II. Modelling MD trajectories time series analysis

Gerald Kneller
Centre de Biophysique Moléculaire, CNRS Orléans
Université d'Orléans
Synchrotron Soleil, St Aubin
filil
CBM

Molecular dynamics simulation

Correlations in the Motion of Atoms in Liquid Argon*
A. Rahman

Argonne National Laboratory, Argonne, Illinois
(Received 6 May 1964)
$\sim 3.6 \mathrm{~nm}$

- Solve Newton's equations of motion

$$
M_{i} \ddot{\mathbf{r}}_{i}=-\frac{\partial U}{\partial \mathbf{r}_{i}} \quad U=\sum_{i j} 4 \epsilon\left(\left[\frac{\sigma}{r_{i j}}\right]^{12}-\left[\frac{\sigma}{r_{i j}}\right]^{6}\right)
$$

- Discretization and iterative solution yields trajectories $=$ time series ($<100 \mathrm{~ns}$)

$$
\begin{aligned}
\mathbf{r}_{i}(n+1) & \leftarrow 2 \mathbf{r}_{i}(n)-\mathbf{r}_{i}(n-1)+\frac{\Delta t^{2}}{M_{i}} \mathbf{F}_{i}(n) \\
\mathbf{v}_{i}(n) & \leftarrow \frac{\mathbf{r}_{i}(n+1)-\mathbf{r}_{i}(n-1)}{2 \Delta t}
\end{aligned}
$$

Forces: $\quad \mathbf{F}_{i}=-\frac{\partial U}{\partial \mathbf{r}_{i}}$

Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules*

Loup Verlet \dagger
Belfer Graduate School of Science, Yeshiva University, New York, New York
(Received 30 January 1967)

The equation of motion of a system of 864 particles interacting through a Lennard-Jones potential has been integrated for various values of the temperature and density, relative, generally, to a fluid state. The equilibrium properties have been calculated and are shown to agree very well with the corresponding properties of argon. It is concluded that, to a good approximation, the equilibrium state of argon can be described through a two-body potential.

$$
V(r)=4\left((\sigma / r)^{12}-(\sigma / r)^{6}\right) .
$$

$$
m \frac{d^{2} \mathbf{r}_{i}}{d t^{2}}=\sum_{j \neq i} \mathbf{f}\left(r_{i j}\right) .
$$

$$
\mathbf{r}_{i}(t+h)=-\mathbf{r}_{i}(t-h)+2 \mathbf{r}_{i}(t)+\sum_{j \neq i} \mathbf{f}\left(r_{i j}(t)\right) h^{2},
$$

Periodic boundary conditions

The limit of classical mechanics

$$
\begin{aligned}
& \text { Harmonic } \\
& \text { approximation } \\
& \text { Argon : } \\
& T=94.4 K \\
& \hbar \omega_{0}=0.4 k_{B} T \\
& U_{L J}(r)=4 \epsilon\left(\left[\frac{\sigma}{r}\right]^{12}-\left[\frac{\sigma}{r}\right]^{6}\right) \approx-\epsilon+\frac{18 \cdot 2^{2 / 3} \epsilon\left(r-r_{0}\right)^{2}}{\sigma^{2}} \\
& \hbar \omega_{0} \ll k_{B} T \\
& \omega_{0}=\sqrt{\frac{18 \cdot 2^{2 / 3} \epsilon}{\mu \sigma^{2}}}
\end{aligned}
$$

Spatial correlations

$$
g(r)=\frac{1}{4 \pi r^{2} \rho} \frac{1}{N} \sum_{\alpha} \sum_{\beta \neq \alpha}\left\langle\delta\left(r-\left|R_{\alpha}-R_{\beta}\right|\right)\right\rangle
$$

Correlations in time

Velocity

 autocorrelation function and its Fourier spectrum (insert)$$
c_{v v}(n)=\frac{1}{N} \sum_{\alpha=1}^{N} w_{\alpha} c_{v v, \alpha}(n) \quad \tilde{c}_{v v}(k)=\frac{1}{2} \sum_{n=-N_{t}-1}^{N_{t}} w(n) c_{v v}(n) \exp \left(-2 \pi i \frac{k n}{2 N_{t}}\right)
$$

$$
c_{v v, \alpha}(n)=\frac{1}{3\left(N_{t}-n\right)} \sum_{k=0}^{N_{t}-n-1} \mathbf{v}_{\alpha}^{T}(k+n) \cdot \mathbf{v}_{\alpha}(k), \quad n=0,1,2, \ldots
$$

