II. Modelling MD trajectories time series analysis

Gerald Kneller Centre de Biophysique Moléculaire, CNRS Orléans Université d'Orléans Synchrotron Soleil, St Aubin

Molecular dynamics simulation

Correlations in the Motion of Atoms in Liquid Argon*

A. RAHMAN Argonne National Laboratory, Argonne, Illinois (Received 6 May 1964)

Solve Newton's equations of motion

$$M_i \ddot{\mathbf{r}}_i = -\frac{\partial U}{\partial \mathbf{r}_i} \qquad U = \sum_{ij} 4\epsilon \left(\left[\frac{\sigma}{r_{ij}} \right]^{12} - \left[\frac{\sigma}{r_{ij}} \right]^6 \right)$$

• Discretization and iterative solution yields trajectories = time series (< 100 ns)

$$\mathbf{r}_i(n+1) \leftarrow 2\mathbf{r}_i(n) - \mathbf{r}_i(n-1) + \frac{\Delta t^2}{M_i}\mathbf{F}_i(n)$$

$$\mathbf{v}_i(n) \leftarrow \frac{\mathbf{r}_i(n+1) - \mathbf{r}_i(n-1)}{2\Delta t}$$

Forces: $\mathbf{F}_i = -\frac{\partial U}{\partial \mathbf{r}_i}$

VOLUME 159, NUMBER 1

Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules*

LOUP VERLET[†] Belfer Graduate School of Science, Yeshiva University, New York, New York (Received 30 January 1967)

The equation of motion of a system of 864 particles interacting through a Lennard-Jones potential has been integrated for various values of the temperature and density, relative, generally, to a fluid state. The equilibrium properties have been calculated and are shown to agree very well with the corresponding properties of argon. It is concluded that, to a good approximation, the equilibrium state of argon can be described through a two-body potential.

$$V(r) = 4((\sigma/r)^{12} - (\sigma/r)^6).$$

interaction potential

$$m\frac{d^2\mathbf{r}_i}{dt^2} = \sum_{j\neq i} \mathbf{f}(r_{ij}).$$

pairwise additive forces

$$\mathbf{r}_i(t+h) = -\mathbf{r}_i(t-h) + 2\mathbf{r}_i(t) + \sum_{j \neq i} \mathbf{f}(r_{ij}(t))h^2,$$

Verlet algorithm

Periodic boundary conditions

Spatial correlations

$$g(r) = \frac{1}{4\pi r^2 \rho} \frac{1}{N} \sum_{\alpha} \sum_{\beta \neq \alpha} \langle \delta(r - |R_{\alpha} - R_{\beta}|) \rangle$$

Correlations in time

Velocity autocorrelation function and its Fourier spectrum (insert)

$$c_{vv}(n) = \frac{1}{N} \sum_{\alpha=1}^{N} w_{\alpha} c_{vv,\alpha}(n) \qquad \tilde{c}_{vv}(k) = \frac{1}{2} \sum_{n=-N_t-1}^{N_t} w(n) c_{vv}(n) \exp\left(-2\pi i \frac{kn}{2N_t}\right)$$

$$c_{vv,\alpha}(n) = \frac{1}{3(N_t - n)} \sum_{k=0}^{N_t - n - 1} \mathbf{v}_{\alpha}^T(k + n) \cdot \mathbf{v}_{\alpha}(k), \quad n = 0, 1, 2, \dots$$

Mean square displacement

$$W(n) = \frac{1}{N} \sum_{\alpha=1}^{N} w_{\alpha} W_{\alpha}(n)$$

$$W_{\alpha}(n) = \frac{1}{N_t - n} \sum_{k=0}^{N_t - n - 1} \left(\mathbf{R}_{\alpha}(k+n) - \mathbf{R}_{\alpha}(k) \right)^2, \quad n = 0, 1, 2, \dots$$

