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6 1. LANGEVIN’S APPROACH TO BROWNIAN DYNAMICS

which has been proposed by Paul Langevin in 1908 [7]

Mv̇ = −αv + Fs(t) (I.1)

Here M is the mass of the particle, v its velocity, α is a friction constant, and
Fs(t) is a stochastic force. For a macroscopic sphere α can be expressed by the
radius of the particle and the viscosity η of the solvent:

α = 6πηa. (I.2)
The stochastic force is white noise with

�Fs�τ = 0 (I.3)
�Fs(t)Fs(0)�τ = 2kBTαδ(t). (I.4)

Here kB is the Boltzmann constant1, T is the temperature in Kelvin, and δ(t)
is the Dirac distribution 2. The brackets �. . .�τ indicate an average over time.
For two dynamical variables A and B one defines the mean of A and the time
correlation function of A and B through

�A(t0)�τ = lim
τ→∞

1

τ

� τ/2

−τ/2

dtA(t + t0), (I.5)

�A(t1)B(t0)�τ = lim
τ→∞

1

τ

� τ/2

−τ/2

dtA(t + t1)B(t + t0), (I.6)

respectively, where τ is the time interval in which the quantities A and B are
measured. If the system is close to thermodynamic equilibrium the mean value
�A(t0)�τ does not depend on t0 and the correlation function �A(t1)B(t0)�τ de-
pends only on the time difference t1 − t0.

Since Fs(t) is a stochastic force, it is not correlated with the velocity of the
particle at another time,

�v(0)Fs(t)�τ = 0. (I.7)
The equation expresses the fact that the characteristic time scales for a change
of the velocity of the Brownian particle and for a change of the forces exerted
by the surrounding solvent molecules are widely separated. In this context it is
worthwhile to discuss the somewhat “pathological” autocorrelation function
of the stochastic force, Fs(t). Using the definition of a time correlation function,
we write

�Fs(t1)Fs(t0)�τ = lim
τ→∞

1

τ

� τ/2

−τ/2

dt Fs(t + t1)Fs(t + t0),

keeping in mind that Fs(t) is white noise. In this case the average of Fs over
an arbitrarily small time interval will give zero, i.e.

� τ/2

−τ/2 dt Fs(t + t0) = 0 for

1kB = 1.380662 · 10−23 J/K.
2The Dirac distribution is normalised to one,

� +∞
−∞ dx δ(x) = 1 and

� +∞
−∞ dx δ(y − x)f(x) =

f(y) for an arbitrary function f .
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Equation of motion of a mesoscopic 
particle immersed in a solvent
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P. Langevin. Sur la théorie du mouvement brownien. C. Rendus Acad. Sci. Paris, 146:530–533, 1908.

Langevin equation - the historic article...
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Einstein thought that there was a “possible relation” 
between his probabilistic description of diffusion and 

Brownian motion which is decribed by Langevin’s 
stochastic equation of motion
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A. Einstein. Ann. Phys., 322(8), 1905.
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Perrin saw the relation....

dimanche 5 juin 2011



Annales de Chimie et de Physique, vol. 18, p. 5 (1909)
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At equilibrium

〈A(t1)B(t0)〉 = 〈A(t1 − t0)B(0)〉

〈A(t0)〉 = 〈A〉
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Velocity autocorrelation function 
(VACF)

Exponential relaxation

3. WIENER-KHINTCHINE THEOREM 7

any interval τ , and the same is true for the integral
� τ/2

−τ/2 dt Fs(t + t1)Fs(t + t0)

if t1 �= t0. If, however, t1 = t0, the product Fs(t + t1)Fs(t + t0) is always positive
and will not average to zero. This can be taken into account by writing

�Fs(t1)Fs(t0)�τ = lim
T→∞

1

T

� T/2

−T/2

dt Fs(t + t0)
2δ(t1 − t0) = C(t0)δ(t1 − t0).

In thermal equilibrium C does not depend of the choice of t0 and is thus a
constant. The relation C = 2kBTα will be justified later.

In the following we will consider the velocity autocorrelation function
(VACF) and its normalised form,

cvv(t) := �v(t)v(0)�τ , (I.8)

ψ(t) :=
�v(t)v(0)�τ

�v2�τ
. (I.9)

It is convenient to introduce the mass-weighted friction constant γ = α/M ,
which has the dimension 1/s in SI units and the stochastic acceleration fs(t) =
Fs(t)/M . With these definitions Eq. (I.1) takes the form

v̇ + γv = fs(t) (I.10)

Multiplying this equation by v(0) and averaging over t, one can derive a dif-
ferential equation for the VACF and its normalised form:

ψ̇ + γψ = 0 (I.11)

The important relation which leads to an independent differential equation for
the VACF is �v(0)fs(t)�τ = 0. The solution of (I.11) yields

ψ(t) = exp(−γt) (I.12)

with the initial condition ψ(0) = 1. The VACF of a Brownian particle is thus
an exponential function. Exponential relaxation with a single relaxation time
τ = γ−1 is characteristic for “slow”dynamical variables which are coupled to
many “fast” variables whose characteristic time scales are much shorter.

3. Wiener-Khintchine theorem

The Wiener-Khintchine theorem relies the Fourier spectrum of an autocor-
relation function to the Fourier spectrum of the corresponding dynamical vari-
able itself. In the following the Fourier transform of a function f and its inverse
are defined by

f̃(ω) =

� +∞

−∞
dt f(t) exp(−iωt), (I.13)

f(t) =
1

2π

� +∞

−∞
dt f̃(ω) exp(iωt). (I.14)
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Normalized Langevin 
equation
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FIGURE I.3. The normalised VACF ψ(t) of a a Brownian particle
and corresponding MSD.

