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Molecular dynamics simulation



• Solve Newton’s equations of motion

• Discretization and iterative solution yields 
trajectories = time series (< 100 ns)

MD simulations

• Solve Newton’s equation of motion

Mir̈i = −∂U

∂ri
.

• Generate time series (t = n∆t)

ri(n + 1) ← 2ri(n) − ri(n − 1) +
∆t2

Mi
Fi(n),

v i(n) ← ri(n + 1) − ri(n − 1)

2∆t
.

MPI Mainz, July 2004 – p.8/??
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Test for a simple liquid

• Simulation of N = 864 argon molecules in the
liquid state at a temperature of 94.4 K and a
pressure of 1 atm.

• Lennard-Jones potential:

U =
∑
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• Trajectory of 100 ps (10000 time steps of 10 fs)
generated with MMTK (K. Hinsen).

• Simulation in the thermodynamicNpT ensemble.

MPI Mainz, July 2004 – p.13/??
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The equation of motion of a system of 864 particles interacting through a Lennard-Jones potential has
been integrated for various values of the temperature and density, relative, generally, to a Quid state. The
equilibrium properties have been calculated and are shoran to agree very vreH vrith the corresponding
properties of argon. It is concluded that, to a good approximation, the equilibrium state of argon can be
described thlough a t&o-twdy potential.

I. INTRODUCTION
~ 'HK "exact" machine computations relative to

clRsslcRl Aulds hRvc ScvcI'Rl RlIDs: It 18 posslblc
to realize "experiments" in which the intermolecular
forces are known; approximative theories can thus be
UnRmblguously tested Rnd soIQc guidelines RI'c provldcd
to build such thcoI'lcs whenever they do not cxlst. Thc
comparison of the results of such computations with
real experiments is the best way to obtain insight into
the interaction between molecules in the high-density
states.
The Monte Carlo method. inifiated by the I.os Alamos

group' is a 6rst example of these "exact" methods. It
amounts to a d,irect computation of the integrals in-
volved ln thc CRnonlcRl RvcI'ages. It Is cRsy to CRrry out&
with thc lncoIlvcIllencc) howcvcl ) of pl"ovldlng no
information on the time properties of the system.
Thc dynamics of Rn lsolRtcd systcIQ CRn Rlso bc

considered and used to calculate time averages and
time-dependent properties. The case of hard. spheres
Rnd hRrd spheres surroUndcd by R Square wcH hRS bccn
extensively studied by AMer et al.' In the case of a two-
body interaction simulating more closely the interaction
between the molccules, it is possible to integrate directly
thc cqURtlon of thc motions of RboUt R thoUsRnd
particles, as brilliantly demonstrated by Rahman. ' The
present paper presents some of the results which have
been obtained, using a technique inspired by Rahman's
work, for R system of 864 particles interacting through
a Lennard- Jones potentiaL
In Sec. II we give some tcchnical details on the

method which we use; in particular, we describe a book-
keeping device that cuts the computing time by a factor
of the order of 10.
In Sec. III we give and, discuss the results obtained

for the pressure, the internal energy, the high-frequency
elastic moduli, and the isotopic separation factor. These
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results, summarized in Table I,are suf6cicntly numerous
to allow a comparison on the whole density range of
thc Auld state Rnd on R wide tcIDpcrature IRngc which
essentially exclud. es the extremely high temperatures.
The ovcr-all agreement is surprisingly good. It appears
that the many-body forces, if they RIc at all important,
behave so Rs to rcRllzc RD elective lntcI'Rcflon which ls
state independent to a good approximation.
The correlation functions are described and, discussed

ln R scpR1 atc pRpcl. Thc formalism ncccssRI'y to cxpI'css
the Quctuations in the microcanonical ensemble was
discussed recently. s It can be applied to calculate the
derkvatnres of the thermodynamtc functions (e.g., the
specific heat and c)P/c)p) in terms of fluctuations
averaged, over time. The results are not very precise
and will only be presented as an illustration of these
theoretical conslderatlons.
The results on the time-dependent properties wiH be

reported later.

%e consider a system of 864 particles, enclosed. in a
cUbc of side L, with periodic boUDdaIy condltlons
interacting through a two-body potential of the
Lennard- Jones type

This potcntlRl ls cut Rt f'1,=2.50' ln Dlost of oui cxpcll-
ments, or, in some of them at r, =3.30. The problem is
to intcgrRtc thc cqURtlon of lnotion

d2r'
rN =Q f(r;;).

jets

Kc choose the following units: The lengths are ex-
pressed. in units of o (a =3.405 A for argon), and the
energies in units of e (a=119.8'K for argon). The
thermodynamic quantities will thus be measured in the

4 L, Verlet (to be published).' J.L. Lebowitz and J.K. Percus, Phys. Rev. 124, 1673 (1961).
6 $. L. Lebovatz, $. K. Percus, and L. Verlet, Phys. Rev. 153,

250 (1967).' A. Michels and H. Vhjker, Physica 1S, 627 (1949).
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COM PUTER ''EXPERIMENTS'' ON CLASSICAL FLUI DS

where h is the time increment which we take equal to
0.032. This is practically the value chosen by Rahman
(i.e., 10 '4 sec in the case of argon). We have checked
that this time increment is adequate and even super-
Quously small in most cases. For instance, for T= 1.38,
p=0.55 (i.e., temperature just above critical, density
almost twice critical), we have performed two integra-
tions up to the time t=4. In one case we have taken
h=0.032, in the other k=0.016, with the same initial
conditions. The di6erence in position at time t is
typically of the order of 0.001 and the difference in the
thermodynamic quantities, at the same final time,
amounts to 1/10 000. In this kind of calculation, most
of the time is spent in computing the force. If no special
devices are introduced, we must, at each step, compute
—,'$(tV—1) terms, most of which turn out to be zero.
We introduce the following bookkeeping device which
cuts the computing time by a factor of the order of 10:
Every nth step, we compute all the -,'X(X—1) distances,
and, given a particle i, we make a table of all the
particles which are within a distance r~ of that particle.
Then, for the next n—1 steps in time, we take into
account only the particles in the tables. There is no
error as long as r~ is sufFiciently larger than r„so that
no particle outside the table traverses the "skin" of
depth r~—r„and gets into the range r„of the potential.
The feasibility of such a procedure can be easily
appreciated by giving some orders of magnitude: I.et 8
be the root-mean-square velocity in our units, it is
typically of the order of 0.3; if this is so, no error is made
as long as

r~—r„&n8h. (5)

If, for instance n=16, n8h=0. 15. By choosing r~——3.3
for r„=2.5, the condition (5) is largely met, and at the
same time the "skin" depth stays reasonably small. We
have checked, by following some systems for several
hundred steps in time, that no difference at all was
observed when n was reduced, . Moreover, the conserva-
tion of the total energy and of the total velocity, which
stays of the order of 10 ~, is a guarantee of the sound-
ness of the whole procedure.

'Some time-saving tricks have been considered before: See
Ref. 2 and, for the hard-sphere case, A. Rotenberg )New York
University Report No. NYO-1480-3, 1964 (unpublished)g.

usual "reduced" units. The time unit is chosen so that
m=48&0. ", it turns out to be, for argon, equal to
3)(10 " sec. This time is of the ord, er of the kinetic
relaxation times of the system in the case considered in
this paper. With this in mind, we have, for the force
acting on particle i in the x direction,

f,(r;,)=m(x,—x,) (r;; "—0.5r;; ) (3)
To integrate (2), we use the very simple algorithm

r, (t+h) =—r;(t—h)+2r;(t)+p f(r,;(t))hs, (4)

With this device, the time spent for an integration
step at the density 0.45 is about 12 sec on the UNIVAC
1107 of the Faculte des Sciences, Orsay, where the first
calculations were made, and ten times less (with careful
machine coding of the time-consuming subroutines) on
the CDC6600 of New York University, where the
greatest part of the results reported here were obtained.
With that machine, a typical "experiment" takes

about 1 h. It goes as follows: The positions are initially
taken, in general, at the nodes of a face-centered, -cubic
lattice which has the desired density, and the velocities
are chosen at random with a Gaussian probability law.
Three hundred, steps in time are sufFicient, in general, to
reach equilibrium. The computation is then carried on
for 1200 steps in time (this corresponds, for argon, to
1.2X10 "sec). The main part of the computation con-
cerns the study of equilibrium quantities (thermo-
dynamic functions: temperature, pressure, internal
energy, specific heat, etc. ; time-ind. ependent correlation
functions) and of nonequilibrium quantities (velocity
autocorrelation function, elastic constants, viscosities,
heat conductivity, etc.). The necessary technical details
will be given when these results are reported.

III. THERMODYNAMIC QUANTITIES

A. Temyerature

At each step in time the velocities are calculated
simply by the formula

v;(t) = $r;(t+h) r, (t h)—$/2h—

The temperature is, at time t, -', of the kinetic energy,
in our units

T=16Q s'/E.

The error entailed by the use of (6) is of the order of
1/1000. This error is of no consequence, except that it
gives rise to small irregularities in the total energy
which shou M be otherwise strictly constant. The
temperature, averaged over the time, is affected by a
statistical error of the order of 0.004.

B. Pressure
The pressure is calculated from the virial theorem

p 1 9'v,; p 9'v—=1— P P r,, — r g(r)dr—
pkT 6EkT ' ~&i Br;; 6kT „, Br

(8)
The second term of (8) is the time average of the virial.
The last term is a correction term which takes into
account the effect on the pressure of the tail of the
potential which has been neglected, in the dynamics.
The influence on the main term of (8) of the tail of

the potential, which has been neglected in the dynamics
can be appreciated, by considering that cutoff tail as a

interaction potential 

pairwise additive forces

Verlet algorithm
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FIGURE III.2. The Lennard-Jones potential (solid line) and its
harmonic approximation (dashed line) for � = 1 and ⇥ = 1.

These parameters correspond to those used by Rahman in [12]. The simulation
has been performed with a time step of �t = 10 fs (1 fs = 10�15 s), storing 8200
consecutive configurations of positions and velocities for later analysis. The to-
tal length of the recorded trajectory corresponds thus to 82 ps (1 ps = 10�12 s).
The simulation was set up with a kinetic energy corresponding to T = 94.4 K
(K is the temperature in Kelvin), using an equilibration period of 10000 sim-
ulation steps, prior to the production run of 8200 steps. The final average
temperature of the recorded trajectory was T = 95.5 K. To assign a tempera-
ture to a given configuration n one uses the relation between the instantaneous
temperature and the kinetic energy, which is given by

T (n) =
1

(3N � 3)kB

N�

�=1

1

2
m�v

2
�(n)

⌅ ⇤⇥ ⇧
Ekin

. (III.9)

The simulation temperature is obtaines by averaging over the trajectory,

T =
1

Nt

Nt�1�

n=0

T (n). (III.10)

Here and in the following Nt denotes the number of configurations in the
simulation trajectory, which may be different from the number of simulation
steps. Usually not all simulation steps are used for further analysis. In defi-
nition (III.9) only 3N � 3 degrees of freedom are used, and not 3N , since the

60 3. DIFFUSIVE MOTIONS IN SIMPLE LIQUIDS

consider a simple harmonic oscillator, the latter apply if the spacing of the vi-
brational energy levels is much smaller than the thermal energy kBT ,

�⇧0 ⌅ kBT (III.6)

Here ⇧0 is the angular frequency of the oscillator. Given any potential with a
local minimum, we can estimate ⇧0 from the vibrational frequency in the local
minimum, which is obtained from a Taylor expansion of the potential around
the local minimum. For the Lennard-Jones potential we have for example

ULJ(r) = 4�

⇤⇧⌅

r

⌃12

�
⇧⌅

r

⌃6
⌅
⇤ �� +

18 · 22/3�
�
r � r0

⇥2

⌅2
, (III.7)

where r0 = 21/6⌅ locates the minimum of ULJ . The Lennard-Jones potential
and its harmonic approximation are shown in Fig. III.2. Apart from a constant,
the approximation has thus the form U(x) = 1

2Kx2, where x = r � r0 and K

is a force constant. Using the relation ⇧0 =
⌥

K/µ for a classical harmonic
oscillator we obtain here

⇧0 =

�
18 · 22/3�

µ⌅2
,

where µ = M/2 is the reduced mass of two atoms with identical mass M .
In the case of liquid argon argon, which is discussed below, one finds for a
temperature of T = 94.4 K that �⇧0 = 0.4 kBT , if one uses the same Lennard
Jones potential as Rahman in his simulation of liquid argon [12]. In this case
the classical approximation is thus reasonably well justified.