Mean square displacement

$$
W(n)=\frac{1}{N} \sum_{\alpha=1}^{N} w_{\alpha} W_{\alpha}(n)
$$

$$
W_{\alpha}(n)=\frac{1}{N_{t}-n} \sum_{k=0}^{N_{t}-n-1}\left(\mathbf{R}_{\alpha}(k+n)-\mathbf{R}_{\alpha}(k)\right)^{2}, \quad n=0,1,2, \ldots
$$

Autoregressive
 (AR) model

$$
v(n) \equiv v(n \Delta t), \quad n \in \mathbb{Z}
$$

time series

$$
v(n)=\sum_{k=1}^{P} a_{k}^{(P)} v(n-k)+\epsilon_{P}(n)
$$

AR model of order P

$$
\begin{aligned}
\left\langle\epsilon_{P}(n)\right\rangle & =0, \\
\left\langle\epsilon_{P}(n) \epsilon_{P}\left(n^{\prime}\right)\right\rangle & =\sigma_{P}^{2} \delta_{n n^{\prime}} .
\end{aligned} \quad \text { "white noise" }
$$

parameters of the model: $\alpha_{1}^{(P)}, \ldots, \alpha_{P}^{(P)}, \sigma_{P}$

Wiener-Hopf equations

$$
\left\langle\epsilon_{P}(n) v(n-k)\right\rangle=0 \quad(k=1, \ldots, P)
$$

$$
\sum_{k=1}^{P} c_{v v}(|j-k|) a_{k}^{(P)}=c_{v v}(j), \quad j=1 \ldots P
$$

yields the coefficients $a_{k}^{(P)}$

$$
\sigma_{P}^{2}=c_{v v}(0)-\sum_{k=1}^{P} a_{k}^{(P)} c_{v v}(k)
$$

Wiener-Khintchine theorem

Finite sample of a signal $\quad v_{M}(n)= \begin{cases}v(n) & \text { si }-M \leq n \leq M \\ 0 & \text { sinon }\end{cases}$
z-Transform

$$
\begin{aligned}
& f(n)=\frac{1}{2 \pi i} \oint_{C} d z z^{n-1} F_{(>)}(z) \longleftrightarrow F(z)=\sum_{n=-\infty}^{+\infty} f(n) z^{-n} . \\
& F_{>}(z)=\sum_{n=0}^{\infty} f(n) z^{-n} . \\
&(f \circ g)(n)=\sum_{j=-\infty}^{+\infty} f(n+j) g^{*}(j) \longleftrightarrow F(z) G^{*}\left(1 / z^{*}\right)
\end{aligned}
$$

- Correlation function

$$
c_{v v}(n)=\lim _{M \rightarrow \infty} \frac{1}{2 M+1} \sum_{k=-M}^{M} v(n+k) v^{*}(k)
$$

$$
C_{v v}(z)=\lim _{M \rightarrow \infty} \frac{1}{2 M+1} V_{M}(z) V_{M}^{*}\left(1 / z^{*}\right)
$$

Fluctuation \& dissipation

AR model $\quad V(z)=\frac{\mathcal{E}_{P}(z)}{1-\sum_{k=1}^{P} a_{k}^{(P)} z^{-k}}$

$$
\begin{aligned}
& \lim _{M \rightarrow \infty} \frac{1}{2 M+1} V(z) V^{*}\left(1 / z^{*}\right)=\frac{\lim _{M \rightarrow \infty} \frac{1}{2 M+1} \mathcal{E}_{P}(z) \mathcal{E}_{P}^{*}\left(1 / z^{*}\right)}{\left(1-\sum_{k=1}^{P} a_{k}^{(P)} z^{-k}\right)\left(1-\sum_{l=1}^{P} a_{l}^{(P)} z^{l}\right)} \\
& C_{v v}^{(A R)}(z)=\frac{C_{\epsilon \epsilon}(z)}{\left(1-\sum_{k=1}^{P} a_{k}^{(P)} z^{-k}\right)\left(1-\sum_{l=1}^{P} a_{l}^{(P)} z^{l}\right)}
\end{aligned}
$$

$$
C_{v v}^{(A R)}(z)=\frac{\sigma_{P}^{2}}{\left(1-\sum_{k=1}^{P} a_{k}^{(P)} z^{-k}\right)\left(1-\sum_{l=1}^{P} a_{l}^{(P)} z^{l}\right)}
$$