6. The Langevin oscillator

6.1. Equation of motion. We consider now a Brownian particle which dif-
fuses under the influence of an external harmonic force, F (x) = −Kx. Here x
is the displacement of the Brownian particle with respect its equilibrium posi-
tion and K > 0 is the force constant describing the strength of the harmonic
force. The Langevin equation (I.1) reads thus

Mv̇ = −Kx − αv + Fs(t), K > 0, α > 0. (I.51)

The properties of the stochastic force are the same as for the freely diffusing
Brownian particle (see Eqs. (I.3) and (I.4)). For the following considerations it
is convenient to use the normalised form of (I.51),

ẍ + γẋ + ω2
0x = fs(t) (I.52)

where ω2
0 = K/M and γ = α/M . In the following we will again consider the

VACF and the MSD.

6.2. Velocity autocorrelation function. In order to derive an equation in-
volving the VACF only Eq. (I.52) is first rewritten as5

v̇ + γv + ω2
0

� t

0

dτv(τ) = fs(t).

Multiplication with v(0) and averaging over time yields

ċvv + γcvv + ω2
0

� t

0

dτcvv(τ) = 0,

since �v(0)f(t)�τ = 0.

5One may think that the integral could be avoided by a further differentiation, but this is
not so since the stochastic force is not a differentiable function.

fs(t) = Fs(t)/M

Separation of time scales 
between the fluctuating force 
and the velocity of the particle
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Wiener-Khintchine theorem
8 1. LANGEVIN’S APPROACH TO BROWNIAN DYNAMICS

FIGURE I.1. A rectangular window selects a sample of a given signal.

The Fourier transform of f exists if
� +∞

−∞
dt |f(t)| < ∞. (I.15)

The following equivalent notations will be used

f̃(ω) ≡ F{f(t), t, ω}, (I.16)
f(t) = F−1{f̃(ω), ω, t}. (I.17)

The correlation of two functions f(t) and g(t)3 is defined by

(f ◦ g)(t) =

� +∞

−∞
dτ f(t + τ)g∗(τ), (I.18)

where the asterisk denotes the complex conjugate. One shows easily that

F{(f ◦ g)(t), t, ω} = f̃(ω)g̃∗(ω). (I.19)
Consider now a sample vτ (t) of v(t) which verifies vτ (t) = v(t) if |t| ≤ τ/2

and vτ (t) = 0 si |t| > τ/2. If one introduces the rectangular window 4

Wτ (t) = Θ
�
t +

τ

2

�
−Θ

�
t− τ

2

�
, (I.20)

3Not to be confused with the correlation function of f(t) and g(t) in a statistical sense, as
introduced above.

4Θ(t) is the Heaviside step function, Θ(t) = 1 si t ≥ 0 and Θ(t) = 0 if t < 0.

Finite sample of signal

3. WIENER-KHINTCHINE THEOREM 9

the sample vτ (t) is obtained by

vτ (t) = Wτ (t)v(t). (I.21)

The Figure I.1 illustrates this relation. Since

cvv(t) = lim
τ→∞

1

τ
(vτ ◦ vτ )(t). (I.22)

it follows from the correlation theorem (I.19) that

c̃vv(ω) = lim
τ→∞

1

τ
|ṽτ (ω)|2 (I.23)

This is the Wiener-Khintchine theorem [8].
The Wiener-Khintchine theorem allows to derive a relation between the

autocorrelation functions of the velocity v(t) and the random acceleration fs(t).
To obtain this relation we multiply first the equation of motion (I.10) by the
window function Wτ (t). Since Wτdv/dt = d(Wτv)/dt− vdWτ/dt and vτ ≡ Wτv
one obtains

v̇τ − vẆτ (t) + γvτ = Wτ (t)fs(t)� �� �
fs,τ (t)

, (I.24)

where the derivative of Wτ (t) is given by

Ẇτ (t) = δ(t + τ/2)− δ(t− τ/2). (I.25)

Formally, the equation of motion (I.24) can be solved by Fourier transforma-
tion. Using that F{df(t)/dt, t, ω} = iωF{f(t), t, ω}, if the inverse Fourier trans-
form exists, too, one finds

ṽτ (ω) =
f̃s,τ (ω)

iω + γ
+

1

iω + γ

�
v(−τ/2) exp(iωτ/2)− v(τ/2) exp(−iωτ/2)

�
.

One can now use that |v(t)| < ∞ at any time t and that beacause of the
Wiener-Khintchine theorem limτ→∞(1/τ)|f̃s,τ (ω)|2 = c̃fsfs(ω) = 2kBTγ. Here
c̃fsfs(ω) is the Fourier transform of the autocorrelation function of fs(t),

cfsfs(t) := �fs(0)fs(t)�τ = 2kBTγδ(t). (I.26)

This shows that |f̃s,τ (ω)| ∝
√

τ as τ → ∞. Consequently the terms
limτ→∞(1/τ)| {. . .} |2 and limτ→∞(1/τ) {. . .} f̃s,τ (ω) vanish in the limit τ → ∞,
such that

lim
τ→∞

1

τ
|ṽτ (ω)|2 =

limτ→∞
1
τ

���f̃s,τ (ω)
���
2

γ2 + ω2
.

One finds thus from the Wiener-Khintchine theorem that

c̃vv(ω) =
c̃fsfs(ω)

γ2 + ω2
(I.27)

8 1. LANGEVIN’S APPROACH TO BROWNIAN DYNAMICS

FIGURE I.1. A rectangular window selects a sample of a given signal.