It must be emphasised that the above verification of the validity of the clas-
sical approximation is based on a local harmonic approximation of the simula-
tion potential. One could also convert relation (III.6) into a frequency condition
for a given temperature,

⇤ ⌅ kBT

h
(III.8)

where h is Planck’s constant and ⇤ are the frequencies present in the system.
The latter are, however, not necessarily due to harmonic vibrations, and in this
case condition (III.8) is not on safe grounds since. In the case of liquid argon
one finds for example ⇤ ⌅ 0.56 THz. Looking at the spectrum of the velocity
autocorrelation function shown in Fig. III.4 shows that condition III.8 is not
well fulfilled.

1.4. Liquid argon revisited. Let us now study some results obtained from
a simulation of 1000 argon atoms in the liquid state. The simulation has been
performed in a cubic box of 3.441 nm (1 nm = 10�9 m), which is depicted
in Fig.III.1. using the microcanonical ensemble, where the number of parti-
cles N , the total energy E and the volume are fixed. The interactions were de-
scribed by a Lennard-Jones potential with � = 0.99773 kJ/mol and ⌅ = 0.34 nm.
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temperature of T = 94.4 K that �⇧0 = 0.4 kBT , if one uses the same Lennard
Jones potential as Rahman in his simulation of liquid argon [12]. In this case
the classical approximation is thus reasonably well justified.

It must be emphasised that the above verification of the validity of the clas-
sical approximation is based on a local harmonic approximation of the simula-
tion potential. One could also convert relation (III.6) into a frequency condition
for a given temperature,

⇤ ⌅ kBT

h
(III.8)

where h is Planck’s constant and ⇤ are the frequencies present in the system.
The latter are, however, not necessarily due to harmonic vibrations, and in this
case condition (III.8) is not on safe grounds since. In the case of liquid argon
one finds for example ⇤ ⌅ 0.56 THz. Looking at the spectrum of the velocity
autocorrelation function shown in Fig. III.4 shows that condition III.8 is not
well fulfilled.

1.4. Liquid argon revisited. Let us now study some results obtained from
a simulation of 1000 argon atoms in the liquid state. The simulation has been
performed in a cubic box of 3.441 nm (1 nm = 10�9 m), which is depicted
in Fig.III.1. using the microcanonical ensemble, where the number of parti-
cles N , the total energy E and the volume are fixed. The interactions were de-
scribed by a Lennard-Jones potential with � = 0.99773 kJ/mol and ⌅ = 0.34 nm.
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FIGURE III.4. VACF of liquid argon obtained from MD simula-
tion. The insert shows the corresponding Fourier spectrum.

defined through

g(r) =
1

4⇥r2⇤

1

N

�

�

�

⇥ �=�

⌅�(r � |R� �R⇥|)⇧ (III.12)

For each particle the density of the remaining particles is computed as a func-
tion of the distance r from the chosen centre particle. The resulting density is
then normalised to the average particle density, ⇤, and finally averaged over all
N centre particles. In practice g(r) is computed using a histogram technique,
using a finite width of the bins for the distance r. Fig III.3 shows the radial
distribution function for liquid argon which has been obtained from the MD
simulation described above. One recognises that g(r) has peaks which at posi-
tions which are located at multiples of the Lennard-Jones parameter ⌅, which
describes approximately the size of the argon atoms (⌅ = 0.34 nm). With in-
creasing distance the peaks are less pronounced, and with r ⇥ ⇤ the radial
distribution function tends to one. The first peak indicates the radius of the
shell of next neighbours which form a sort of cage for the respective centre
particle.
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FIGURE III.3. Radial distribution function of liquid argon ob-
tained from MD simulation.

centre of mass of the system is kept fixed and 3 degrees of freedom must be
subtracted. The Verlet algorithm, which has been used for the present simula-
tion study, does not explicitly involve the particle velocities, but the latter can
be obtained through

v�(n) =
v�(n + 1)� v�(n� 1)

2�t
. (III.11)

1.4.1. Radial distribution function. The calculation of the average tempera-
ture is one of the simplest examples for the analysis of an MD trajectory. Much
more information about the structure and dynamics of the simulated system is
revealed by looking at different correlation functions. One of them is the pair
correlation function, or radial distribution function, which shows that there are
pronounced correlations in the atomic positions of particles in a liquid. From
the seemingly random arrangement of the argon atoms shown in Fig. III.1 one
would not expect such correlations. The radial distribution function, g(r), is
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1.4.2. Velocity autocorrelation function. More detailed information about the
dynamics of simulated system is obtained from the velocity autocorrelation
function. For each particle the latter is calculated through

cvv,�(n) =
1

3(Nt � n)

Nt�n�1⌥

k=0

vT
�(k + n) · v�(k), n = 0, 1, 2, . . . (III.13)

If needed, the VACF can be continued to negative arguments, using the sym-
metry of classical autocorrelation functions, c(�n) = c(n). Assuming that all
particles are equivalent, the statistics can be improved by averaging the indi-
vidual VACFs,

cvv(n) =
1

N

N⌥

�=1

w�cvv,�(n) (III.14)

Here the w� are positive weights with
⇧

� w� = N . Fig. III.4 shows the
normalised VACF for liquid argon obtained by MD simulation. The form
shows a clearly non-exponential decay, indicating that the dynamics of liquid
molecules is not well described by Brownian motion. The most striking feature
of the VACF is the overshooting into negative values at t ⌅ 0.4 ps, indicating
that a given particle tends to invert the direction of its motion after this time.
This can be interpreted as “cage effect”, where the particle is pushed back by
the shell of next neighbours, which is located at the first peak of the radial dis-
tribution function. It performs a sort of rattling motion whose frequency can
be estimated from the broad peak of the Fourier spectrum of the VACF. The
latter is shown in the inset of Fig. III.4. Numerically the Fourier spectrum of
the VACF is obtained by a discrete Fourier transform (DFT) of cvv(n),

c̃vv(k) =
1

2

Nt⌥

n=�Nt�1

w(n)cvv(n) exp

⇤
�2�i

kn

2Nt

⌅
, (III.15)

using the symmetry cvv(n) = cvv(�n). Here c̃vv(k) ⇤ c̃vv(k�⇥), with �⇥ =
2�/(2Nt�t). The number of data points, which defines the implicit period
of the DFT, is 2Nt. In order to reduce the noise in the Fourier spectrum, a
decaying symmetric window function can w(n), with w(0) = 1, can be applied.
The factor 1/2 in expression (III.15) ensures that c̃vv(0) ⌅

⌃⇥
0 dt cvv(t) = D,

where D is the diffusion constant – see Eq. (I.74).

1.4.3. Mean square displacement. The mean square displacement of a parti-
cle is calculated via

W�(n) =
1

Nt � n

Nt�n�1⌥

k=0

�
R�(k + n)�R�(k)

⇥2

, n = 0, 1, 2, . . . (III.16)

1. MOLECULAR DYNAMICS SIMULATIONS OF SIMPLE LIQUIDS 63

FIGURE III.4. VACF of liquid argon obtained from MD simula-
tion. The insert shows the corresponding Fourier spectrum.

defined through

g(r) =
1

4⇥r2⇤

1

N

�

�

�

⇥ �=�

⌅�(r � |R� �R⇥|)⇧ (III.12)

For each particle the density of the remaining particles is computed as a func-
tion of the distance r from the chosen centre particle. The resulting density is
then normalised to the average particle density, ⇤, and finally averaged over all
N centre particles. In practice g(r) is computed using a histogram technique,
using a finite width of the bins for the distance r. Fig III.3 shows the radial
distribution function for liquid argon which has been obtained from the MD
simulation described above. One recognises that g(r) has peaks which at posi-
tions which are located at multiples of the Lennard-Jones parameter ⌅, which
describes approximately the size of the argon atoms (⌅ = 0.34 nm). With in-
creasing distance the peaks are less pronounced, and with r ⇥ ⇤ the radial
distribution function tends to one. The first peak indicates the radius of the
shell of next neighbours which form a sort of cage for the respective centre
particle.

64 3. DIFFUSIVE MOTIONS IN SIMPLE LIQUIDS

1.4.2. Velocity autocorrelation function. More detailed information about the
dynamics of simulated system is obtained from the velocity autocorrelation
function. For each particle the latter is calculated through

cvv,�(n) =
1

3(Nt � n)

Nt�n�1⌥

k=0

vT
�(k + n) · v�(k), n = 0, 1, 2, . . . (III.13)

If needed, the VACF can be continued to negative arguments, using the sym-
metry of classical autocorrelation functions, c(�n) = c(n). Assuming that all
particles are equivalent, the statistics can be improved by averaging the indi-
vidual VACFs,

cvv(n) =
1

N

N⌥

�=1

w�cvv,�(n) (III.14)

Here the w� are positive weights with
⇧

� w� = N . Fig. III.4 shows the
normalised VACF for liquid argon obtained by MD simulation. The form
shows a clearly non-exponential decay, indicating that the dynamics of liquid
molecules is not well described by Brownian motion. The most striking feature
of the VACF is the overshooting into negative values at t ⌅ 0.4 ps, indicating
that a given particle tends to invert the direction of its motion after this time.
This can be interpreted as “cage effect”, where the particle is pushed back by
the shell of next neighbours, which is located at the first peak of the radial dis-
tribution function. It performs a sort of rattling motion whose frequency can
be estimated from the broad peak of the Fourier spectrum of the VACF. The
latter is shown in the inset of Fig. III.4. Numerically the Fourier spectrum of
the VACF is obtained by a discrete Fourier transform (DFT) of cvv(n),

c̃vv(k) =
1

2

Nt⌥

n=�Nt�1

w(n)cvv(n) exp

⇤
�2�i

kn

2Nt

⌅
, (III.15)

using the symmetry cvv(n) = cvv(�n). Here c̃vv(k) ⇤ c̃vv(k�⇥), with �⇥ =
2�/(2Nt�t). The number of data points, which defines the implicit period
of the DFT, is 2Nt. In order to reduce the noise in the Fourier spectrum, a
decaying symmetric window function can w(n), with w(0) = 1, can be applied.
The factor 1/2 in expression (III.15) ensures that c̃vv(0) ⌅

⌃⇥
0 dt cvv(t) = D,

where D is the diffusion constant – see Eq. (I.74).