"all pole" model

Spectral analysis

$$
\tilde{c}_{v v}^{(A R)}(\omega)=\Delta t \sum_{n=-\infty}^{+\infty} c_{v v}^{(A R)}(n) \exp [-i n \omega \Delta t] \approx \tilde{c}_{v v}(\omega)
$$

$$
\tilde{c}_{v v}^{(A R)}(\omega)=\Delta t C_{v v}^{(A R)}(\exp [i \omega \Delta t])
$$

DOS for liquid argon

G.R. Kneller and K. Hinsen. J. Chem. Phys., 115(24):11097-11105, 2001.

Correlation function

$$
p(z)=z^{P}-\sum_{k=1}^{P} a_{k}^{(P)} z^{P-k}
$$

characteristic polynomial

$$
\left|z_{k}\right|_{\max }<|z|<\frac{1}{\left|z_{k}\right|_{\max }}
$$

$$
c_{v v}^{(A R)}(n)=\sum_{j=1}^{P} \beta_{j} z_{j}^{|n|}
$$

$$
\beta_{j}=\frac{1}{a_{P}^{(P)}} \frac{-z_{j}^{P-1} \sigma_{P}^{2}}{\prod_{k=1, k \neq j}^{P}\left(z_{j}-z_{k}\right) \prod_{l=1}^{P}\left(z_{j}-z_{l}^{-1}\right)}
$$

$$
\left|z_{k}\right|<1, \quad k=1, \ldots, P \quad \text { stability }
$$

VACF for liquid argon

Memory function

$$
\frac{c_{v v}(n+1)-c_{v v}(n)}{\Delta t}=-\sum_{k=0}^{n} \Delta t \kappa(n-k) c_{v v}(k)
$$

$$
\frac{z C_{v v,>}(z)-z c_{v v}(0)-C_{v v,>}(z)}{\Delta t}=-\Delta t K_{>}(z) C_{v v,>}(z)
$$

$$
\begin{aligned}
& K_{>}(z)=\frac{1}{\Delta t^{2}}\left(\frac{z c_{v v}(0)}{C_{v v,>}(z)}+1-z\right) \\
& C_{v v,>}^{(A R)}(z)=\sum_{j=1}^{P} \beta_{j} \frac{z}{z-z_{j}}
\end{aligned}
$$

$$
\sum_{n=0}^{\infty} \kappa^{(A R)}(n) z^{-n}=\frac{1}{\Delta t^{2}}\left(\frac{c_{v v}(0)}{\sum_{j=1}^{P} \beta_{j} \frac{1}{z-z_{j}}}+1-z\right) \quad \begin{aligned}
& \text { calculus of } \kappa(n) \text { by } \\
& \text { polynomial division }
\end{aligned}
$$

Memory function from a given correlation function

$$
\begin{gathered}
\dot{c}(t)=-\int_{0}^{t} d \tau c(t-\tau) \kappa(\tau) \\
\dot{c}(n)=-\sum_{k=0}^{n} \Delta t w_{k} c(n-k) \kappa(k), \quad n=0, \ldots, P . \quad \dot{c}(n) \approx \frac{c(n+1)-c(n)}{\Delta t} \\
\left(\begin{array}{cccccc}
c(0) & 0 & 0 & 0 & \ldots & 0 \\
c(1) & c(0) & 0 & 0 & \ldots & 0 \\
c(2) & c(1) & c(0) & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
c(P) & c(P-1) & c(P-2) & c(P-3) & \ldots & c(0)
\end{array}\right)\left(\begin{array}{c}
w_{0} \kappa(0) \\
w_{1} \kappa(1) \\
w_{2} \kappa(2) \\
\vdots \\
w_{P} \kappa(P)
\end{array}\right)=-\frac{1}{\Delta t}\left(\begin{array}{c}
\dot{c}(0) \\
\dot{c}(1) \\
\dot{c}(2) \\
\vdots \\
\dot{c}(P)
\end{array}\right) \\
\text { Recursive solution... }
\end{gathered}
$$