The Fourier transform of f exists if
� +∞

−∞
dt |f(t)| < ∞. (I.15)

The following equivalent notations will be used

f̃(ω) ≡ F{f(t), t, ω}, (I.16)
f(t) = F−1{f̃(ω), ω, t}. (I.17)

The correlation of two functions f(t) and g(t)3 is defined by

(f ◦ g)(t) =

� +∞

−∞
dτ f(t + τ)g∗(τ), (I.18)

where the asterisk denotes the complex conjugate. One shows easily that

F{(f ◦ g)(t), t, ω} = f̃(ω)g̃∗(ω). (I.19)
Consider now a sample vτ (t) of v(t) which verifies vτ (t) = v(t) if |t| ≤ τ/2

and vτ (t) = 0 si |t| > τ/2. If one introduces the rectangular window 4

Wτ (t) = Θ
�
t +

τ

2

�
−Θ

�
t− τ

2

�
, (I.20)

3Not to be confused with the correlation function of f(t) and g(t) in a statistical sense, as
introduced above.

4Θ(t) is the Heaviside step function, Θ(t) = 1 si t ≥ 0 and Θ(t) = 0 if t < 0.
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any interval τ , and the same is true for the integral
� τ/2

−τ/2 dt Fs(t + t1)Fs(t + t0)

if t1 �= t0. If, however, t1 = t0, the product Fs(t + t1)Fs(t + t0) is always positive
and will not average to zero. This can be taken into account by writing

�Fs(t1)Fs(t0)�τ = lim
T→∞

1

T

� T/2

−T/2

dt Fs(t + t0)
2δ(t1 − t0) = C(t0)δ(t1 − t0).

In thermal equilibrium C does not depend of the choice of t0 and is thus a
constant. The relation C = 2kBTα will be justified later.

In the following we will consider the velocity autocorrelation function
(VACF) and its normalised form,

cvv(t) := �v(t)v(0)�τ , (I.8)

ψ(t) :=
�v(t)v(0)�τ

�v2�τ
. (I.9)

It is convenient to introduce the mass-weighted friction constant γ = α/M ,
which has the dimension 1/s in SI units and the stochastic acceleration fs(t) =
Fs(t)/M . With these definitions Eq. (I.1) takes the form

v̇ + γv = fs(t) (I.10)

Multiplying this equation by v(0) and averaging over t, one can derive a dif-
ferential equation for the VACF and its normalised form:

ψ̇ + γψ = 0 (I.11)

The important relation which leads to an independent differential equation for
the VACF is �v(0)fs(t)�τ = 0. The solution of (I.11) yields

ψ(t) = exp(−γt) (I.12)

with the initial condition ψ(0) = 1. The VACF of a Brownian particle is thus
an exponential function. Exponential relaxation with a single relaxation time
τ = γ−1 is characteristic for “slow”dynamical variables which are coupled to
many “fast” variables whose characteristic time scales are much shorter.

3. Wiener-Khintchine theorem

The Wiener-Khintchine theorem relies the Fourier spectrum of an autocor-
relation function to the Fourier spectrum of the corresponding dynamical vari-
able itself. In the following the Fourier transform of a function f and its inverse
are defined by

f̃(ω) =

� +∞

−∞
dt f(t) exp(−iωt), (I.13)

f(t) =
1

2π

� +∞

−∞
dt f̃(ω) exp(iωt). (I.14)

8 1. LANGEVIN’S APPROACH TO BROWNIAN DYNAMICS

FIGURE I.1. A rectangular window selects a sample of a given signal.

The Fourier transform of f exists if
� +∞

−∞
dt |f(t)| < ∞. (I.15)

The following equivalent notations will be used

f̃(ω) ≡ F{f(t), t, ω}, (I.16)
f(t) = F−1{f̃(ω), ω, t}. (I.17)

The correlation of two functions f(t) and g(t)3 is defined by

(f ◦ g)(t) =

� +∞

−∞
dτ f(t + τ)g∗(τ), (I.18)

where the asterisk denotes the complex conjugate. One shows easily that

F{(f ◦ g)(t), t, ω} = f̃(ω)g̃∗(ω). (I.19)
Consider now a sample vτ (t) of v(t) which verifies vτ (t) = v(t) if |t| ≤ τ/2

and vτ (t) = 0 si |t| > τ/2. If one introduces the rectangular window 4

Wτ (t) = Θ
�
t +

τ

2

�
−Θ

�
t− τ

2

�
, (I.20)

3Not to be confused with the correlation function of f(t) and g(t) in a statistical sense, as
introduced above.

4Θ(t) is the Heaviside step function, Θ(t) = 1 si t ≥ 0 and Θ(t) = 0 if t < 0.

3. WIENER-KHINTCHINE THEOREM 9

the sample vτ (t) is obtained by

vτ (t) = Wτ (t)v(t). (I.21)

The Figure I.1 illustrates this relation. Since

cvv(t) = lim
τ→∞

1

τ
(vτ ◦ vτ )(t). (I.22)

it follows from the correlation theorem (I.19) that

c̃vv(ω) = lim
τ→∞

1

τ
|ṽτ (ω)|2 (I.23)

This is the Wiener-Khintchine theorem [8].
The Wiener-Khintchine theorem allows to derive a relation between the

autocorrelation functions of the velocity v(t) and the random acceleration fs(t).
To obtain this relation we multiply first the equation of motion (I.10) by the
window function Wτ (t). Since Wτdv/dt = d(Wτv)/dt− vdWτ/dt and vτ ≡ Wτv
one obtains

v̇τ − vẆτ (t) + γvτ = Wτ (t)fs(t)� �� �
fs,τ (t)

, (I.24)

where the derivative of Wτ (t) is given by

Ẇτ (t) = δ(t + τ/2)− δ(t− τ/2). (I.25)

Formally, the equation of motion (I.24) can be solved by Fourier transforma-
tion. Using that F{df(t)/dt, t, ω} = iωF{f(t), t, ω}, if the inverse Fourier trans-
form exists, too, one finds

ṽτ (ω) =
f̃s,τ (ω)

iω + γ
+

1

iω + γ

�
v(−τ/2) exp(iωτ/2)− v(τ/2) exp(−iωτ/2)

�
.