1.4.3. Mean square displacement. The mean square displacement of a parti-
cle is calculated via

W�(n) =
1

Nt � n

Nt�n�1⌥

k=0

�
R�(k + n)�R�(k)

⇥2

, n = 0, 1, 2, . . . (III.16)

64 3. DIFFUSIVE MOTIONS IN SIMPLE LIQUIDS

1.4.2. Velocity autocorrelation function. More detailed information about the
dynamics of simulated system is obtained from the velocity autocorrelation
function. For each particle the latter is calculated through

cvv,�(n) =
1

3(Nt � n)

Nt�n�1⌥

k=0

vT
�(k + n) · v�(k), n = 0, 1, 2, . . . (III.13)

If needed, the VACF can be continued to negative arguments, using the sym-
metry of classical autocorrelation functions, c(�n) = c(n). Assuming that all
particles are equivalent, the statistics can be improved by averaging the indi-
vidual VACFs,

cvv(n) =
1

N

N⌥

�=1

w�cvv,�(n) (III.14)

Here the w� are positive weights with
⇧

� w� = N . Fig. III.4 shows the
normalised VACF for liquid argon obtained by MD simulation. The form
shows a clearly non-exponential decay, indicating that the dynamics of liquid
molecules is not well described by Brownian motion. The most striking feature
of the VACF is the overshooting into negative values at t ⌅ 0.4 ps, indicating
that a given particle tends to invert the direction of its motion after this time.
This can be interpreted as “cage effect”, where the particle is pushed back by
the shell of next neighbours, which is located at the first peak of the radial dis-
tribution function. It performs a sort of rattling motion whose frequency can
be estimated from the broad peak of the Fourier spectrum of the VACF. The
latter is shown in the inset of Fig. III.4. Numerically the Fourier spectrum of
the VACF is obtained by a discrete Fourier transform (DFT) of cvv(n),

c̃vv(k) =
1

2

Nt⌥

n=�Nt�1

w(n)cvv(n) exp

⇤
�2�i

kn

2Nt

⌅
, (III.15)

using the symmetry cvv(n) = cvv(�n). Here c̃vv(k) ⇤ c̃vv(k�⇥), with �⇥ =
2�/(2Nt�t). The number of data points, which defines the implicit period
of the DFT, is 2Nt. In order to reduce the noise in the Fourier spectrum, a
decaying symmetric window function can w(n), with w(0) = 1, can be applied.
The factor 1/2 in expression (III.15) ensures that c̃vv(0) ⌅

⌃⇥
0 dt cvv(t) = D,

where D is the diffusion constant – see Eq. (I.74).

1.4.3. Mean square displacement. The mean square displacement of a parti-
cle is calculated via

W�(n) =
1

Nt � n

Nt�n�1⌥

k=0

�
R�(k + n)�R�(k)

⇥2

, n = 0, 1, 2, . . . (III.16)

Velocity 
autocorrelation 
function and its 

Fourier spectrum 
(insert)



Mean square displacement

64 3. DIFFUSIVE MOTIONS IN SIMPLE LIQUIDS

1.4.2. Velocity autocorrelation function. More detailed information about the
dynamics of simulated system is obtained from the velocity autocorrelation
function. For each particle the latter is calculated through

cvv,�(n) =
1

3(Nt � n)

Nt�n�1⌥

k=0

vT
�(k + n) · v�(k), n = 0, 1, 2, . . . (III.13)

If needed, the VACF can be continued to negative arguments, using the sym-
metry of classical autocorrelation functions, c(�n) = c(n). Assuming that all
particles are equivalent, the statistics can be improved by averaging the indi-
vidual VACFs,

cvv(n) =
1

N

N⌥

�=1

w�cvv,�(n) (III.14)

Here the w� are positive weights with
⇧

� w� = N . Fig. III.4 shows the
normalised VACF for liquid argon obtained by MD simulation. The form
shows a clearly non-exponential decay, indicating that the dynamics of liquid
molecules is not well described by Brownian motion. The most striking feature
of the VACF is the overshooting into negative values at t ⌅ 0.4 ps, indicating
that a given particle tends to invert the direction of its motion after this time.
This can be interpreted as “cage effect”, where the particle is pushed back by
the shell of next neighbours, which is located at the first peak of the radial dis-
tribution function. It performs a sort of rattling motion whose frequency can
be estimated from the broad peak of the Fourier spectrum of the VACF. The
latter is shown in the inset of Fig. III.4. Numerically the Fourier spectrum of
the VACF is obtained by a discrete Fourier transform (DFT) of cvv(n),

c̃vv(k) =
1

2

Nt⌥

n=�Nt�1

w(n)cvv(n) exp

⇤
�2�i

kn

2Nt

⌅
, (III.15)

using the symmetry cvv(n) = cvv(�n). Here c̃vv(k) ⇤ c̃vv(k�⇥), with �⇥ =
2�/(2Nt�t). The number of data points, which defines the implicit period
of the DFT, is 2Nt. In order to reduce the noise in the Fourier spectrum, a
decaying symmetric window function can w(n), with w(0) = 1, can be applied.
The factor 1/2 in expression (III.15) ensures that c̃vv(0) ⌅

⌃⇥
0 dt cvv(t) = D,

where D is the diffusion constant – see Eq. (I.74).

1.4.3. Mean square displacement. The mean square displacement of a parti-
cle is calculated via

W�(n) =
1

Nt � n

Nt�n�1⌥

k=0

�
R�(k + n)�R�(k)

⇥2

, n = 0, 1, 2, . . . (III.16)

2. MEMORY FUNCTIONS FROM MD SIMULATIONS 65

FIGURE III.5. Mean square displacement of liquid argon ob-
tained from MD simulation.

and, as for the VACF, one can average over equivalent particles to improve the
statistics,

W (n) =
1

N

N�

�=1

w�W�(n) (III.17)

Fig. III.5 shows the mean square displacement of liquid argon obtained from
MD simulation. Generalising relation (I.72) to three dimensions,

W (t) � 6Dt (III.18)

the diffusion coefficient can be obtained from the slope at long times. One
finds D = 2.55 10�5cm2/s. The inset of Fig. III.4 shows that this value is in
excellent agreement with c̃vv(0).

2. Memory functions from MD simulations

MD simulations offer the possibility to compute memory functions directly
from the simulated trajectories. The method we have presented in [25] is based
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on spectral estimation techniques for discrete signals and will be presented in
the following.

2.1. Autoregressive model. In the following we consider the velocity tra-
jectory of a tagged particle in a liquid as a discrete signal of infinite length,

v(n) ⇥ v(n�t), n ⇤ Z. (III.19)

Here �t is the sampling time step, which is a multiple of the MD simulation
time step. We consider now the representation of the signal v(n) by an autore-
gressive model (AR model) of order P ,

v(n) =
P�

k=1

a(P )
k v(n� k) + ⇥P (n) (III.20)

The coefficients {a(P )
k } are real and ⇥(n) is white noise with amplitude ⇤P ,

⌃⇥P (n)⌥ = 0, (III.21)
⌃⇥P (n)⇥P (n�)⌥ = ⇤2

P �nn� . (III.22)

If P = 1 the AR model describes a Markov process, more precisely an
Ornstein-Uhlenbeck process. The P + 1 coefficients {a(P )

k , ⇤P} are to be de-
termined from the signal v(n). For this purpose we can use relation (III.22).
Multiplying eq. (III.20) by v(n�j) and performing an ensemble average yields
the Wiener-Hopf equations for the coefficients a(P )

k :

P�

j=1

cvv(|j � k|�t)a(P )
k = cvv(j), k = 1 . . . P (III.23)

It is assumed that v(t) is a stationary stochastic process, such that ⌃v(t1)v(t2)⌥ =
⌃v(t1�t2)v(0)⌥. Since ⇥P (.) is supposed to be white noise it is not correlated with
preceding values of v, and therefore ⌃⇥P (n)v(n� k)⌥ = 0 for k = 1 . . . P . Multi-
plication of (III.20) with v(n) and averaging fixes the variance of the noise,

⇤2
P = cvv(0)�

P�

k=1

a(P )
k cvv(k) (III.24)

The above Relation can be considered as a fluctuation-dissipation theorem for
discrete dynamical variables since it relates the amplitude ⇤P of the fluctua-
tions to the (decaying) autocorrelation function.
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The above Relation can be considered as a fluctuation-dissipation theorem for
discrete dynamical variables since it relates the amplitude ⇤P of the fluctua-
tions to the (decaying) autocorrelation function.
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two-sided z-transform of discrete functions. For an arbitrary discrete function
f(n) these transforms are defined through

F (z) =
+⇥⌥

n=�⇥
f(n)z�n, (III.38)

F>(z) =
⇥⌥

n=0

f(n)z�n, (III.39)

respectively. The one-sided z-transform can be considered as Laplace trans-
form for discrete functions. As for Laplace transforms, one assumes that the
function to be transformed is zero on the negative time axis. The inverse trans-
forms of (III.38) and (III.39) are obtained from the same contour integral,

f(n) =
1

2�i

⇧

C

dz zn�1F(>)(z), (III.40)

where the integration contour C is to be taken within the region of convergence
of F (z)(>). In the latter F(>)(z) can be expanded in a Laurent series, and f(n)
is just the coefficient corresponding to the index �n.

In the AR model the (two-sided) z-transform of the discrete autocorrelation
function cvv(n) has a so-called all-pole form and can be directly expressed in the
coefficients of the AR model

C(AR)
vv (z) =

⇥2
P

(1�
⌃P

k=1 a(P )
k z�k)(1�

⌃P
l=1 a(P )

k zl)
(III.41)

Setting z = exp[i⇤�t] yields the power spectrum of v(n),

c̃(AR)
vv (⇤) = �t C(AR)

vv (exp[i⇤�t]) (III.42)

Note that c̃(AR)
vv (⇤) is an approximation of the Fourier transform of the contin-

uous autocorrelation function cvv(t).

c̃(AR)
vv (⇤) = �t

+⇥⌥

n=�⇥
c(AR)
vv (n) exp[�in⇤�t] ⇥ c̃vv(⇤). (III.43)

2.4. Estimating the correlation function from the AR parameters. As the
Fourier spectrum of the VACF, the correlation function itself can be estimated
from the parameters of the AR model. One computes simply the inverse z-
transform of C(AR)

vv (z), writing

C(AR)
vv (z) =

1

a(P )
P

�zP ⇥2
P�

zP �
P⌥

k=1

a(P )
k zP�k

⇥

⌦  � ↵
p(z)

�
P⌥

k=1

⇤
a(P )

l

a(P )
P

⌅
zl � 1

a(P )
P

⇥

⌦  � ↵
q(z)

. (III.44)
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On trouve la même correspndance que pour la transformée en z bilatérale,

(f ⇥ g)(n) ⌅⇧ F̂>(z)Ĝ>(z) (115)

5. Théorème de corrélation et théorème de Parseval

On rappelle que la convolution discrète de deux fonctions non-périodiques
est définie par

(f ⇤ g)(n) =
+⇧⌅

j=�⇧

f(n + j)g⇥(j) (116)

Par conséquent

Z {(f ⇤ g)(n), n, z} =
+⇧⌅

n=�⇧
z�n

�
+⇧⌅

j=�⇧

f(n + j)g⇥(j)

⇥

=
+⇧⌅

j=�⇧

g⇥(j)
+⇧⌅

n=�⇧
z�nf(n + j)

n⇤n⇥�j
=

+⇧⌅

j=�⇧

g⇥(j)
+⇧⌅

n⇥=�⇧

z�(n⇥�j)f(n⌅)

=

�
+⇧⌅

j=�⇧

g(j)(1/z⇥)�j

⇥⇥

⌥ ⌃⇧ �
Ĝ�(1/z�)

+⇧⌅

n⇥=�⇧

z�n⇥
f(n⌅)

⌥ ⌃⇧ �
F̂ (z)

.