Autoregressive (AR) model

$$v(n) \equiv v(n\Delta t), \quad n \in \mathbb{Z}.$$

time series

$$v(n) = \sum_{k=1}^{P} a_k^{(P)} v(n-k) + \epsilon_P(n)$$

AR model of order P

$$\langle \epsilon_P(n) \rangle = 0,$$
 "white noise"
 $\langle \epsilon_P(n) \epsilon_P(n') \rangle = \sigma_P^2 \delta_{nn'}.$

parameters of the model: $\alpha_1^{(P)}, \ldots, \alpha_P^{(P)}, \sigma_P$

Wiener-Hopf equations
$$\langle \epsilon_P(n)v(n-k) \rangle = 0 \quad (k = 1, ..., P)$$

$$\sum_{k=1}^{P} c_{vv}(|j-k|)a_k^{(P)} = c_{vv}(j), \qquad j = 1 \dots P$$

yields the coefficients $a_k^{(P)}$

$$\sigma_P^2 = c_{vv}(0) - \sum_{k=1}^P a_k^{(P)} c_{vv}(k)$$

Wiener-Khintchine theorem

• Finite sample of a signal
$$v_M(n) = \begin{cases} v(n) & \text{si} & -M \le n \le M \\ 0 & \text{sinon} \end{cases}$$

 $+\infty$

Fluctuation & dissipation

AR model
$$V(z) = \frac{\mathcal{E}_P(z)}{1 - \sum_{k=1}^{P} a_k^{(P)} z^{-k}}$$

$$\lim_{M \to \infty} \frac{1}{2M+1} V(z) V^*(1/z^*) = \frac{\lim_{M \to \infty} \frac{1}{2M+1} \mathcal{E}_P(z) \mathcal{E}_P^*(1/z^*)}{\left(1 - \sum_{k=1}^P a_k^{(P)} z^{-k}\right) \left(1 - \sum_{l=1}^P a_l^{(P)} z^l\right)}$$

$$C_{vv}^{(AR)}(z) = \frac{C_{\epsilon\epsilon}(z)}{\left(1 - \sum_{k=1}^{P} a_k^{(P)} z^{-k}\right) \left(1 - \sum_{l=1}^{P} a_l^{(P)} z^l\right)}$$

$$C_{vv}^{(AR)}(z) = \frac{\sigma_P^2}{\left(1 - \sum_{k=1}^P a_k^{(P)} z^{-k}\right) \left(1 - \sum_{l=1}^P a_l^{(P)} z^l\right)}$$

"all pole"

model

Spectral analysis

$$\tilde{c}_{vv}^{(AR)}(\omega) = \Delta t \sum_{n=-\infty}^{+\infty} c_{vv}^{(AR)}(n) \exp[-in\omega\Delta t] \approx \tilde{c}_{vv}(\omega)$$

$$\boxed{\tilde{c}_{vv}^{(AR)}(\omega) = \Delta t C_{vv}^{(AR)}(\exp[i\omega\Delta t])}$$

DOS for liquid argon

G.R. Kneller and K. Hinsen. J. Chem. Phys., 115(24):11097–11105, 2001.

Correlation function

$$p(z) = z^{P} - \sum_{k=1}^{P} a_{k}^{(P)} z^{P-k}$$

characteristic polynomial

$$C_{vv}^{(AR)}(z) = \frac{1}{a_P^{(P)}} \frac{-z^P \sigma_P^2}{\prod_{k=1}^P (z - z_k) \prod_{l=1}^P (z - z_l^{-1})} \qquad |z_k|_{max} < |z| < \frac{1}{|z_k|_{max}}$$

zéros de $p(z)$

$$c_{vv}^{(AR)}(n) = \sum_{j=1}^{P} \beta_j z_j^{|n|} \qquad \beta_j = \frac{1}{a_P^{(P)}} \frac{-z_j^{P-1} \sigma_P^2}{\prod_{k=1, k \neq j}^{P} (z_j - z_k) \prod_{l=1}^{P} (z_j - z_l^{-1})}$$

$$|z_k| < 1, \quad k = 1, \dots, P$$
 stability

Poles in the complex plane

VACF for liquid argon

Memory function

$$\frac{c_{vv}(n+1) - c_{vv}(n)}{\Delta t} = -\sum_{k=0}^{n} \Delta t \,\kappa(n-k)c_{vv}(k)$$

$$\frac{zC_{vv,>}(z) - zc_{vv}(0) - C_{vv,>}(z)}{\Delta t} = -\Delta tK_{>}(z)C_{vv,>}(z)$$
$$K_{>}(z) = \frac{1}{\Delta t^{2}} \left(\frac{zc_{vv}(0)}{C_{vv,>}(z)} + 1 - z\right)$$
$$C_{vv,>}^{(AR)}(z) = \sum_{j=1}^{P} \beta_{j} \frac{z}{z - z_{j}}$$

