) +

1

2

∂2

∂y2
a2(y) (II.147)

Here a1(y) and a2(y) are, respectively, the the drift and fluctuation coefficient
which have been introduced in Eqs. (II.35) and (II.36).

To discuss general features of the solution of the Fokker-Planck equation
(II.146) it is convenient to consider its Laplace transform. Transforming both
sides of the FPE leads to

sP̂ (y, s)− P (y, 0) = LFP P̂ (y, s)
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ṗ = −∂H

∂x
, (II.143)

Eq. (II.141) may be written as

∂P

∂t
+ {H, P} = 0, (II.144)

where {H, P} is the Poisson bracket

{H, P} :=
∂H

∂p

∂P

∂x
− ∂H

∂x

∂P

∂p
. (II.145)

Eq. (II.141) is thus nothing but the Liouville equation for the phase
flow of a single particle.

The zero-friction limit leads thus to the model of deterministic motion of a sin-
gle particle and the high friction limit, where the r.h.s. of the Kramers equation
dominates, describes free Brownian motion.

11. Eigenfunction expansion

11.1. Method. A useful concept for the solution of Fokker-Planck equa-
tions is to use an ansatz in terms of eigenfunctions of the respective Fokker-
Planck operator. Assuming that y is the stochastic variable under considera-
tion, the Fokker-Planck equation is written in the form

∂P (y, t)

∂t
= LFP P (y, t) (II.146)

where LFP is the differential operator

LFP = − ∂

∂y
a1(y) +

1

2

∂2

∂y2
a2(y) (II.147)

Here a1(y) and a2(y) are, respectively, the the drift and fluctuation coefficient
which have been introduced in Eqs. (II.35) and (II.36).

To discuss general features of the solution of the Fokker-Planck equation
(II.146) it is convenient to consider its Laplace transform. Transforming both
sides of the FPE leads to

sP̂ (y, s)− P (y, 0) = LFP P̂ (y, s)

Fokker-Planck operator

11. EIGENFUNCTION EXPANSION 51

If we start from the Hamiltonian H(p, x) = p2/2M + V (x) for a single
particle and the associated equations of motion
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Laplace transform
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which can be easily solved for P̂ (y, t). Using the initial condition P (y, 0) =
δ(y − y0) one obtains thus the following formal solution in the s-plane

P̂ (y, s) =
1

s− LFP
δ(y − y0). (II.148)

We assume now thatLFP has a discrete spectrum of eigenvalues. The Dirac
distribution may then be expressed in terms of the biorthogonal set of right
and left eigenfunctions of LFP , which are defined by the relations [16, 14]

LFP Pn(y) = −λnPn(y), (II.149)
L+

FP Qn(y) = −λnQn(y), (II.150)

respectively, and fulfil (Pn, Qk) = δnk, where δnk is the Kronecker delta.
The scalar product of two functions f and g is here defined as (f, g) =∫ +∞
−∞ dy f(y)g(y). The operator L+

FP is adjoint to LFP , such that (g,LFP f) =
(L+

FP g, f). From the general form (II.147) one finds

L+
FP = a1(y)

∂

∂y
+ a2(y)

1

2

∂2

∂y2
(II.151)

The left and right eigenfunctions are connected through

Pn(y) = Qn(y)Peq(y) (II.152)

Here Peq(y) describes the equilibrium distribution, which is characterised by

LFP Peq(y) = 0. (II.153)

Inserting the identity

δ(y − y0) =
∑

n

Pn(y)Qn(y0). (II.154)

into expression (II.148) yields thus

P̂ (y, s) =
∑

n

1

s + λn
Pn(y)Qn(y0) (II.155)

The solution in time is easily found by inverse Laplace transform,

P (y, t) =
1

2πi

∮

C

ds exp(st)P̂ (y, s),

using the theorem of residues. The contour C includes all poles of P̂ (y, s) and
one obtains from (II.155)

P (y, t) =
∑

n

exp(−λnt)Pn(y)Qn(y0) (II.156)
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If P (y, t) describes a system close to thermal equilibrium the Fokker-Planck
operator must be negative semi-definite, such that λn ≥ 0. In this case one can
write

λ0 < λ1 < λ2 < . . . , (II.157)
where λ0 = 0 corresponds to the equilibrium state and

P0(y) = Peq(y) (II.158)
is the equilibrium distribution. Since Pn(y) = Peq(y)Qn(y) it follows that
Q0(y) = 1.