On trouve la correspondance

(f ⇤ g)(n) ⌅⇧ F̂ (z)Ĝ⇥(1/z⇥) (117)

Cette relation n’est pas valable pour la transformée en z unilatérale. Dans ce
cas le changement de la variable de sommation de n à n⌅ = n + j a pour
conséquence que la borne inférieure de n⌅ est j et non 0. Par conséquent au-
cune relation utile pour la corrélation peut être dérivée pour la corrélation en
z unilatérale.

Il suit de théorème de corrélation que

(f ⇤ f)(n) =
1

2�i

⇤

C

dz zn�1F̂ (z)F̂ ⇥(1/z⇥).

En utilisant la définition de la corrélation discrète on trouve en particulier pour
n = 0

+⇧⌅

j=�⇧

|f(j)|2 =
1

2�i

⇤

C

dz z�1F̂ (z)F̂ ⇥(1/z⇥).

On note que 1/z⇥ = z si |z| = 1 et F̂ (z)F̂ ⇥(1/z⇥) = |F̂ (z)|2 dans ce cas. Si
l’on choisit z(⇥) = exp(i⇥) où ⇥ ⌃ [��, +�) pour le contour C dans l’intégrale

F (z)G�(1/z�)

Correlation function cvv(n) = lim
M⇤⌅

1
2M + 1

M�

k=�M

v(n + k)v⇥(k)

Cvv(z) = lim
M⇥⇤

1
2M + 1

VM (z)V �M (1/z�)

●

●

●
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two-sided z-transform of discrete functions. For an arbitrary discrete function
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f(n)z�n, (III.38)

F>(z) =
⇥⌥

n=0

f(n)z�n, (III.39)

respectively. The one-sided z-transform can be considered as Laplace trans-
form for discrete functions. As for Laplace transforms, one assumes that the
function to be transformed is zero on the negative time axis. The inverse trans-
forms of (III.38) and (III.39) are obtained from the same contour integral,

f(n) =
1

2�i

⇧

C

dz zn�1F(>)(z), (III.40)

where the integration contour C is to be taken within the region of convergence
of F (z)(>). In the latter F(>)(z) can be expanded in a Laurent series, and f(n)
is just the coefficient corresponding to the index �n.

In the AR model the (two-sided) z-transform of the discrete autocorrelation
function cvv(n) has a so-called all-pole form and can be directly expressed in the
coefficients of the AR model

C(AR)
vv (z) =

⇥2
P

(1�
⌃P
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k z�k)(1�

⌃P
l=1 a(P )

k zl)
(III.41)

Setting z = exp[i⇤�t] yields the power spectrum of v(n),

c̃(AR)
vv (⇤) = �t C(AR)

vv (exp[i⇤�t]) (III.42)

Note that c̃(AR)
vv (⇤) is an approximation of the Fourier transform of the contin-

uous autocorrelation function cvv(t).

c̃(AR)
vv (⇤) = �t

+⇥⌥

n=�⇥
c(AR)
vv (n) exp[�in⇤�t] ⇥ c̃vv(⇤). (III.43)

2.4. Estimating the correlation function from the AR parameters. As the
Fourier spectrum of the VACF, the correlation function itself can be estimated
from the parameters of the AR model. One computes simply the inverse z-
transform of C(AR)

vv (z), writing

C(AR)
vv (z) =
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a(P )
P
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FIGURE III.6. Left: VACF of liquid argon obtained from stan-
dard estimation (red solid line), as compared to the estimation
by by the AR model with different orders. Right: Correspond-
ing Fourier spectra. See explanations in the text.

2.5. Computing the memory function. To compute the memory function
we start from the discrete version of equation (I.95),

cvv(n + 1)� cvv(n)

�t
= �

n⇧

k=0

�t⇥(n� k)cvv(k) (III.52)

and apply a one-sided z-transform. Using that

Z> {f(n + 1)} = zF>(z)� zf(0) (III.53)

for any discrete function f(n) whose one-sided z-transform exists, one obtains

zCvv,>(z)� zcvv(0)� Cvv,>(z)

�t
= ��tK>(z)Cvv,>(z).

This equation can be solved for the z-transformed memory function

K>(z) =
1

�t2

⇤
zcvv(0)

Cvv,>(z)
+ 1� z

⌅
. (III.54)

This equation is only useful if we have an expression for the one-sided z-
transform of the VACF. Such an expression can be easily obtained from the
AR model (III.49) of the VACF,

C(AR)
vv,> (z) =

⇥⇧

n=0

c(AR)
vv (n)z�n =

P⇧

j=1

�j

⇥⇧

n=0

�zj

z

⇥n

.

DOS for liquid argon

G.R. Kneller and K. Hinsen. J. Chem. Phys., 115(24):11097–11105, 2001.
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Here p(z) and q(z) are polynomials of degree P whose coefficients for zP are
equal to 1. If zk (k = 1, . . . , P ) are the zeros of the characteristic polynomial,

p(z) = zP �
P⇥

k=1

a(P )
k zP�k (III.45)

those of q(z) are simply z�1
l (l = 1, . . . , P ), and we may write

C(AR)
vv (z) =

1

a(P )
P

�zP ⇤2
P�P

k=1(z � zk)
�P

l=1(z � z�1
l )

. (III.46)

A method for the computation of the zeros of p(z) is described in Appendix 1.
In the following we assume that they fulfil the stability criterion,

|zk| < 1, k = 1, . . . , P (III.47)

and have all multiplicity 1. The stability condition is verified if the Burg algo-
rithm is used for the estimation of the AR parameters [30, 31], and we found
the assumption that p(z) has only simple zeros always confirmed in practice.
By developing C(AR)

vv (z) in partial fractions it is easy to show that its domain of
convergence its given by (see Appendix 2)

|zk|max < |z| <
1

|zk|max
. (III.48)

This condition must be observed for choice of the integration contour for the
inverse z-transform of C(AR)

vv (z). Using the theorem of residues one obtains
from expression (III.46) (see Appendix 2)
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P⇥

j=1

�jz
|n|
j (III.49)

where the coefficients �j read
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�P
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Expression (III.49) shows that the AR model leads to a multiexponential
form for the VACF. The is easily seen by writing the poles zk in polar form

zk = exp(�[i⌅k + ⇥k]�t), (III.51)

where ⌅k ⇥ R and ⇥k > 0, since |zk| < 1.
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A method for the computation of the zeros of p(z) is described in Appendix 1.
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and have all multiplicity 1. The stability condition is verified if the Burg algo-
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zéros de p(z)

70 3. DIFFUSIVE MOTIONS IN SIMPLE LIQUIDS

Here p(z) and q(z) are polynomials of degree P whose coefficients for zP are
equal to 1. If zk (k = 1, . . . , P ) are the zeros of the characteristic polynomial,

p(z) = zP �
P⇥

k=1

a(P )
k zP�k (III.45)

those of q(z) are simply z�1
l (l = 1, . . . , P ), and we may write

C(AR)
vv (z) =

1

a(P )
P

�zP ⇤2
P�P

k=1(z � zk)
�P

l=1(z � z�1
l )

. (III.46)
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A method for the computation of the zeros of p(z) is described in Appendix 1.
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A method for the computation of the zeros of p(z) is described in Appendix 1.
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A method for the computation of the zeros of p(z) is described in Appendix 1.
In the following we assume that they fulfil the stability criterion,
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rithm is used for the estimation of the AR parameters [30, 31], and we found
the assumption that p(z) has only simple zeros always confirmed in practice.
By developing C(AR)

vv (z) in partial fractions it is easy to show that its domain of
convergence its given by (see Appendix 2)
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Expression (III.49) shows that the AR model leads to a multiexponential
form for the VACF. The is easily seen by writing the poles zk in polar form
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where ⌅k ⇥ R and ⇥k > 0, since |zk| < 1.
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FIGURE III.7. Zeros of the characteristic polynomial in the com-
plex plane for P = 20 and P = 500.

If |zj|max < |z| all geometrical series converge, and one obtains

C(AR)
vv,> (z) =

P⌅

j=1

�j
z

z � zj
, |z| > |zj|max (III.55)

Inserting now expression (III.55) into eq. (III.54) yields a rational function in z
for the z-transformed memory function:

K(AR)
> (z) =

1

�t2

�
cvv(0)⇤P

j=1 �j
1

z�zj

+ 1� z

⇥
(III.56)

From this expression the memory function can be obtained by polynomial di-
vision. One writes

⇥⌅

n=0

⇥(AR)(n)z�n =
1

�t2

�
cvv(0)⇤P

j=1 �j
1

z�zj

+ 1� z

⇥
.

and obtains ⇥(AR)(n) by comparing on both sides the coefficients for z�n (n =
0, 1, 2, . . .).
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FIGURE III.6. Left: VACF of liquid argon obtained from stan-
dard estimation (red solid line), as compared to the estimation
by by the AR model with different orders. Right: Correspond-
ing Fourier spectra. See explanations in the text.

2.5. Computing the memory function. To compute the memory function
we start from the discrete version of equation (I.95),

cvv(n + 1)� cvv(n)

�t
= �

n⇧

k=0

�t⇥(n� k)cvv(k) (III.52)

and apply a one-sided z-transform. Using that

Z> {f(n + 1)} = zF>(z)� zf(0) (III.53)

for any discrete function f(n) whose one-sided z-transform exists, one obtains

zCvv,>(z)� zcvv(0)� Cvv,>(z)

�t
= ��tK>(z)Cvv,>(z).

This equation can be solved for the z-transformed memory function

K>(z) =
1

�t2

⇤
zcvv(0)

Cvv,>(z)
+ 1� z

⌅
. (III.54)

This equation is only useful if we have an expression for the one-sided z-
transform of the VACF. Such an expression can be easily obtained from the
AR model (III.49) of the VACF,

C(AR)
vv,> (z) =

⇥⇧

n=0

c(AR)
vv (n)z�n =

P⇧

j=1
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�zj

z

⇥n

.
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This equation is only useful if we have an expression for the one-sided z-
transform of the VACF. Such an expression can be easily obtained from the
AR model (III.49) of the VACF,
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This equation is only useful if we have an expression for the one-sided z-
transform of the VACF. Such an expression can be easily obtained from the
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This equation is only useful if we have an expression for the one-sided z-
transform of the VACF. Such an expression can be easily obtained from the
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FIGURE III.7. Zeros of the characteristic polynomial in the com-
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If |zj|max < |z| all geometrical series converge, and one obtains

C(AR)
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, |z| > |zj|max (III.55)

Inserting now expression (III.55) into eq. (III.54) yields a rational function in z
for the z-transformed memory function:
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From this expression the memory function can be obtained by polynomial di-
vision. One writes
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and obtains ⇥(AR)(n) by comparing on both sides the coefficients for z�n (n =
0, 1, 2, . . .).
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Cher(e)s Collègues,

j’ai mis au point un protocol simple qui permet de calculer la fonction mémoire à par-

tir d’une fonction de corrélation numérique donnée. L’idée est de regarder les fonctions

mémoire de nos fonctions de corrélation RMN avec cela et de conforter éventuellement

le modèle de la dynamique Brownienne fractionnaire.