Memory function for liquid argon

Numerical results and analytical models

Brownian dynamics

$$
\begin{aligned}
& U_{S S}=\sum_{i j \in S} 4 \epsilon\left(\left[\frac{\sigma}{r_{i j}}\right]^{12}-\left[\frac{\sigma}{r_{i j}}\right]^{6}\right) \\
& U_{T S}=\sum_{j \in S} 4 \epsilon\left(\left[\frac{\sigma}{r_{T j}-\delta}\right]^{12}-\left[\frac{\sigma}{r_{T j}-\delta}\right]^{6}\right)
\end{aligned}
$$

$$
\mathrm{S}=\text { solvant }, \mathrm{T}=\text { traceur }
$$

Vary the mass and the size of the tracer particle independently

G.R. Kneller, K. Hinsen, and G. Sutmann. J. Chem. Phys., 118(12):5283-5286, 2003.

Qualitative interpretation by a two-pole model

$$
\kappa(t)=\kappa(0) \exp (-\eta t) \quad \kappa(0)=\frac{\left\langle\delta F^{2}\right\rangle}{\mu k_{B} T} \equiv \omega_{0}^{2}
$$

$$
c_{v v}(t)=\frac{k_{B} T}{M} \exp \left(-\frac{\eta t}{2}\right)\left\{\cos \left(\tilde{\omega}_{0} t\right)+\frac{\eta}{2 \tilde{\omega}_{0}} \sin \left(\tilde{\omega}_{0} t\right)\right\} \quad \tilde{\omega}_{0}=\sqrt{\omega_{0}^{2}-\frac{\eta^{2}}{4}},
$$

a) Large and light particle: $\quad \omega_{0} \gg \eta \Rightarrow \tilde{\omega}_{0} \approx \omega_{0}$
b) Small and heavy particle : $\quad \omega_{0} \ll \eta$

$$
c_{v v}(t) \approx \frac{k_{B} T}{M} \exp \left(-\omega_{0}^{2} \eta^{-1} t\right)
$$

$$
\left(t \gg \eta^{-1}\right)
$$

$$
\gamma=\omega_{0}^{2} \eta^{-1}=\int_{0}^{\infty} d t \kappa(t) \quad \omega_{0}^{2} \ll \eta^{2} \Rightarrow \gamma \ll \eta
$$

Separation of time scales for $\left.c_{v v} t\right)$ ("slow") and $\kappa(t)$ ("fast")

Justification of form b)

$$
\begin{aligned}
& \hat{c}_{v v}(s)=\frac{k_{B} T}{M} \frac{s+\eta}{s(s+\eta)+\omega_{0}^{2}} \\
& c_{v v}(t)=\frac{1}{2 \pi i} \oint_{C} d s \exp (s t) \hat{c}_{v v}(s) \\
& s_{1,2}=-\frac{\eta}{2}\left(1 \mp \sqrt{1-\left[\frac{2 \omega_{0}}{\eta}\right]^{2}}\right) \quad \omega_{0} \ll \eta \quad \begin{array}{r}
s_{1} \approx-\omega_{0}^{2} \eta^{-1}, \\
s_{2} \approx-\eta .
\end{array} \\
& c_{v v}(t)=c_{1} \exp \left(s_{1} t\right)+\underbrace{c_{2} \exp \left(s_{2} t\right)}_{\approx 0 \text { if } t \gg \eta^{-1}}
\end{aligned}
$$