11.2. Correlation function. From the general form (II.156) of the solution
of a Fokker-Planck equation one can derive a formula for the correlation func-
tion cyy(t) := 〈y(t)y(0)〉. Using the relation between the Pn(y) and Qn(y) one
obtains

cyy(t) =

∫ ∫
dy0dy yy0P (y, t|y0, 0)Peq(y0)

=
∞∑

n=1

(∫
dy yPn(y)

)2

exp(−λnt) (II.159)

The sum in (II.159) starts with n = 1 since there is no net drift in the equilib-
rium state, and therefore

∫
dy yP0(y) = 0. In case that a dynamical variable

is described by a Fokker-Planck equation whose Fokker-Planck operator has
a discrete spectrum of eigenvalues, the associated autocorrelation function ex-
hibits a multiexponential decay and λ1 is the inverse of the relaxation time de-
scribing the slowest relaxation mode.

τmax =
1

λ1
(II.160)

11.3. Example. In the following we apply the solution procedure dis-
cussed above to the Ornstein-Uhlenbeck process describing the diffusion of
a Brownian particle in the parabolic potential (II.91). The solution has already
been found by different means in Section 8. Here the position of the Brownian
particle is the variable of interest and will be denoted x in the following. The
corresponding Fokker-Planck operator and its adjoint have the form

LFP = η
∂

∂x
x + D

∂2

∂x2
, (II.161)

L+
FP = −ηx

∂

∂x
+ D

∂2

∂x2
. (II.162)

The left eigenfunctions of LFP , which are identical with the right eigenfunc-
tions of L+

FP , have the form [16, 14]

Qn(x) =
1√
2nn!

Hn(x
√

η/2D) (II.163)
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tion cyy(t) := 〈y(t)y(0)〉. Using the relation between the Pn(y) and Qn(y) one
obtains

cyy(t) =

∫ ∫
dy0dy yy0P (y, t|y0, 0)Peq(y0)

=
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The sum in (II.159) starts with n = 1 since there is no net drift in the equilib-
rium state, and therefore

∫
dy yP0(y) = 0. In case that a dynamical variable

is described by a Fokker-Planck equation whose Fokker-Planck operator has
a discrete spectrum of eigenvalues, the associated autocorrelation function ex-
hibits a multiexponential decay and λ1 is the inverse of the relaxation time de-
scribing the slowest relaxation mode.

τmax =
1

λ1
(II.160)

11.3. Example. In the following we apply the solution procedure dis-
cussed above to the Ornstein-Uhlenbeck process describing the diffusion of
a Brownian particle in the parabolic potential (II.91). The solution has already
been found by different means in Section 8. Here the position of the Brownian
particle is the variable of interest and will be denoted x in the following. The
corresponding Fokker-Planck operator and its adjoint have the form

LFP = η
∂

∂x
x + D

∂2

∂x2
, (II.161)

L+
FP = −ηx

∂

∂x
+ D

∂2

∂x2
. (II.162)

The left eigenfunctions of LFP , which are identical with the right eigenfunc-
tions of L+

FP , have the form [16, 14]

Qn(x) =
1√
2nn!

Hn(x
√

η/2D) (II.163)

52 2. DIFFUSION PROCESSES AND THE FOKKER-PLANCK EQUATION

which can be easily solved for P̂ (y, t). Using the initial condition P (y, 0) =
δ(y − y0) one obtains thus the following formal solution in the s-plane

P̂ (y, s) =
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s− LFP
δ(y − y0). (II.148)

We assume now thatLFP has a discrete spectrum of eigenvalues. The Dirac
distribution may then be expressed in terms of the biorthogonal set of right
and left eigenfunctions of LFP , which are defined by the relations [16, 14]
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L+

FP Qn(y) = −λnQn(y), (II.150)

respectively, and fulfil (Pn, Qk) = δnk, where δnk is the Kronecker delta.
The scalar product of two functions f and g is here defined as (f, g) =∫ +∞
−∞ dy f(y)g(y). The operator L+

FP is adjoint to LFP , such that (g,LFP f) =
(L+

FP g, f). From the general form (II.147) one finds
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∂y
+ a2(y)
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2
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∂y2
(II.151)

The left and right eigenfunctions are connected through

Pn(y) = Qn(y)Peq(y) (II.152)

Here Peq(y) describes the equilibrium distribution, which is characterised by

LFP Peq(y) = 0. (II.153)
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δ(y − y0) =
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n

Pn(y)Qn(y0). (II.154)

into expression (II.148) yields thus
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Pn(y)Qn(y0) (II.155)

The solution in time is easily found by inverse Laplace transform,

P (y, t) =
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ds exp(st)P̂ (y, s),

using the theorem of residues. The contour C includes all poles of P̂ (y, s) and
one obtains from (II.155)

P (y, t) =
∑

n

exp(−λnt)Pn(y)Qn(y0) (II.156)
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and the corresponding negative eigenvalues form an equidistant discrete spec-
trum

λn = nη, n = 0, 1, 2, . . . . (II.164)
Here Hn(·) is the n-th Hermite polynomial [17],

H0(x) = 1

H1(x) = 2x

H2(x) = −2 + 4x2

H3(x) = −12x + 8x3

. . .