Voici d’abord la méthode. Pour le moment je fais l’hypothèse que la fonction de

corrélation est échantillonnée à pas ⇥t constant. Je pars de l’équation de la fonction

mémoire

ċ(t) = �
⌦ t

0

d⇤ c(t� ⇤)⇥(⇤), (1)

qui est approchée par une forme discrète,

ċ(n) = �
n 

k=0

⇥t wkc(n� k)⇥(k), n = 0, . . . , P. (2)

Ici les wk ⌅= 0 sont des poids et c(n) ⇥ c(n⇥t), etc. Utilisant la règle trapézoı̈dale on

w0 = wn = 1/2 et wk = 1 pour k = 1, . . . , n� 1. Les équations (2) peuvent être écrites sous

la forme matricielle
⇤

⌥⌥⌥⌥⌥⌥⌥⌥⇧

c(0) 0 0 0 . . . 0

c(1) c(0) 0 0 . . . 0

c(2) c(1) c(0) 0 . . . 0
...

...
...

...
...

...

c(P ) c(P � 1) c(P � 2) c(P � 3) . . . c(0)

⌅

��������⌃

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⇧

w0⇥(0)

w1⇥(1)

w2⇥(2)
...

wP ⇥(P )

⌅

��������⌃

= � 1

⇥t

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⇧

ċ(0)

ċ(1)

ċ(2)
...

ċ(P )

⌅

��������⌃

Ici j’ai utilisé l’approximation la plus simple pour la dérivée, d’ailleurs la même que

dans [1] pour le modèle autorégressif,

ċ(n) ⇤ c(n + 1)� c(n)

⇥t
.

Avec ce protocole je trouve les mêmes fonctions mémoire qu’avec la méthode décrite

en [1]. En principe ċ(0) = 0 pour une fonction d’autocorrélation classique, mais dans ce

schéma ceci n’est pas exactement vérifié.

La fonction mémoire pour le modèle analytique (Ornstein-Uhlenbeck fractionnaire) à

la forme

⇥(t) =
(�� 1)

⇤ 2�(�)

�
t

⇤

⇥2��

, t > 0, (3)
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tir d’une fonction de corrélation numérique donnée. L’idée est de regarder les fonctions
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ċ(n) ⇤ c(n + 1)� c(n)

⇥t
.
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la forme

⇥(t) =
(�� 1)

⇤ 2�(�)

�
t

⇤

⇥2��

, t > 0, (3)

1

Memory function from a given correlation function

Recursive solution...



74 3. DIFFUSIVE MOTIONS IN SIMPLE LIQUIDS

FIGURE III.8. Left: Memory functions for liquid argon obtained
from the AR model for different orders P . Right: Analytical
models from the literature.

of the VACF according to

cvv(t) � t�d/2 (III.57)

is confirmed, where d is the dimension of the system. It is obvious that such
a long time behaviour cannot be obtained from the continued fraction model
of the Mori [11], which leads by construction to a multiexponential decay of
the VACF. As we have seen in Section 2.4, the same is in principle true for
the AR model. However due to the large number of poles that can be con-
sidered, one can nevertheless approximate an algebraic decay of a correlation
function. The same is true for any numerical calculation of a correlation func-
tion from an MD trajectory, since it is mathematically impossible to extract an
algebraically decaying correlation function from a numerical simulation of fi-
nite length. Taking this inherent limitation of any MD simulation into account,
Alder and Wainwright could thus not prove, but only confirm relation (III.57).
We will come back to this point when we discuss the model of fractional Brow-
nian dynamics for the dynamics of proteins, which is presented in the next
chapter.

4. Microscopic approach to Brownian dynamics

A very interesting and straightforward extension of the study of liquid ar-
gon presented in the preceding section is to compute the VACF and its asso-
ciated memory function for a tracer particle in a liquid, whose size and mass,
respectively, differ from those of the surrounding solvent molecules. In con-
trast to real experiments, such a numerical study permits easily to vary the
mass and the size independently, in order to gain insight into the transition
from Hamiltonian dynamics to Brownian dynamics from a microscopic point

Memory function for liquid argon
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ciated memory function for a tracer particle in a liquid, whose size and mass,
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mass and the size independently, in order to gain insight into the transition
from Hamiltonian dynamics to Brownian dynamics from a microscopic point

Numerical results and analytical models
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of view. The material presented in this Section has been published in refs. [36]
and [37].

4.1. Modelling the tracer particle. In the following we consider a MD sim-
ulation of a system of 2047 argon atoms in the liquid state plus one tracer
particle of different mass and size. The interaction potential for the solvent
molecules is the same as described in section 1.4, and the size of the tracer par-
ticle is modelled a shifted Lennard-Jones potential describing its interactions
with the solvent molecules,

USS =
⇧
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.

Here “S” stands for “solvent” and “T” for “tracer particle”. Defining the di-
ameter of the solvent particles by the minimum of the Lennard-Jones potential,
which is located at r0 = 21/6⇤, the diameter of the tracer particle is given by

d = d0 + � with d0 = 21/6⇤. (III.59)

In the following d will be referred to a size of the tracer particle.
The system has been simulated in the microcanonical NV E ensemble, us-

ing a simulation time step of 20 fs. In order to obtain good statistics for the
VACF of the tracer particle, long trajectories of up to 45 ns were created. This
point is important since we consider tracer particles up to 1000 times heavier
than the solvent molecules. For the subsequent analysis we used an AR model
of order P = 80 with a sampling time step of 20 fs. Fig. III.9 shows the VACF
of the tracer particle and the associated memory function as a function of size
and mass. Each subfigure corresponds to a fixed mass M of the particle. Defin-
ing m as the mass of a solvent molecule, i.e. the mass of an argon atom, the
mass ratios are 1, 10, 100, and 1000 (subfigures a) to d), respectively). For each
mass of the tracer particle its size is systematically increased, starting with the
size of an argon atom of d0 = 0.34 nm, up to a maximum size of d = d0+0.9 nm.

4.2. Qualitative interpretation of the results. Looking at the VACFs one
recognises that increasing the size leads to stronger oscillations, whereas in-
creasing the mass has the opposite effect, and leads an exponential form. The
case of Brownian motion, where the VACF decays exponentially, is rapidly ap-
proached for a small size and a big mass. In the other extreme case of small
mass and big size the tracer particle becomes a sort of bubble which is more
or less trapped in the cage of heavier next neighbours and performs rapid os-
cillations in this cage. The latter effect leads to a pronounced minimum of the
VACF. The memory function has the striking feature to scale for all sizes of the

S = solvant, T = traceur

Vary the mass and the size of 
the tracer particle independently
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Multiplying !8" with v(t"n$t) and performing a thermal
average yields a set of linear equations for the predictor co-

efficients, an
(P) (n!1,...,P). The resulting linear equations,

which read &n!1
P an

(P)'(!k"n!$t)!'(k$t) (k!1,...,P),
are known as the Yule–Walker equations.6 They require the

knowledge of '(t), which can be computed from the MD

trajectory. The square amplitude (P
2 of the white noise %P(t)

is given by (P
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(P)'(n$t). In our studies we use

the Burg algorithm,6–8 which takes the time series v(k$t) as
input and estimates '(t) as well as (P

2 implicitly. Within the

AR model the !unilateral" z-transformed discrete VACF has
the simple form5
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In the following p(z) is assumed to have P distinct zeros

which fulfill the stability criterion !zk!%1. The latter is guar-
anteed by the Burg algorithm. The memory function in

the time domain is now obtained by inserting !9" into !6"
and computing -(n) from !7" by polynomial division.9 The
latter step is motivated by the definition !7" of .$

(AR)(z).

Within the AR model the zeros of p(z), i.e., the poles of
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(AR)(z), also determine the VACF on the positive time

axis. Inverse z-transformation of !9" yields
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for n00. The integration contour is any closed path contain-
ing all poles of )$

(AR)(z).

Applying the method described above, we have com-

puted the memory function of a tracer particle immersed in

liquid argon at a temperature of 90.0 K. The interactions

between the fluid particles are described by a Lennard-Jones

potential and those between the tracer particle and the fluid

by distance-shifted version of the same potential

FIG. 1. Memory functions of the tracer particle for mass ratio M /m!1 !a", M /m!10 !b", M /m!100 !c", and M /m!1000 !d", respectively, and different
particle sizes. The diameter of the tracer particle is d!21/6(#1 with (!0.295 99 nm. The insets show the corresponding normalized velocity autocorrelation
functions, '(t).
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FIGURE III.9. VACFs and associated memory functions for a
tracer particle in liquid argon as a functions of size and mass.
The figure is taken from ref. [36]. Each of the subfigures a) to
d) corresponds to different mass of the tracer particle and shows
the evolution of its VACF and the associated memory function
with increasing size.

tracer particle with its inverse mass. For the case of M/m = 1000 one observes
a slight deviation from this rule which will be discussed later. The empirical
study shows that it is the decrease of the amplitude of the memory function
which leads to an exponential decay of the VACF.

Some deeper insight into the above empirical results can be obtained from
the two-pole model by Berne et al. [13]. Within this model the memory function
is approximated by an exponential, ⇥(t) = ⇥0 exp(��t), which is sufficient for
a qualitative argumentation. We know from (I.113) that the VACF takes then
the form

cvv(t) =
kBT

M
exp

�
��t

2
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cos(�t) +

�

2�
sin(�t)
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FIGURE III.9. VACFs and associated memory functions for a
tracer particle in liquid argon as a functions of size and mass.
The figure is taken from ref. [36]. Each of the subfigures a) to
d) corresponds to different mass of the tracer particle and shows
the evolution of its VACF and the associated memory function
with increasing size.

tracer particle with its inverse mass. For the case of M/m = 1000 one observes
a slight deviation from this rule which will be discussed later. The empirical
study shows that it is the decrease of the amplitude of the memory function
which leads to an exponential decay of the VACF.

Some deeper insight into the above empirical results can be obtained from
the two-pole model by Berne et al. [13]. Within this model the memory function
is approximated by an exponential, ⇥(t) = ⇥(0) exp(��t), which is sufficient for
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the two-pole model by Berne et al. [13]. Within this model the memory function
is approximated by an exponential, ⇥(t) = ⇥(0) exp(��t), which is sufficient for
a qualitative argumentation. We know from (I.113) that the VACF takes then
the form
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�
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where ⇧̃0 is given by
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and the squared frequency ⇧2
0 can be expressed as

⇧2
0 =

⌃⇥F 2⌥
MkBT

.

If the tracer particle is light and big, such that the mean square force exerted
by the neighbours becomes large, we have ⇧0 ⇧ ⇤ and ⇧̃0 ⇤ ⇧0. In this case
the VACF will exhibit strong and fast oscillations.

In contrast, if the tracer particle is heavy and small, such that if ⇧0 ⌅ ⇤, the
VACF is well approximated by
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kBT

M
exp
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�1t
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for time arguments
t⇧ ⇤�1 (III.61)

For the two-pole model we obtain

� = ⇧2
0⇤
�1 =

 ⇥

0

dt⌅(t) (III.62)

as relaxation constant for the VACF, and on account of ⇧2
0 ⌅ ⇤2 we have

� ⌅ ⇤ (III.63)

The approximation ⌅(t) ⇤ �⇥(t), which leads to an exponentially decaying
VACF through the memory function equation (I.95), must be interpreted in
the sense of relation (III.63), which says that the memory function decays much
faster than the VACF.

We note here that condition (III.61) follows from the following considera-
tion. If ⇧0 ⌅ ⇤ the two poles s1,2 defined in Eq. (I.112) may be written in the
form

s1,2 = �⇤

2

⇧

⌥1 ±

↵

1�
⇤
2⇧0

⇤

⌅2
⌃

� .