One can now use that |v(t)| < ∞ at any time t and that beacause of the
Wiener-Khintchine theorem limτ→∞(1/τ)|f̃s,τ (ω)|2 = c̃fsfs(ω) = 2kBTγ. Here
c̃fsfs(ω) is the Fourier transform of the autocorrelation function of fs(t),

cfsfs(t) := �fs(0)fs(t)�τ = 2kBTγδ(t). (I.26)

This shows that |f̃s,τ (ω)| ∝
√

τ as τ → ∞. Consequently the terms
limτ→∞(1/τ)| {. . .} |2 and limτ→∞(1/τ) {. . .} f̃s,τ (ω) vanish in the limit τ → ∞,
such that

lim
τ→∞

1

τ
|ṽτ (ω)|2 =

limτ→∞
1
τ

���f̃s,τ (ω)
���
2

γ2 + ω2
.

One finds thus from the Wiener-Khintchine theorem that

c̃vv(ω) =
c̃fsfs(ω)

γ2 + ω2
(I.27)
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It must be emphasized that the above function is a particular solution of the
differential equation (I.24), which can be identified with the the Fourier trans-
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|ṽτ (ω)|2 (I.23)

This is the Wiener-Khintchine theorem [8].
The Wiener-Khintchine theorem allows to derive a relation between the

autocorrelation functions of the velocity v(t) and the random acceleration fs(t).
To obtain this relation we multiply first the equation of motion (I.10) by the
window function Wτ (t). Since Wτdv/dt = d(Wτv)/dt− vdWτ/dt and vτ ≡ Wτv
one obtains
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|ṽτ (ω)|2 =

limτ→∞
1
τ

���f̃s,τ (ω)
���
2

γ2 + ω2
.

3. WIENER-KHINTCHINE THEOREM 9

the sample vτ (t) is obtained by

vτ (t) = Wτ (t)v(t). (I.21)

The Figure I.1 illustrates this relation. Since

cvv(t) = lim
τ→∞

1

τ
(vτ ◦ vτ )(t). (I.22)

it follows from the correlation theorem (I.19) that

c̃vv(ω) = lim
τ→∞

1

τ
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One finds thus from the Wiener-Khintchine theorem that

c̃vv(ω) =
c̃fsfs(ω)

γ2 + ω2
(I.27)

4. Fluctuation and dissipation

We assume now that the amplitude of the stochastic acceleration (or force)
was not yet known and write

cfsfs(t) := Cδ(t). (I.28)

To fix the constant C one can use that the VACF at time t = 0 is just the mean
square velocity, cvv(0) = �v2�τ , and that the latter is obtained from equilibrium
thermodynamics,

�v2�τ =

� +∞

−∞
dv v2peq(v) =

kBT

M
, (I.29)

where peq(v) is the Maxwell distribution,

peq(v) =

�
M

2πkBT
exp

�
− v2

2MkBT

�
.

Relation (I.29) is valid for any particle in thermodynamic equilibrium with its
environment, and not only for a Brownian particle. Using the relations (I.8),
(I.9) and (I.12) one can thus write

cvv(t) =
kBT

M
exp(−γt) (I.30)

The next step is to evaluate expression (I.27) at ω = 0, which yields

c̃vv(0) =
c̃fsfs(0)

γ2
.

Since v(t) is stationary, one has cvv(t) = cvv(−t), such that

c̃vv(0) =

� +∞

−∞
cvv(|t|) =

2kBT

Mγ
.

On the other hand one has

c̃fsfs(0) =

� +∞

−∞
cfsfs(t) = C,

and therefore
C =

2γkBT

M
. (I.31)

Re-introducing the stochastic force Fs(t) = Mfs(t) and the definition γ = α/M
one retrieves thus relation (I.4), which we write here as

�Fs(0)Fs(t)�τ = 2kBTMγδ(t) (I.32)

Wτ (t)
�
v̇(t) + γv(t)

�
= Wτ (t)fs(t)
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window function Wτ (t). Since Wτdv/dt = d(Wτv)/dt− vdWτ/dt and vτ ≡ Wτv
one obtains

v̇τ − vẆτ (t) + γvτ = Wτ (t)fs(t)� �� �
fs,τ (t)

, (I.24)

where the derivative of Wτ (t) is given by

Ẇτ (t) = δ(t + τ/2)− δ(t− τ/2). (I.25)

Formally, the equation of motion (I.24) can be solved by Fourier transforma-
tion. Using that F{df(t)/dt, t, ω} = iωF{f(t), t, ω}, if the inverse Fourier trans-
form exists, too, one finds

ṽτ (ω) =
f̃s,τ (ω)

iω + γ
+

1

iω + γ

�
v(−τ/2) exp(iωτ/2)− v(τ/2) exp(−iωτ/2)

�
.

It must be emphasized that the above function is a particular solution of the
differential equation (I.24), which can be identified with the the Fourier trans-
form of the stationary solution, which is obtained if all transient components
induced by the initial condition have died out.

One can now use that |v(t)| < ∞ at any time t and that beacause of
the Wiener-Khintchine theorem limτ→∞(1/τ)|f̃s,τ (ω)|2 = c̃fsfs(ω) = 2kBTγ/M .
Here c̃fsfs(ω) is the Fourier transform of the autocorrelation function of fs(t),

cfsfs(t) := �fs(0)fs(t)�τ = 2kBTγδ(t). (I.26)

This shows that |f̃s,τ (ω)| ∝
√

τ as τ → ∞. Consequently the terms
limτ→∞(1/τ)| {. . .} |2 and limτ→∞(1/τ) {. . .} f̃s,τ (ω) vanish in the limit τ → ∞,
such that

lim
τ→∞

1

τ
|ṽτ (ω)|2 =

limτ→∞
1
τ

���f̃s,τ (ω)
���
2

γ2 + ω2
.