According to (II.152) the right eigenfunctions are constructed through

Pn(x) = Peq(x)Qn(x) (II.165)

where Peq(x) = P0(x) is the equilibrium density. As shown in Section 8, the
latter has the Gaussian form

Peq(x) =

√
η

2πD
exp

(
−ηx2

2D

)
(II.166)

where
D

η
=

kBT

K
= 〈x2〉 (II.167)

is the mean square position fluctuation. Defining the scaled positions

ξ =
x√
〈x2〉

(II.168)

one obtains from (II.156), (II.163), (II.165) and (II.166)

P (ξ, t) =
exp

(
− ξ2

2

)

√
2π

∞∑

n=0

1

2nn!
Hn

(
ξ√
2

)
Hn

(
ξ0√
2

)
exp (−nηt) (II.169)

This result must be compared to the closed form of the solution which is given
in Eq. (II.94). Using the scaled variables introduced above, we have

P (ξ, t) =

√
1

2{1− exp(−2ηt)} exp

(
−{ξ − ξ0 exp(−ηt)}2

2{1− exp(−2ηt)}

)
. (II.170)

The equality of expressions (II.169) and (II.170) can be proven by means of the
identity [14, 18]

∞∑

n=0

αn

n!
Hn(x)Hn(y) =

1√
1− 4α2

exp

(
4α

1− 4α2
(xy − αx2 − αy2)

)
, (II.171)

which holds for |α| < 1/2.
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If P (y, t) describes a system close to thermal equilibrium the Fokker-Planck
operator must be negative semi-definite, such that λn ≥ 0. In this case one can
write

λ0 < λ1 < λ2 < . . . , (II.157)
where λ0 = 0 corresponds to the equilibrium state and

P0(y) = Peq(y) (II.158)
is the equilibrium distribution. Since Pn(y) = Peq(y)Qn(y) it follows that
Q0(y) = 1.

11.2. Correlation function. From the general form (II.156) of the solution
of a Fokker-Planck equation one can derive a formula for the correlation func-
tion cyy(t) := 〈y(t)y(0)〉. Using the relation between the Pn(y) and Qn(y) one
obtains

cyy(t) =

∫ ∫
dy0dy yy0P (y, t|y0, 0)Peq(y0)

=
∞∑

n=1

(∫
dy yPn(y)

)2

exp(−λnt) (II.159)

The sum in (II.159) starts with n = 1 since there is no net drift in the equilib-
rium state, and therefore

∫
dy yP0(y) = 0. In case that a dynamical variable

is described by a Fokker-Planck equation whose Fokker-Planck operator has
a discrete spectrum of eigenvalues, the associated autocorrelation function ex-
hibits a multiexponential decay and λ1 is the inverse of the relaxation time de-
scribing the slowest relaxation mode.

τmax =
1

λ1
(II.160)

11.3. Example. In the following we apply the solution procedure dis-
cussed above to the Ornstein-Uhlenbeck process describing the diffusion of
a Brownian particle in the parabolic potential (II.91). The solution has already
been found by different means in Section 8. Here the position of the Brownian
particle is the variable of interest and will be denoted x in the following. The
corresponding Fokker-Planck operator and its adjoint have the form

LFP = η
∂

∂x
x + D

∂2

∂x2
, (II.161)

L+
FP = −ηx

∂

∂x
+ D

∂2

∂x2
. (II.162)

The left eigenfunctions of LFP , which are identical with the right eigenfunc-
tions of L+

FP , have the form [16, 14]

Qn(x) =
1√
2nn!

Hn(x
√

η/2D) (II.163)
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The autocorrelation function of the scaled variable ξ is obtained from the
general expression (II.159), replacing y → ξ and using

∫
dξ ξPn(ξ) = δn,1. One

obtains
cξξ(t) = exp(−ηt) (II.172)

Since x =
√
〈x2〉ξ it follows

cxx(t) = 〈x2〉 exp(−ηt) (II.173)

and one retrieves the result given in Eq. (II.86), with x as variable of interest.
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