Using the approximation
 

1� x ⇤ 1� x/2, which can be used for |x|⌅ 1, we
find

s1 ⇤ �⇤

s2 ⇤ �⇧2
0⇤
�1.

Each of the above poles contributes an exponential function exp(sjt) in the in-
verse Laplace transform of relation (I.111), where exp(s1t) decays much faster
than exp(s2t). If t ⇧ ⇤�1 the first exponential can be considered zero and only

a) Large and light particle: ⇥0 ⇥ � ⇤ ⇥̃0 � ⇥0

b) Small and heavy particle :
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8.3.4. Two-pole model. To illustrate the last point we consider a two-pole
model studied by Berne et al. [13]. Here one sets ⇤n = 0 for n ⌅ 2, �2 ⇤ ⇥, such
that ⇤1(t) verifies

⇤̇1(t) = �⇥⇤1(t). (I.107)
The Laplace transformed VACF has thus the form

ĉvv(s) =
cvv(0)

s + ⇥1(0)
s+�

(I.108)

It follows from (I.91) that

⇤1(0) =
⇧v̇2⌃
⇧v2⌃ =

⇧�F 2⌃
MkBT

. (I.109)

Here is was used that cvv(0) = kBT/M , where M is the mass of the tagged
particle, and that v̇ = F/M , where F is the force acting upon it. Since the
average force on a particle in a liquid is zero, ⇧F ⌃ = 0, it follows that ⇧�F 2⌃ =
⇧(F � ⇧F ⌃)2⌃ = ⇧F 2⌃ � ⇧F ⌃2 = ⇧F 2⌃. The memory function at time zero is thus
proportional to the fluctuation of the force acting on a particle in a liquid. It
should be noted that ⇤1(0) has the dimension of the square of a frequency, and
for this reason it is convenient to introduce

⌅0 := +
⇧

⇤(0). (I.110)

We obtain thus from (I.108)

ĉvv(s) =
kBT

M

s + ⇥

s(s + ⇥) + ⌅2
0

. (I.111)

This function has two poles in the complex s-plane,

s1,2 = �⇥

2
± i⌅̃0, where ⌅̃0 =

⌃
⌅2

0 �
⇥2

4
, (I.112)

and inverse Laplace transform yields

cvv(t) =
kBT

M
exp

�
�⇥t

2

⇥ ⇤
cos(⌅̃0t) +

⇥

2⌅̃0
sin(⌅̃0t)

⌅
(I.113)

If ⇥/2 < ⌅0 the time evolution of the resulting VACF is thus characterised by a
damped oscillation which is also seen in the VACF of liquid argon presented
in Fig. III.4.

It should be noted that the VACF of a Langevin oscillator given in Eq. (I.57)
is almost identical to one obtained above from the two pole model – only the
sign between the cosine and the sine function is different. The difference has,
however, important physical consequences. It follows from (I.104) that for the
two-pole model

D =
kBT⇥

M⌅2
0

, (I.114)

cvv(t) =
1

2�i

�

C
ds exp(st)ĉvv(s)

⇥0 � �
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The approximation ⌅(t) ⇤ �⇥(t), which leads to an exponentially decaying
VACF through the memory function equation (I.95), must be interpreted in
the sense of relation (III.63), which says that the memory function decays much
faster than the VACF.

We note here that condition (III.61) follows from the following considera-
tion. If ⇧0 ⌅ ⇤ the two poles s1,2 defined in Eq. (I.112) may be written in the
form
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verse Laplace transform of relation (I.111), where exp(s1t) decays much faster
than exp(s2t). If t ⇧ ⇤�1 the first exponential can be considered zero and only
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the slowly decaying exponential exp(s2t) needs to be considered, leading to
expression (III.60).

4.3. Scaling of the memory function and Brownian motion. The essential
result of the study described in the preceding section is that the memory func-
tion scales essentially with the inverse mass of a tracer particle. As we have
seen earlier, this behaviour can be derived for the initial value memory func-
tion – see rel. (I.109) – but a formal proof for all times is not obvious to give.
In this context it is worthwhile mentioning that rel. (I.109) must be slightly
modified if the mass of the solvent is not infinite. In this case one writes [38]

⇤(0) =
⇥⇥F 2⇤
µkBT

, (III.64)

where µ is the reduced mass. If M is the mass of the tracer particle and Msolv the
mass of the solvent, one has µ�1 = 1/M + 1/Msolv. The validity of (III.64) has
been empirically demonstrated in [36].

4.3.1. Effect of scaling the memory function. Accepting the scaling behaviour
of the memory function as an empirical fact, one can show that a reduction
of its amplitude leads to Brownian motion on a coarse-grained time scale –
independent of the form of the memory function [37]. For convenience we
consider the normalised VACF, ⌃(t) = cvv(t)/cvv(0). It follows then from (I.102)
that

⌃(t) =
1

2⇧i

⇤

C

ds
exp(st)

s + ⇤̂(s)
.

If the memory function is now changed by scaling factor � > 0 the correspond-
ing contour integral for the VACF takes the form

⌃�(t) =
1

2⇧i

⇤

C

ds
exp(st)

s + �⇤̂(s)
,

s⇥s/�
=

1

2⇧i

⇤

C�
ds

exp(s�t)

s + ⇤̂(�s)
.

In the second line a change of the integration variable from s to s/� has been
performed. The latter form of the contour integral shows that the applying a
scaling factor to the memory function has two consequences:

(1) The change in the Laplace transformed memory function from ⇤̂(s) to
⇤̂(�s) leads to the modification

⇤(t) � 1

�
⇤

�
t

�

⇥
(III.65)

in the time domain. It is worthwhile noting that this modification does
not alter the integral over time, i.e.

⌅ ⇤

0

dt⇤(t) =

⌅ ⇤

0

dt
1

�
⇤

�
t

�

⇥
. (III.66)
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(2) The VACF associated with the above memory function is evaluated on
the time scale �t.

On account of relations (III.65) and (III.66) it follows that

lim
��0

1

�
⌅

�
t

�

⇥
= ⇥⇤(t) (III.67)

if the integral

⇥ ⇥
⇤ ⇥

0

dt⌅(t), (III.68)

exists, with 0 < ⇥ < ⌅. Lowering the amplitude of the memory is thus equiv-
alent to considering the VACF of a short-ranged memory function on a stretched
time scale, �t. In order to obtain the Brownian dynamics regime one would
need to perform the limit � ⇤ 0, but it its obvious that this limit cannot be
rigourously performed, since the resulting VACF would not decay at all. This
inconsistency is reflected in the fact that the VACF for Brownian dynamics,
which is given by ⇧(t) = exp(�⇥|t|) cannot be differentiated at t = 0, whereas
⇧̇(0) = ⇧v̇v⌃/⇧v2⌃ = 0 is imposed by the laws of classical statistical mechan-
ics. Here we use the symmetry ⇧(t) = ⇧(�t) which holds if the underlying
stochastic process v(t) for the particle velocity is stationary. This is certainly
the case since we consider only systems in thermodynamic equilibrium. As
a consequence d/dt⇧(t) = d/dt⇧(�t) = �d/dt⇧(t) is an odd function in time,
and evaluating the latter identity at t = 0, it follows that ⇧̇(0) = 0.

The above considerations show that the use of a Dirac delta function as
memory function for an autocorrelation function requires some caution. The
theoretical description of Brownian dynamics requires the introduction of a
coarse-grained time scale, and an exponential form for the VACF can only con-
sidered for times t > �t, where �t is the resolution on that coarse-grained time
scale.

4.3.2. Brownian dynamics on a coarse-grained time scale. We will now estab-
lish a definition for �t and a rigourous condition for the applicability of the
model of Brownian Dynamics, which are based on the memory function and
have thus a microscopic foundation. For this purpose we consider the differ-
ence equation

⇧(t + �t)� ⇧(�t)

�t
= �⇥⇧(t), (III.69)

which is equivalent of the differential equation

⇧̇(t) = �⇥⇧(t)

for the VACF of Brownian motion on a coarse-grained time scale. With

a = 1� ⇥�t (III.70)
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result of the study described in the preceding section is that the memory func-
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been empirically demonstrated in [36].

4.3.1. Effect of scaling the memory function. Accepting the scaling behaviour
of the memory function as an empirical fact, one can show that a reduction
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independent of the form of the memory function [37]. For convenience we
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in the time domain. It is worthwhile noting that this modification does
not alter the integral over time, i.e.
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⇥̂(s)� ⇥(�s)

Scaling of the memory function

ψ(t)
α→0
→ exp(−αγt)

The limit α → 0
has no physical
meaning!
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if the integral

⇥ ⇥
⇤ ⇥

0

dt⌅(t), (III.68)

exists, with 0 < ⇥ < ⌅. Lowering the amplitude of the memory is thus equiv-
alent to considering the VACF of a short-ranged memory function on a stretched
time scale, �t. In order to obtain the Brownian dynamics regime one would
need to perform the limit � ⇤ 0, but it its obvious that this limit cannot be
rigourously performed, since the resulting VACF would not decay at all. This
inconsistency is reflected in the fact that the VACF for Brownian dynamics,
which is given by ⇧(t) = exp(�⇥|t|) cannot be differentiated at t = 0, whereas
⇧̇(0) = ⇧v̇v⌃/⇧v2⌃ = 0 is imposed by the laws of classical statistical mechan-
ics. Here we use the symmetry ⇧(t) = ⇧(�t) which holds if the underlying
stochastic process v(t) for the particle velocity is stationary. This is certainly
the case since we consider only systems in thermodynamic equilibrium. As
a consequence d/dt⇧(t) = d/dt⇧(�t) = �d/dt⇧(t) is an odd function in time,
and evaluating the latter identity at t = 0, it follows that ⇧̇(0) = 0.

The above considerations show that the use of a Dirac delta function as
memory function for an autocorrelation function requires some caution. The
theoretical description of Brownian dynamics requires the introduction of a
coarse-grained time scale, and an exponential form for the VACF can only con-
sidered for times t > �t, where �t is the resolution on that coarse-grained time
scale.

4.3.2. Brownian dynamics on a coarse-grained time scale. We will now estab-
lish a definition for �t and a rigourous condition for the applicability of the
model of Brownian Dynamics, which are based on the memory function and
have thus a microscopic foundation. For this purpose we consider the differ-
ence equation

⇧(t + �t)� ⇧(�t)

�t
= �⇥⇧(t), (III.69)

which is equivalent of the differential equation

⇧̇(t) = �⇥⇧(t)

for the VACF of Brownian motion on a coarse-grained time scale. With

a = 1� ⇥�t (III.70)

⇥(n) = (1� ��t)|n|

discrete analogue of 
an exponential function

⇤(�t) = 1� ��t ⇥ 1� �t2

2
⇥(0)

Hamiltonien  
dynamics
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the solution of the difference equation (III.69) takes the simple form
⇧(n�t) = an, n ⇤ 0. (III.71)

If ��t < 1, the VACF has the form of a discrete decaying exponential, and for
��t ⇧ 1 one approximates a continuous exponential function.