$$\sum_{n=0}^{\infty} \kappa^{(AR)}(n) z^{-n} = \frac{1}{\Delta t^2} \left(\frac{c_{vv}(0)}{\sum_{j=1}^{P} \beta_j \frac{1}{z-z_j}} + 1 - z \right)$$

calculus of $\kappa(n)$ by polynomial division

Memory function from a given correlation function

$$\dot{c}(t) = -\int_0^t d\tau \, c(t-\tau)\kappa(\tau)$$

$$\dot{c}(n) = -\sum_{k=0}^{n} \Delta t \, w_k c(n-k)\kappa(k), \quad n = 0, \dots, P \qquad \dot{c}(n) \approx \frac{c(n+1) - c(n)}{\Delta t}$$

$$\begin{pmatrix} c(0) & 0 & 0 & \dots & 0 \\ c(1) & c(0) & 0 & 0 & \dots & 0 \\ c(2) & c(1) & c(0) & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ c(P) & c(P-1) & c(P-2) & c(P-3) & \dots & c(0) \end{pmatrix} \begin{pmatrix} w_0 \kappa(0) \\ w_1 \kappa(1) \\ w_2 \kappa(2) \\ \vdots \\ w_P \kappa(P) \end{pmatrix} = -\frac{1}{\Delta t} \begin{pmatrix} \dot{c}(0) \\ \dot{c}(1) \\ \dot{c}(2) \\ \vdots \\ \dot{c}(P) \end{pmatrix}$$

Recursive solution...

Memory function for liquid argon

Numerical results and analytical models

Brownian dynamics

$$U_{SS} = \sum_{ij\in S} 4\epsilon \left(\left[\frac{\sigma}{r_{ij}} \right]^{12} - \left[\frac{\sigma}{r_{ij}} \right]^6 \right),$$
$$U_{TS} = \sum_{j\in S} 4\epsilon \left(\left[\frac{\sigma}{r_{Tj} - \delta} \right]^{12} - \left[\frac{\sigma}{r_{Tj} - \delta} \right]^6 \right)$$

S = solvant, T = traceur

Vary the mass and the size of the tracer particle independently

G.R. Kneller, K. Hinsen, and G. Sutmann. J. Chem. Phys., 118(12):5283-5286, 2003.

$$\begin{aligned} & \left\{ \begin{array}{l} \mathbf{Qualitative interpretation by a} \\ & \mathbf{two-pole model} \\ \\ \kappa(t) &= \kappa(0) \exp(-\eta t) \end{aligned} \right. \\ & \left. \kappa(0) &= \frac{\langle \delta F^2 \rangle}{\mu k_B T} \equiv \omega_0^2 \\ \\ & \left. c_{vv}(t) &= \frac{k_B T}{M} \exp\left(-\frac{\eta t}{2}\right) \left\{ \cos(\tilde{\omega}_0 t) + \frac{\eta}{2\tilde{\omega}_0} \sin(\tilde{\omega}_0 t) \right\} \end{aligned} \right. \\ & \left. \tilde{\omega}_0 &= \sqrt{\omega_0^2 - \frac{\eta^2}{4}} \end{aligned}$$

a) Large and light particle: $\omega_0 \gg \eta \Rightarrow \tilde{\omega}_0 \approx \omega_0$

b) Small and heavy particle : $\omega_0 \ll \eta$

$$c_{vv}(t) \approx \frac{k_B T}{M} \exp\left(-\omega_0^2 \eta^{-1} t\right) \qquad (t \gg \eta^{-1})$$
$$\gamma = \omega_0^2 \eta^{-1} = \int_0^\infty dt \,\kappa(t) \qquad \omega_0^2 \ll \eta^2 \Rightarrow \gamma \ll \eta$$

Separation of time scales for $c_{vv}t$ ("slow") and $\kappa(t)$ ("fast")