Equation of motion
for vτ (t) = Wτ (t)v(t)
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10 1. LANGEVIN’S APPROACH TO BROWNIAN DYNAMICS

One finds thus from the Wiener-Khintchine theorem that

c̃vv(ω) =
c̃fsfs(ω)

γ2 + ω2
(I.27)

4. Fluctuation and dissipation

We assume now that the amplitude of the stochastic acceleration (or force)
was not yet known and write

cfsfs(t) := Cδ(t). (I.28)

To fix the constant C one can use that the VACF at time t = 0 is just the mean
square velocity, cvv(0) = �v2�τ , and that the latter is obtained from equilibrium
thermodynamics,

�v2�τ =

� +∞

−∞
dv v2peq(v) =

kBT

M
, (I.29)

where peq(v) is the Maxwell distribution,

peq(v) =

�
M

2πkBT
exp

�
− v2

2MkBT

�
.

Relation (I.29) is valid for any particle in thermodynamic equilibrium with its
environment, and not only for a Brownian particle. Using the relations (I.8),
(I.9) and (I.12) one can thus write

cvv(t) =
kBT

M
exp(−γt) (I.30)

The next step is to evaluate expression (I.27) at ω = 0, which yields

c̃vv(0) =
c̃fsfs(0)

γ2
.

Since v(t) is stationary, one has cvv(t) = cvv(−t), such that

c̃vv(0) =

� +∞

−∞
cvv(|t|) =

2kBT

Mγ
.

On the other hand one has

c̃fsfs(0) =

� +∞

−∞
cfsfs(t) = C,

and therefore
C =

2γkBT

M
. (I.31)

Re-introducing the stochastic force Fs(t) = Mfs(t) and the definition γ = α/M
one retrieves thus relation (I.4), which we write here as

�Fs(0)Fs(t)�τ = 2kBTMγδ(t) (I.32)
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c̃fsfs
(0) =

2kBTγ

M ✓
Relation between fluctuation (c̃fsfs(0)) and dissipation (γ)
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Fluctuation and dissipation (II)
4. FLUCTUATION AND DISSIPATION 11

this last point, consider the instantaneous kinetic energy as a function of time.
To write it down we solve the Langevin equation (I.10) for v(t),

v(t) = v(0) exp(−γt) +

� t

0

dτ exp(−γ[t− τ ])fs(τ), (I.33)

where t ≥ 0. The solution is easily obtained with Laplace transform tech-
niques, which will be introduced later. Here we need just the result (I.33).
From the general quadratic form Ekin = Mv2/2 for the kinetic energy we de-
duce that

Ekin(t) =
1

2
Mv(0)2 exp(−2γt) + Mv(0) exp(−γt)

� t

0

dτ exp(−γ[t− τ ])fs(τ)

+
M

2

� t

0

dτ

� t

0

dτ � exp(−γ[2t− τ − τ �])fs(τ)fs(τ
�).

The concrete form of the kinetic energy profile of the Brownian particle de-
pends on its initial velocity, v0, and on the time evolution of fs(t). Since the
latter is a highly irregular function, which fluctuates around zero, it makes
sense to average over all possible realizations, in order to obtain the systematic
evolution of Ekin(t). This type of average will be discussed later in more detail.
If the average of different realizations of fs(t) is denoted by �. . .� – without the
index “τ” denoting a time average – it follows that

�Ekin(t)� =
1

2
Mv(0)2 exp(−2γt)+Mv(0) exp(−γt)

� t

0

dτ exp(−γ[t−τ ])�fs(τ)�

+
M

2

� t

0

dτ

� t

0

dτ � exp(−γ[2t− τ − τ �])�fs(τ)fs(τ
�)�.

Supposing that the so-called ergodic hypothesis is fulfilled, which says that
ensemble averages equal the corresponding time averages, one has �fs(τ)� =
�fs(τ)�τ = 0 and �fs(τ)fs(τ �)�τ = 2kBTγ/Mδ(τ − τ �), which leads to

�Ekin(t)� =
1

2
Mv(0)2 exp(−2γt) +

kBT

2
(1− exp[−2γt]) (I.34)

In the limit t → ∞ the kinetic energy approaches thus on average the cor-
rect value kBT/2. One notices that the calculation of the average kinetic en-
ergy as a function of time represents an alternative route to the determina-
tion of the amplitude of the stochastic force in the Langevin equation. Writing
�fs(τ)fs(τ �)�τ = Cδ(τ − τ �), the constant C can be fixed by the requirement
limt→∞�Ekin(t)� = kBT/2.
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For each initial velocity and each realization of the 
random force one obtains a different profile for the 
kinetic energy.
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〈fs(τ)〉 = 〈fs(τ)〉τ = 0

lim
t→∞

Ekin(t) =
kBT

2

Average over the realizations of the random force

〈fs(τ)fs(τ
′)〉 = 2kBTγ/Mδ(τ − τ ′)
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Mean square displacement (MSD)

12 1. LANGEVIN’S APPROACH TO BROWNIAN DYNAMICS

5. Mean square displacement

5.1. Definition and relation with the VACF. The mean square displace-
ment (MSD) of a particle is defined by the relation

W (t) := �(x(t)− x(0))2�τ (I.35)

if one considers a displacement in the direction of the x-axis. Since

x(t)− x(0) =

� t

0

dt� v(t�),

one can write

W (t) =

� t

0

dt�
� t

0

dt�� �v(t�)v(t��)�τ .