The VACF given in Eq. (III.71) is produced by an AR stochastic process of
order P = 1, where the time evolution of the particle velocity is modeled as
(we omit here the indices and use again the abbreviations v(n) ⇥ v(n�t))

v(n) = a v(n� 1) + ⇥(n). (III.72)
Here the Wiener-Hopf equations (III.23) reduce to

cvv(0) = a cvv(1), (III.73)
and we can write

a = ⇧(�t). (III.74)
It follows from (III.24) that the amplitude of the white noise is

⌅2 = ⌃v2⌥(1� a2). (III.75)
The amplitude ⌅, which can also be viewed as error of a linear predictor v(n) =
a v(n � 1), becomes small if �t is small (but not zero), such that a is close to
one (but not one), and we can approximate

⇧(�t) ⌅ 1� �t2

2
⇤(0). (III.76)

To derive this expression one uses that ⇧̇(0) = 0 and that ⇧̈(0) = �⇤(0). Ap-
proximation (III.76) is valid if

�t ⇧ 1⇥
⇤(0)

(III.77)

On the other hand, a = ⇧(�t) must have the form given in Eq. (III.70), and
we conclude that

��t =
�t2

2
⇤(0). (III.78)

Using definition (III.68) of the friction constant we obtain for the resolution �t
of the Brownian time scale

�t = 2

� ⇥

0

dt
⇤(t)

⇤(0)
(III.79)

Relation (III.77) tells us under which conditions the model of Brownian Dy-
namics is appropriate, where definition (III.79) is to be used for the resolution
�t on the coarse-grained Brownian time scale.

If we apply condition (III.77) to the two-pole model by Berne et al. [13] we
obtain

�t ⇧ ⌃�1
0 (III.80)
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Conditions for Brownian dynamics
on the time scale t ≫ ∆t.
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v! t "! #
n!1

P

an
!P "v! t"n$t "#%P! t ". !8"

Multiplying !8" with v(t"n$t) and performing a thermal
average yields a set of linear equations for the predictor co-

efficients, an
(P) (n!1,...,P). The resulting linear equations,

which read &n!1
P an

(P)'(!k"n!$t)!'(k$t) (k!1,...,P),
are known as the Yule–Walker equations.6 They require the

knowledge of '(t), which can be computed from the MD

trajectory. The square amplitude (P
2 of the white noise %P(t)

is given by (P
2!1"&n!1

P an
(P)'(n$t). In our studies we use

the Burg algorithm,6–8 which takes the time series v(k$t) as
input and estimates '(t) as well as (P

2 implicitly. Within the

AR model the !unilateral" z-transformed discrete VACF has
the simple form5

)$
!AR"!z "!#

j!1

P

* j

z

z"z j
, !z!$!z j!, !9"

where the coefficients * j are given by

* j!
1

aP
!P "

"z j
P"1(P

2

+k!1,k, j
P !z j"zk"+ l!1

P !z j"zl
"1"

, !10"

and z j are the zeros of the characteristic polynomial

p!z "!zP" #
k!1

P

ak
!P "zP"k. !11"

In the following p(z) is assumed to have P distinct zeros

which fulfill the stability criterion !zk!%1. The latter is guar-
anteed by the Burg algorithm. The memory function in

the time domain is now obtained by inserting !9" into !6"
and computing -(n) from !7" by polynomial division.9 The
latter step is motivated by the definition !7" of .$

(AR)(z).

Within the AR model the zeros of p(z), i.e., the poles of

)$
(AR)(z), also determine the VACF on the positive time

axis. Inverse z-transformation of !9" yields

'!n "!
1

2/i "Cdz zn"1)$
!AR"!z "!#

j!1

P

* jz j
n !12"

for n00. The integration contour is any closed path contain-
ing all poles of )$

(AR)(z).

Applying the method described above, we have com-

puted the memory function of a tracer particle immersed in

liquid argon at a temperature of 90.0 K. The interactions

between the fluid particles are described by a Lennard-Jones

potential and those between the tracer particle and the fluid

by distance-shifted version of the same potential

FIG. 1. Memory functions of the tracer particle for mass ratio M /m!1 !a", M /m!10 !b", M /m!100 !c", and M /m!1000 !d", respectively, and different
particle sizes. The diameter of the tracer particle is d!21/6(#1 with (!0.295 99 nm. The insets show the corresponding normalized velocity autocorrelation
functions, '(t).
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FIGURE III.9. VACFs and associated memory functions for a
tracer particle in liquid argon as a functions of size and mass.
The figure is taken from ref. [36]. Each of the subfigures a) to
d) corresponds to different mass of the tracer particle and shows
the evolution of its VACF and the associated memory function
with increasing size.

tracer particle with its inverse mass. For the case of M/m = 1000 one observes
a slight deviation from this rule which will be discussed later. The empirical
study shows that it is the decrease of the amplitude of the memory function
which leads to an exponential decay of the VACF.

Some deeper insight into the above empirical results can be obtained from
the two-pole model by Berne et al. [13]. Within this model the memory function
is approximated by an exponential, ⇥(t) = ⇥(0) exp(��t), which is sufficient for
a qualitative argumentation. We know from (I.113) that the VACF takes then
the form

cvv(t) =
kBT

M
exp

�
��t

2

⇥ ⇤
cos(⇤̃0t) +

�

2⇤̃0
sin(⇤̃0t)

⌅

⇥(0) =
⇥�F 2⇤
µkBT

� ⌅2
0
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we conclude that
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�t2
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Using definition (III.68) of the friction constant we obtain for the resolution �t
of the Brownian time scale

�t = 2

� ⇥

0

dt
⇤(t)

⇤(0)
(III.79)

Relation (III.77) tells us under which conditions the model of Brownian Dy-
namics is appropriate, where definition (III.79) is to be used for the resolution
�t on the coarse-grained Brownian time scale.

If we apply condition (III.77) to the two-pole model by Berne et al. [13] we
obtain

�t ⇧ ⌃�1
0 (III.80)
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where the Brownian time step is defined by

�t = 2��1 (III.81)
according to definition (III.79). This is, indeed, equivalent to the condition
⇥0 � � which describes the strongly overdamped regime of the VACF with
the exponential form (III.60). As we have seen, the latter is valid if t ⇥ ��1.
This means that t must be considered for t ⇥ �t – i.e. on the coarse grained
time scale defined by Eq. (III.81).

Brownian dynamics if and

This is equivalent to ⇥0 � �
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where ⇧̃0 is given by

⇧̃0 =

⌦
⇧2

0 �
⇤2

4
,

and the squared frequency ⇧2
0 can be expressed as

⇧2
0 =

⌃⇥F 2⌥
MkBT

.

If the tracer particle is light and big, such that the mean square force exerted
by the neighbours becomes large, we have ⇧0 ⇧ ⇤ and ⇧̃0 ⇤ ⇧0. In this case
the VACF will exhibit strong and fast oscillations.

In contrast, if the tracer particle is heavy and small, such that if ⇧0 ⌅ ⇤, the
VACF is well approximated by

cvv(t) ⇤
kBT

M
exp

�
�⇧2

0⇤
�1t

⇥
(III.60)

for time arguments
t⇧ ⇤�1 (III.61)

For the two-pole model we obtain

� = ⇧2
0⇤
�1 =

 ⇥

0

dt⌅(t) (III.62)

as relaxation constant for the VACF, and on account of ⇧2
0 ⌅ ⇤2 we have

� ⌅ ⇤ (III.63)

The approximation ⌅(t) ⇤ �⇥(t), which leads to an exponentially decaying
VACF through the memory function equation (I.95), must be interpreted in
the sense of relation (III.63), which says that the memory function decays much
faster than the VACF.

We note here that condition (III.61) follows from the following considera-
tion. If ⇧0 ⌅ ⇤ the two poles s1,2 defined in Eq. (I.112) may be written in the
form

s1,2 = �⇤

2

⇧

⌥1 ±

↵

1�
⇤
2⇧0

⇤

⌅2
⌃

� .

Using the approximation
 

1� x ⇤ 1� x/2, which can be used for |x|⌅ 1, we
find

s1 ⇤ �⇤

s2 ⇤ �⇧2
0⇤
�1.

Each of the above poles contributes an exponential function exp(sjt) in the in-
verse Laplace transform of relation (I.111), where exp(s1t) decays much faster
than exp(s2t). If t ⇧ ⇤�1 the first exponential can be considered zero and only
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tion function cAA(t) = ⌃A�(0)A(t)⌥,

ċAA(t) = i⇥AcAA(t)�
⇥ t

0

d�MA(t� �)cAA(�). (2.2)

If one assumes that cAA(t) is a classical autocorrelation function, as we do in this ar-

ticle, it follows that cAA(t) = cAA(�t) and consequently ċAA(0) = i⇥A = 0. We may

thus set ⇥A = 0 from now on. The Laplace transform of cAA(t), defined as ĉAA(s) =
� t

0 dt exp(�st)cAA(t) (⇤{s} > 0), takes the particularly simple algebraic form

ĉAA(s) =
cAA(0)

s + M̂A(s)
(2.3)

which may be used to set up a hierarchical scheme by introducing higher order memory

functions. The idea is to treat the projected force fA(t) in a way entirely analogous to the

one established for A(t), defining second-order fluctuating forces and memory functions.

The result is similar to Eq. (2.3), with ĉAA(s) replaced by M̂A(s), and with ⇥A and M̂A(s)

replaced by their second-order counterparts. Substituting this result for M̂A(s) into Eq.

(2.3) and iterating the procedure to arbitrary order one finally gets a representation of

cAA(s) in form of a continued fraction, which has been derived by Mori [5]

ĉAA(s) =
cAA(0)

s +
M (1)

A (0)

s +
M (2)

A (0)

s + . . .

. (2.4)

Here M (n)(0) denotes the initial value of the n-th order memory function.

B. A model for the dynamics of liquids

In the following we consider the intermediate scattering function for single particle

motion,

Fs(q, t) = ⌃exp(iq[x(t)� x(0)])⌥, (2.5)

where Fs(q, t) ⇥ cAA(t), A(t) = exp(iqx(t)), x is a Cartesian component of the position of a

tagged scattering atom, and q is the momentum transfer from the neutron to the sample.

Here we suppose that the system is isotropic, which implies that all directions in space

are equivalent. The dynamics of Fs(q, t) is described by a second order Mori-Ansatz, such

4

that

F̂s(q, s) =
1

s + M(1)(q,0)

s+M̂(2)(q,s)

, (2.6)

with Fs(q, 0) = 1. The initial values for the memory functions are related to the Taylor

coefficients for the short time expansion of Fs(q, t) (“sum rules”) [6, 13], and one may

write

M (1)(q, 0) = ⇥v2⇤q2, (2.7)

M (2)(q, 0) = 2⇥v2⇤q2 + �2. (2.8)

Here v = ẋ is the time derivative of the Cartesian position coordinate x appearing in the

intermediate scattering function (2.5), and � is the “Einstein frequency”,

�2 =
⇥v̇2⇤
⇥v2⇤ . (2.9)

We note that �2 equals the memory function of the velocity autocorrelation function

(VACF), cvv(t) = ⇥v(t)v(0)⇤, for t = 0. Writing

ċvv(t) = �
� t

0

d⇤M (1)
v (t � ⇤)cvv(⇤) (2.10)

we have

�2 = M (1)
v (0). (2.11)

In a rigid or semi-flexible molecule the mean square velocity can be written in the form

⇥v2⇤ = kBT/meff, where kB is the Boltzman constant, T is the absolute temperature, and

meff is the effective mass of the tagged atom [14]. This point will be discussed later in more

detail.