Scaling of the memory function

$$
k(t)
$$

$$
\begin{aligned}
& \psi_{\alpha}(t)=\frac{1}{2 \pi i} \oint_{C} d s \frac{\exp (s t)}{s+@ \hat{\kappa}(s)}, \\
& \stackrel{s \rightarrow s / \alpha}{=} \frac{1}{2 \pi i} \oint_{C^{\prime}} d s \frac{\exp (s \alpha t)}{s+\hat{\kappa}(\alpha s)} . \\
& \hat{\kappa}(s) \rightarrow \kappa(\alpha s) \longleftrightarrow \kappa(t) \rightarrow \frac{1}{\alpha} \kappa\left(\frac{t}{\alpha}\right) \\
& \lim _{\alpha \rightarrow 0} \frac{1}{\alpha} \kappa\left(\frac{t}{\alpha}\right)=\gamma \delta(t) \quad \gamma \equiv \int_{0}^{\infty} d t \kappa(t)
\end{aligned}
$$

Define a coarse-grained time scale

$$
\begin{array}{cc}
\frac{\psi(t+\Delta t)-\psi(\Delta t)}{\Delta t}=-\gamma \psi(t) & \psi(n)=(1-\gamma \Delta t)^{|n|} \\
\psi(\Delta t)=1-\gamma \Delta t \approx 1-\frac{\Delta t^{2}}{2} \kappa(0) & \begin{array}{c}
\text { discrete analogue of } \\
\text { an exponential function } \\
\text { dymiltonien } \\
\text { dynamics }
\end{array} \\
\Delta t=2 \int_{0}^{\infty} d t \frac{\kappa(t)}{\kappa(0)} \quad \text { ett } \Delta t \ll \frac{1}{\sqrt{\kappa(0)}}
\end{array}
$$

Conditions for Brownian dynamics on the time scale $t \gg \Delta t$.

Again the two-pole model...

$$
\kappa(t)=\kappa(0) \exp (-\eta t) \quad \kappa(0)=\frac{\left\langle\delta F^{2}\right\rangle}{\mu k_{B} T} \equiv \omega_{0}^{2}
$$

Brownian dynamics if $\Delta t=2 \eta^{-1}$ and $\Delta t \ll \omega_{0}^{-1}$
This is equivalent to $\omega_{0} \ll \eta$

$$
c_{v v}(t) \approx \frac{k_{B} T}{M} \exp \left(-\omega_{0}^{2} \eta^{-1} t\right)
$$

Dynamics of water molecules

Simulation of 256 water molecules in a cubic box with periodic boundary conditions and the SPC/E potential

Analytical model [1]

$$
F_{s}(q, t)=\langle\exp (i q[x(t)-x(0)])\rangle
$$

Intermediate scattering function for single particle motions

[1]V. Calandrini, et al., J. Chem. Phys, 120:4759-4767, 2004.

Which mass for the scattering atom?

$$
\hat{F}_{s}(q, s)=\frac{1}{s+\frac{\left(v^{2}\right) q^{2}}{s+\left(2\left(v^{2}\right) q^{2}+\omega_{0}^{2}\left\{\frac{\alpha}{s+\tau_{1}^{-1}}+\frac{1-\alpha}{s+\tau_{2}^{-1}}\right\}\right.}}
$$

$$
\begin{aligned}
m_{H_{1}} & =m_{H_{2}}=1.896 \\
m_{O} & =17.08 \\
\Omega_{H}^{2} & =11881 p s^{-2} \\
\Omega_{O}^{2} & =1941 p s^{-2}
\end{aligned}
$$

In a rigid molecule this is the Sachs-Teller mass['] of the scattering atom (here a hydrogen atom)

[1] G.R. Kneller. J. Chem. Phys., 125:114107, 2006.

Using the molecular mass in the model...

[1] V. Calandrini, et al., J. Chem. Phys, 120:4759-4767, 2004.

Using the Sachs-Teller mass instead... ${ }^{[1]}$

[1] V. Calandrini, G. Sutmann, A. Deriu, and G.R. Kneller, J. Chem. Phys., 125:236102, 2006.

Resulting intermediate scattering function

Associated memory functions of prder 1 and 2

Density of states

References

[1] M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids. Oxford University Press, Oxford, 1987.
[2] D. Frenkel and B. Smit. Understanding Molecular Simulation. Academic Press, London, San Diego, 1996.
[3] A. Papoulis. Signal Analysis. McGraw Hill, 1984.
[4] A. Papoulis. Probablity, Random Variables, and Stochastic Processes. McGraw Hill, 3rd edition, 1991.
[5] S. Haykin. Adaptive Filter Theory. Prentice Hall, 1996.