Using the definition of the VACF and supposing that v(t) is described by a
stationary stochastic process, such that its autocorrelation function depends
only on time differences, it follows that the MSD is related to the VACF,

W (t) =

� t

0

dt�
� t

0

dt�� cvv(t
� − t��).

A more useful expression can be obtained by introducing the new variables

u = t� − t��,

v = t��,

for which the corresponding Jacobi matrix reads

J =

�
∂u
∂t�

∂u
∂t��

∂v
∂t�

∂v
∂t��

�
=

�
1 −1

0 1

�
.

Since the determinant of J equals one, |J| = 1, the volume element is trans-
formed as dudv = |J|dt�dt�� = dt�dt��. In the new variables u and v the MSD thus
takes the form

W (t) =

� t

0

dv

� t−v

−v

du cvv(u),

and Fig. I.2 shows that one may also write

W (t) =

� t

0

du

� t−u

0

dv cvv(u)
� �� �

triangle 1

+

� 0

−t

du

� t

−u

dv cvv(u)

� �� �
triangle 2

.

With a new variable change u → −u for the integration over triangle 2 one
finds

W (t) = 2

� t

0

du (t− u)cvv(u) (I.36)
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Using the normalised form of the VACF, this may be written as

W (t) =
2kBT

M

� t

0

du (t− u)ψ(u) (I.37)

5.2. Mean square displacement for a Brownian particle. In the preceding
section we have derived a relation between the MSD and the VACF.

Relation (I.37) will now be used to derive the MSD for the concrete case of
a freely diffusing Brownian particle. For this purpose it is very convenient to
work with the Laplace transform. For an arbitrary function f(t) = Θ(t)f(t) the
Laplace transform and its inverse and its inverse are defined by

f̂(s) =

� ∞

0

dt exp(−st)f(t) (I.38)

f(t) =
1

2πi

�

C

ds f̂(s) exp(−st). (I.39)

The Laplace transform of f(t) exists if one can find a constant a > 0 such that
|f(t)| < exp(at). The variable s must be chosen such that �{s} > a. The
contour C in relation (I.39) includes all singularities of f̂(s). In many cases one
uses the residue method to obtain f(t) from relation (I.39). In some cases the
notations

f̂(s) ≡ L{f(t), t, s}, (I.40)
f(t) = L−1{f̂(s), s, t}. (I.41)

will also be used.
Expression (I.37) shows that the MSD is formally proportional to a con-

volution of the functions f(t) = t and g(t) = ψ(t). The general form for the
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Stationarity of v(t)
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5.2. Mean square displacement for a Brownian particle. In the preceding
section we have derived a relation between the MSD and the VACF.

Relation (I.37) will now be used to derive the MSD for the concrete case of
a freely diffusing Brownian particle. For this purpose it is very convenient to
work with the Laplace transform. For an arbitrary function f(t) = Θ(t)f(t) the
Laplace transform and its inverse and its inverse are defined by
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The Laplace transform of f(t) exists if one can find a constant a > 0 such that
|f(t)| < exp(at). The variable s must be chosen such that �{s} > a. The
contour C in relation (I.39) includes all singularities of f̂(s). In many cases one
uses the residue method to obtain f(t) from relation (I.39). In some cases the
notations

f̂(s) ≡ L{f(t), t, s}, (I.40)
f(t) = L−1{f̂(s), s, t}. (I.41)

will also be used.
Expression (I.37) shows that the MSD is formally proportional to a con-

volution of the functions f(t) = t and g(t) = ψ(t). The general form for the
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convolution integral is

(f ∗ g)(t) :=

� t

0

dτ f(t− τ)g(τ), (I.42)

where f(t) = Θ(t)f(t) and g(t) = Θ(t)g(t). It is easy to prove that

L{(f ∗ g)(t), t, s} = f̂(s)ĝ(s). (I.43)

Applying the above convolution theorem to relation (I.37) yields thus

Ŵ (s) =
2kBT

M

ψ̂(s)

s2
, (I.44)

since L{t, t, s} = 1/s2. For a freely diffusing Brownian particle we have ψ(t) =
exp(−γt), and the corresponding Laplace transform is given by

ψ̂(s) =
1

s + γ
. (I.45)

Inserting the above expression into (I.44) yields thus

Ŵ (s) =
2kBT

M

1

s2(s + γ)
(I.46)

and an inverse Laplace transform leads to the MSD in the time domain,

W (t) =
2kBT

M

�
exp(−γt)− 1 + γt

γ2

�
(I.47)

For times much longer than the inverse relaxation rate, t � γ−1, the MSD
grows linearly with time

W (t) ≈ 2Dt (I.48)

Here D is the diffusion constant

D =
kBT

Mγ
=

kBT

α
(I.49)

and the above relation is called the Einstein relation. Fig I.3 illustrates the form
of the MSD for a freely diffusing Brownian particle. The linear growth with
time is attained for t � γ−1. If, in contrast, t � γ−1 one can approximate
exp(−γt) ≈ 1− γt + (γt)2/2. In this case one finds

W (t) ≈ �v2�τ t2 =
kBT

M
t2 (I.50)

which shows that the MSD grows ∝ t2. Fig I.3. shows indeed a parabolic form
of the MSD in the initial phase.
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Ŵ (s) =
2kBT

M

1

s2(s + γ)
(I.46)

and an inverse Laplace transform leads to the MSD in the time domain,

W (t) =
2kBT

M

�
exp(−γt)− 1 + γt

γ2

�
(I.47)

For times much longer than the inverse relaxation rate, t � γ−1, the MSD
grows linearly with time

W (t) ≈ 2Dt (I.48)

Here D is the diffusion constant

D =
kBT

Mγ
=

kBT

α
(I.49)

and the above relation is called the Einstein relation. Fig I.3 illustrates the form
of the MSD for a freely diffusing Brownian particle. The linear growth with
time is attained for t � γ−1. If, in contrast, t � γ−1 one can approximate
exp(−γt) ≈ 1− γt + (γt)2/2. In this case one finds

W (t) ≈ �v2�τ t2 =
kBT

M
t2 (I.50)

which shows that the MSD grows ∝ t2. Fig I.3. shows indeed a parabolic form
of the MSD in the initial phase.