The choice of a second order Mori ansatz for Fs(q, t) can be motivated by the equation

of motion corresponding to relation (2.6),

F̈s(q, t) +

� t

0

d⇤M (2)(q, ⇤)Ḟs(q, t � ⇤) + q2⇥v2⇤Fs(q, t) = 0. (2.12)

Setting M (2)(q, t) = ⇤(q)�1⇥(t) transforms Eq. (2.12) into the equation of motion of a

damped harmonic oscillator, with a relaxation constant �(q) = ⇤(q)�1 and an angular fre-

quency q2⇥v2⇤, describing the short-time dynamics of Fs(q, t). In the so-called viscoelastic

model [6, 13], the second order memory function M (2)(q, t) is represented by a simple

exponential function,

M (2)(q, t) = M (2)(q, 0) exp(�t/⇤(q)), (2.13)

5

memory function of order 2

so-called structural relaxation, becomes dominant. This mechanism, which directly in-

volves the dynamics of density fluctuations, is due to local rearrangements of particles,

is then slowed down by the increasing ”close packing” of the atoms as well as by their

decreasing average speed. At even lower temperatures, rather than crystallizing, liquids

can be, to some extent, supercooled. In such a case, the effects of the long-lasting tail in-

crease more and more. Eventually, they trigger a mechanism of positive feedback which

leads to a ”structural arrest”, where Fs(q, t) does not decay to zero in the limit t⇤⌅.

Based on the above scenario, a model including two relaxation processes has been put

forward, which has been used in particular for the interpretation of incoherent quasi-

elastic neutron scattering from pure water [16, 19] and from dilute aqueous solutions of

apolar molecules [8, 20, 21]. The presence of two relaxation processes are reflected in the

form for the second order memory function for Fs(q, t),

M (2)(q, t) = M (2)(q, 0) {� exp(�t/⇥1) + (1� �) exp(�t/⇥2)} . (2.14)

Here ⇥1 and ⇥2 are the fast and the slow relaxation times, respectively, and � is a posi-

tive number with 0 ⇥ � ⇥ 1. The dependence on q of these parameters is here omitted.

Using expression (2.6) together with the initial values of the first and second order mem-

ory function, which are given by Eqs. (2.7) and Eqs. (2.8), respectively, one obtains the

following expression for the Laplace transformed intermediate scattering function:

F̂s(q, s) =
1

s + �v2⇥q2

s+(2�v2⇥q2+�2)

�
�

s+⇥�1
1

+ 1��

s+⇥�1
2

⇥
. (2.15)

The above expression leads to a rational function for F̂s(q, s), exhibiting four poles in the

s-plane, and the intermediate scattering function is thus a weighted sum of four (possibly

complex) exponential functions. By construction, such a model will work for a certain

time window, which is set by the relaxation times and frequencies obtained from the

poles of F̂s(q, s). One must be aware that hydrodynamic long-time tails, which manifest

themselves through an algebraic decay of correlation functions in the limit of infinite

time, cannot be obtained in a mathematical sense, i.e. in the formal limit t⇤⌅.

Eq. (2.15) is the starting point to derive various quantities which are relevant to neu-

tron scattering. Using that Fs(q, t) is symmetric in time, the dynamic structure factor

7

Intermediate scattering 
function for single particle 
motions

Analytical model [1]

fast relaxation by collisions structural relaxation

[1]V. Calandrini, et al.,  J. Chem. Phys, 120:4759–4767, 2004.



the mean square displacement for both hydrogen and oxygen and which is close to the

experimental value of D = 2.23 · 10�5cm2/s found by NMR measurements [26].

B. Modeling the full hydrogen dynamics

The next question to be asked is if the analytical model introduced above would also

be able to describe the full dynamics of the hydrogen atoms, i.e. the full range of atomic

motions “seen” by thermal neutrons. Here not only slow diffusive motions are to be

described, but also faster intermolecular vibrations and molecular librations. The rep-

resentation of a water molecule by a rigid-body corresponds to the physical situation of

scattering of thermal neutrons by water molecules, since internal vibrations cannot be

excited in this case. It is also the basis of the SPC/E model for water which has been used

in the simulations. In the following we consider the Einstein frequency, �, and the mean

square velocity of the scattering atom, ⇥v2⇤, as given parameters. The Einstein frequency

is obtained from MD simulation and for the atomic mean square velocity one may use an

exact value,

⇥v2⇤ =
kBT

meff
, (4.4)

where meff is an effective mass depending on the molecular geometry, the imposed geo-

metrical constraints and on the atomic masses in the molecule under consideration [14].

The effective mass can be identified with the Sachs-Teller mass of the scattering atom [27]

if the molecules under consideration are rigid. For the SPC/E water model one finds in

particular

mH1 = mH2 = 1.896,

mO = 17.08,

using atomic mass units. For the corresponding mean square velocities one obtains

⇥v2
H⇤ = 1.315 nm2/ps2 and ⇥v2

O⇤ = 0.146 nm2/ps2. These theoretical values may be com-

pared to ⇥v2
H⇤ = 1.330 nm2/ps2 and ⇥v2

O⇤ = 0.147 nm2/ps2 which have been computed

from the MD trajectories. We note that the VACFs have been obtained from a 100 ps

MD trajectory using autoregressive modeling with 400 poles and a sampling time step of

10 fs. The initial values of the corresponding memory functions, which are given in the

13
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scattering of thermal neutrons by water molecules, since internal vibrations cannot be

excited in this case. It is also the basis of the SPC/E model for water which has been used

in the simulations. In the following we consider the Einstein frequency, �, and the mean

square velocity of the scattering atom, ⇥v2⇤, as given parameters. The Einstein frequency

is obtained from MD simulation and for the atomic mean square velocity one may use an

exact value,

⇥v2⇤ =
kBT

meff
, (4.4)

where meff is an effective mass depending on the molecular geometry, the imposed geo-

metrical constraints and on the atomic masses in the molecule under consideration [14].

The effective mass can be identified with the Sachs-Teller mass of the scattering atom [27]

if the molecules under consideration are rigid. For the SPC/E water model one finds in

particular

mH1 = mH2 = 1.896,

mO = 17.08,

using atomic mass units. For the corresponding mean square velocities one obtains

⇥v2
H⇤ = 1.315 nm2/ps2 and ⇥v2

O⇤ = 0.146 nm2/ps2. These theoretical values may be com-

pared to ⇥v2
H⇤ = 1.330 nm2/ps2 and ⇥v2

O⇤ = 0.147 nm2/ps2 which have been computed

from the MD trajectories. We note that the VACFs have been obtained from a 100 ps

MD trajectory using autoregressive modeling with 400 poles and a sampling time step of

10 fs. The initial values of the corresponding memory functions, which are given in the
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inset of Fig. 3, define the squares of the Einstein frequencies of hydrogen and oxygen,

�2
H = 11881 ps�2,

�2
O = 1941 ps�2.

We note here that an equivalent of Expression (4.1) cannot be used for the calculation of

the Einstein frequency, since we are working in the rigid molecule approximation. To cal-

culate the mean square acceleration ⇤v̇2⌅ for a hydrogen atom, which appears in the corre-

sponding Einstein frequency, one would need to take into account contributions from the

constraint forces, such as the Coriolis and the centrifugal acceleration. The corresponding

task is by far more complicated than the calculation of the mean square velocity described

in [14], and there is no point in undertaking such a task, since the corresponding informa-

tion is easily accessible by the calculation of atomic memory functions described above.

Taking ⇤v2
H⌅ and �2

H again as fixed parameters, we fitted the dynamic structure fac-

tor of the model to the simulated incoherent dynamic structure factor in order to obtain

the model parameters �, ⇤1 and ⇤2. The results are shown in Fig. 4 and Table I gives the

respective fitted values for �, ⇤1 and ⇤2. The fits have been performed at five different

q-values, where q = 32 nm�1 and q = 52 nm�1 correspond to the maxima of the structure

factor which is shown in the inset of Fig. 4. Fixing all parameters of the model to the

values of the fit, we computed the corresponding intermediate scattering function, the

first and second order memory functions, and the density of states. The results are dis-

played in Figs. 5, 6, and 7, respectively, (broken lines), as compared to the corresponding

simulation results (solid lines).

The dynamic structure factor of the model and the intermediate scattering function

have been obtained from expression (2.15), using in the first case relation (2.16) and per-

forming in the second case an inverse Laplace transform. The model DOS has been ob-

tained with the parameters of Table I which correspond to q = 5 nm�1. In principle one

should consider the limit q ⇥ 0, but the latter limit cannot be obtained numerically,

and one must resort to considering the smallest possible value for q, for which statisti-

cally meaningful results can be obtained from the simulation. From the size of the cubic

simulation box, which is L = 1.9552 nm, it follows that qmin = 2⇥/L � 3.2 nm�1 is the

mathematically smallest possible value for q.

To test the validity of the model, we computed the intermediate scattering functions
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4 pole model

Which mass for the scattering atom ?

[1] G.R. Kneller.  J. Chem. Phys., 125:114107, 2006.

F̂s(q, s) =
1

s + ⟨v2⟩q2
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Using the molecular mass in the model... [1]

[1]V. Calandrini, et al., J. Chem. Phys, 120:4759–4767, 2004.

Correct representation 
of diffusive motions

incorrect representation of 
intermolecular vibrations



Using the Sachs-Teller mass instead... [1]
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takes the form

Ss(q, ⇧) =
1

2⇤

⇥ +⇤

�⇤
dt exp(�i⇧t)Fs(q, t) =

1

⇤
⇥{F̂s(q, i⇧)}. (2.16)

The VACF can be obtained from the relation cvv(t) = � limq⇥0 q�2�2
t Fs(q, t). With

Fs(q, 0) = 1 and �tFs(q, 0) = 0 one obtains for the Laplace transform

ĉvv(s) = � lim
q⇥0

1

q2

⇤
s2F̂s(q, s)� s

⌅

=
(s + ⌅�1

1 )(s + ⌅�1
2 )⇧v2⌃

s3 + s2(⌅�1
1 + ⌅�1

2 ) + s(⌅�1
1 ⌅�1

2 ) + �2([1� �]⌅�1
1 + �⌅�1

2 )
. (2.17)

The above expression allows to compute the Fourier transform of the VACF, known as

“density of states” (DOS), via

c̃vv(⇧) =

⇥ +⇤

�⇤
dt exp(�i⇧t)cvv(t) = 2⇥{ĉvv(i⇧)}. (2.18)

From the Kubo relation D =
�⇤

0 dt cvv(t) = ĉvv(0) one obtains the following expression

for the diffusion coefficient of the model,

D =
⇧v2⌃
�2

1

�⌅1 + (1� �)⌅2
. (2.19)

Using that the Laplace transformed VACF may be written in the form ĉvv(s) = ⇧v2⌃(s +

M̂ (1)
v (s))�1, where M̂ (1)

v (s) is the Laplace transform of the corresponding first order mem-

ory function, one sees that the diffusion coefficient may be written in the alternative form

D =
⇧v2⌃
⇥v

, (2.20)

where ⇥v is the friction constant, which is defined as

⇥v =

⇥ ⇤

0

dtM (1)
v (t). (2.21)

Here one can make use of the identity

M (1)
v (t) = M (2)(0, t), (2.22)

which follows from the time derivative of Eq. (2.12) and the fact that the VACF may be

expressed as cvv(t) = � limq⇥0 q�2�2
t Fs(q, t). With Ḟs(q, 0) = 0 and Ḟs(0, t) = 0, one obtains

ċvv(t) = �
⇥ t

0

d⌅M (2)(0, t� ⌅)cvv(⌅), (2.23)
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[1] V. Calandrini, G. Sutmann, A. Deriu, and G.R. Kneller, J. Chem. Phys., 125:236102, 2006.
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Resulting intermediate scattering function



Associated memory functions of prder 1 and 2
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