Justification of form b)

$$\hat{c}_{vv}(s) = \frac{k_B T}{M} \frac{s + \eta}{s(s + \eta) + \omega_0^2}$$

$$c_{vv}(t) = \frac{1}{2\pi i} \oint_C ds \, \exp(st) \hat{c}_{vv}(s)$$

$$c_{vv}(t) = c_1 \exp(s_1 t) + \underbrace{c_2 \exp(s_2 t)}_{\approx 0 \text{ if } t \gg \eta^{-1}}$$

Scaling of the memory function

$$\psi_{\alpha}(t) = \frac{1}{2\pi i} \oint_{C} ds \frac{\exp(st)}{s + \widehat{0}\widehat{\kappa}(s)},$$

$$\stackrel{s \to s/\alpha}{=} \frac{1}{2\pi i} \oint_{C'} ds \frac{\exp(s\alpha t)}{s + \widehat{\kappa}(\alpha s)}.$$

$$\widehat{\kappa}(s) \to \kappa(\alpha s) \longleftrightarrow \kappa(t) \to \frac{1}{\alpha} \kappa\left(\frac{t}{\alpha}\right)$$

$$\stackrel{q}{\longrightarrow} \lim_{\alpha \to 0} \frac{1}{\alpha} \kappa\left(\frac{t}{\alpha}\right) = \gamma \delta(t) \qquad \gamma \equiv \int_{0}^{\infty} dt \kappa(t)$$

$$\stackrel{q}{\longrightarrow} \psi(t) \xrightarrow{\alpha \to 0} \exp(-\alpha \gamma t) \qquad \text{The limit } \alpha \to \text{has no physica meaning!}$$

Define a coarse-grained time scale

Conditions for Brownian dynamics on the time scale $t \gg \Delta t$.

Again the two-pole model...

$$\kappa(t) = \kappa(0) \exp(-\eta t)$$
 $\kappa(0) = \frac{\langle \delta F^2 \rangle}{\mu k_B T} \equiv \omega_0^2$

Brownian dynamics if $\Delta t=2\eta^{-1}$ and $\Delta t\ll\omega_0^{-1}$ This is equivalent to $\omega_0\ll\eta$

$$c_{vv}(t) \approx \frac{k_B T}{M} \exp\left(-\omega_0^2 \eta^{-1} t\right)$$

Dynamics of water molecules

Simulation of 256 water molecules in a cubic box with periodic boundary conditions and the SPC/E potential

Analytical model [1]

$$F_s(q,t) = \langle \exp(iq[x(t) - x(0)]) \rangle$$

Intermediate scattering function for single particle motions

$$\ddot{F}_{s}(q,t) + \int_{0}^{t} d\tau M^{(2)}(q,\tau) \dot{F}_{s}(q,t-\tau) + q^{2} \langle v^{2} \rangle F_{s}(q,t) = 0.$$

$$memory \ function \ of \ order \ 2$$

$$M^{(2)}(q,t) = M^{(2)}(q,0) \left\{ \alpha \exp(-t/\tau_{1}) + (1-\alpha) \exp(-t/\tau_{2}) \right\}$$

$$fast \ relaxation \ by \ collisions$$

$$structural \ relaxation$$

[1] V. Calandrini, et al., J. Chem. Phys, 120:4759–4767, 2004.

Which mass for the scattering atom ?

[1] G.R. Kneller. J. Chem. Phys., 125:114107, 2006.

Using the molecular mass in the model...^[1]

[1] V. Calandrini, et al., J. Chem. Phys, 120:4759–4767, 2004.

Using the Sachs-Teller mass instead...^[1]

[1] V. Calandrini, G. Sutmann, A. Deriu, and G.R. Kneller, J. Chem. Phys., 125:236102, 2006.

Resulting intermediate scattering function

Associated memory functions of prder 1 and 2

Density of states

References

- [1] M.P. Allen and D.J. Tildesley. *Computer Simulation of Liquids*. Oxford University Press, Oxford, 1987.
- [2] D. Frenkel and B. Smit. *Understanding Molecular Simulation*. Academic Press, London, San Diego, 1996.
- [3] A. Papoulis. Signal Analysis. McGraw Hill, 1984.
- [4] A. Papoulis. *Probablity, Random Variables, and Stochastic Processes*. McGraw Hill, 3rd edition, 1991.
- [5] S. Haykin. Adaptive Filter Theory. Prentice Hall, 1996.