Application :

Residue theorem

*

*
W (t) =

kBT

M

�
lim
s→0

d

ds

exp(st)
s + γ

+ lim
s→−γ

exp(st)
s2

�
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For times much longer than the inverse relaxation rate, t � γ−1, the MSD
grows linearly with time

W (t) ≈ 2Dt (I.48)

Here D is the diffusion constant

D =
kBT

Mγ
=

kBT

α
(I.49)

and the above relation is called the Einstein relation. Fig I.3 illustrates the form
of the MSD for a freely diffusing Brownian particle. The linear growth with
time is attained for t � γ−1. If, in contrast, t � γ−1 one can approximate
exp(−γt) ≈ 1− γt + (γt)2/2. In this case one finds

W (t) ≈ �v2�τ t2 =
kBT

M
t2 (I.50)

which shows that the MSD grows ∝ t2. Fig I.3. shows indeed a parabolic form
of the MSD in the initial phase.
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Ŵ (s) =
2kBT

M

1

s2(s + γ)
(I.46)

and an inverse Laplace transform leads to the MSD in the time domain,

W (t) =
2kBT

M

�
exp(−γt)− 1 + γt

γ2

�
(I.47)

For times much longer than the inverse relaxation rate, t � γ−1, the MSD
grows linearly with time

W (t) ≈ 2Dt (I.48)

Here D is the diffusion constant

D =
kBT

Mγ
=

kBT

α
(I.49)

and the above relation is called the Einstein relation. Fig I.3 illustrates the form
of the MSD for a freely diffusing Brownian particle. The linear growth with
time is attained for t � γ−1. If, in contrast, t � γ−1 one can approximate
exp(−γt) ≈ 1− γt + (γt)2/2. In this case one finds

W (t) ≈ �v2�τ t2 =
kBT

M
t2 (I.50)

which shows that the MSD grows ∝ t2. Fig I.3. shows indeed a parabolic form
of the MSD in the initial phase.

Diffusion 
constant

Diffusion

dimanche 5 juin 2011



Langevin oscillator

Harmonic force

6. THE LANGEVIN OSCILLATOR 15

FIGURE I.3. The normalised VACF ψ(t) of a a Brownian particle
and corresponding MSD.

6. The Langevin oscillator

6.1. Equation of motion. We consider now a Brownian particle which dif-
fuses under the influence of an external harmonic force, F (x) = −Kx. Here x
is the displacement of the Brownian particle with respect its equilibrium posi-
tion and K > 0 is the force constant describing the strength of the harmonic
force. The Langevin equation (I.1) reads thus

Mv̇ = −Kx − αv + Fs(t), K > 0, α > 0. (I.51)

The properties of the stochastic force are the same as for the freely diffusing
Brownian particle (see Eqs. (I.3) and (I.4)). For the following considerations it
is convenient to use the normalised form of (I.51),

ẍ + γẋ + ω2
0x = fs(t) (I.52)

where ω2
0 = K/M and γ = α/M . In the following we will again consider the

VACF and the MSD.

6.2. Velocity autocorrelation function. In order to derive an equation in-
volving the VACF only Eq. (I.52) is first rewritten as5

v̇ + γv + ω2
0

� t

0

dτv(τ) = fs(t).

Multiplication with v(0) and averaging over time yields

ċvv + γcvv + ω2
0

� t

0

dτcvv(τ) = 0,

since �v(0)f(t)�τ = 0.

5One may think that the integral could be avoided by a further differentiation, but this is
not so since the stochastic force is not a differentiable function.
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which has been proposed by Paul Langevin in 1908 [7]

Mv̇ = −αv + Fs(t) (I.1)

Here M is the mass of the particle, v its velocity, α is a friction constant, and
Fs(t) is a stochastic force. For a macroscopic sphere α can be expressed by the
radius of the particle and the viscosity η of the solvent:

α = 6πηa. (I.2)
The stochastic force is white noise with

�Fs�τ = 0 (I.3)
�Fs(t)Fs(0)�τ = 2kBTαδ(t). (I.4)

Here kB is the Boltzmann constant1, T is the temperature in Kelvin, and δ(t)
is the Dirac distribution 2. The brackets �. . .�τ indicate an average over time.
For two dynamical variables A and B one defines the mean of A and the time
correlation function of A and B through

�A(t0)�τ = lim
τ→∞

1

τ

� τ/2

−τ/2

dtA(t + t0), (I.5)

�A(t1)B(t0)�τ = lim
τ→∞

1

τ

� τ/2

−τ/2

dtA(t + t1)B(t + t0), (I.6)

respectively, where τ is the time interval in which the quantities A and B are
measured. If the system is close to thermodynamic equilibrium the mean value
�A(t0)�τ does not depend on t0 and the correlation function �A(t1)B(t0)�τ de-
pends only on the time difference t1 − t0.

Since Fs(t) is a stochastic force, it is not correlated with the velocity of the
particle at another time,

�v(0)Fs(t)�τ = 0. (I.7)
The equation expresses the fact that the characteristic time scales for a change
of the velocity of the Brownian particle and for a change of the forces exerted
by the surrounding solvent molecules are widely separated. In this context it is
worthwhile to discuss the somewhat “pathological” autocorrelation function
of the stochastic force, Fs(t). Using the definition of a time correlation function,
we write

�Fs(t1)Fs(t0)�τ = lim
τ→∞

1

τ

� τ/2

−τ/2

dt Fs(t + t1)Fs(t + t0),

keeping in mind that Fs(t) is white noise. In this case the average of Fs over
an arbitrarily small time interval will give zero, i.e.

� τ/2

−τ/2 dt Fs(t + t0) = 0 for

1kB = 1.380662 · 10−23 J/K.
2The Dirac distribution is normalised to one,

� +∞
−∞ dx δ(x) = 1 and

� +∞
−∞ dx δ(y − x)f(x) =

f(y) for an arbitrary function f .
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fuses under the influence of an external harmonic force, F (x) = −Kx. Here x
is the displacement of the Brownian particle with respect its equilibrium posi-
tion and K > 0 is the force constant describing the strength of the harmonic
force. The Langevin equation (I.1) reads thus
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The properties of the stochastic force are the same as for the freely diffusing
Brownian particle (see Eqs. (I.3) and (I.4)). For the following considerations it
is convenient to use the normalised form of (I.51),

ẍ + γẋ + ω2
0x = fs(t) (I.52)

where ω2
0 = K/M and γ = α/M . In the following we will again consider the

VACF and the MSD.

6.2. Velocity autocorrelation function. In order to derive an equation in-
volving the VACF only Eq. (I.52) is first rewritten as5

v̇ + γv + ω2
0

� t

0

dτv(τ) = fs(t) (I.53)

Multiplication with v(0) and averaging over time yields

ċvv + γcvv + ω2
0

� t

0

dτcvv(τ) = 0 (I.54)

since �v(0)fs(t)�τ = 0.

5One may think that the integral could be avoided by a further differentiation, but this is
not so since the stochastic force is not a differentiable function.
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ẍ + γẋ + ω2
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This equation can be easily solved by Laplace transform. Using that
cvv(0) = kBT/M and that L{

� t

0 dτf(τ), t, s} = f̂(s)/s one obtains

ĉvv(s) =
kBT

M

s

s2 + γs + ω2
0

.

The denominator can be factorised,

ĉvv(s) =
kBT

M

s

(s− s1)(s− s2)
, (I.53)

where the poles s1,2 are

s1,2 = −γ

2
± iΩ, where Ω =

�
ω2

0 −
γ2

4
. (I.54)

The VACF is now obtained by inverse Laplace transform, using the contour
integral (I.53),

cvv(t) =
kBT

M
exp

�
−γt

2

� �
cos(Ωt)− γ

2Ω
sin(Ωt)

�
(I.55)

Two regimes must be distinguished. The underdamped regime is charac-
terised by γ < 2ω0, and the overdamped regime by γ > 2ω0. The case γ = 2ω0

is the critical limit for the passage from oscillatory behaviour to completely
non-periodic behaviour (see Fig. I.4).

6.3. Mean square displacement. The MSD is again calculated from the
Laplace transform of relation (I.36). Combining relations (I.44) and (I.53) one
obtains

Ŵ (s) =
2kBT

M

1

s(s− s1)(s− s2)
(I.56)

and a subsequent inverse Laplace transform leads to the MSD in the time do-
main

W (t) =
2kBT

Mω2
0

�
1− exp

�
−γt

2

� �
cos(Ωt) +

γ

2Ω
sin(Ωt)

��
(I.57)

In contrast to the freely diffusing Brownian particle the MSD approaches a
plateau value in the limit t→∞, independently of the dynamical regime,

lim
t→∞

W (t) =
2kBT

Mω2
0

(I.58)

If we define the time-dependent diffusion coefficient

D(t) =
1

2

dW (t)

dt
(I.59)

it follows that
lim
t→∞

D(t) = 0, (I.60)

VACF
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Laplace transform of relation (I.36). Combining relations (I.44) and (I.55) one
obtains

Ŵ (s) =
2kBT

M

1

s(s− s1)(s− s2)
(I.58)

and a subsequent inverse Laplace transform leads to the MSD in the time do-
main

W (t) =
2kBT

Mω2
0

�
1− exp

�
−γt

2

� �
cos(ω̃0t) +

γ

2ω̃0
sin(ω̃0t)

��
(I.59)

In contrast to the freely diffusing Brownian particle the MSD approaches a
plateau value in the limit t→∞, independently of the dynamical regime,

lim
t→∞

W (t) =
2kBT

Mω2
0

(I.60)

If we define the time-dependent diffusion coefficient

D(t) =
1

2

dW (t)

dt
(I.61)
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FIGURE I.4. The normalised VACF of a Langevin oscillator
and the corresponding MSD. The solid line corresponds to ω0 =
1, γ = 1/2 (underdamped) and the dashed line to ω = 1, γ = 3
(overdamped). The MSD is normalised to 2�x2�τ .

since W (t) approaches a plateau value for long times.
Since the MSD is confined in space one can write

W (t) = �[x(t)− x(0)]2�τ = �x2(t) + x2(0)− 2x(t)x(0)�τ = 2�x2�τ − 2�x(t)x(0)�τ ,

and since limt→∞�x(t)x(0)�τ = 0 one finds that

lim
t→∞

W (t) = 2�x2�τ . (I.61)

The position fluctuation is thus given by

�x2�τ =
kBT

Mω2
0

(I.62)

The Wiener-Khintchine theorem (I.23) shows that the Fourier spectrum of
the VACF represents a distribution of the kinetic energy as a function of angu-
lar frequency. One defines the density of states (DOS) through

g(ω) ≡ 2

π

� ∞

0

dt cos(ωt)ψ(t) (I.63)

With this definition it follows that the DOS is normalised to one,
� ∞

0

dω g(ω) = 1 (I.64)

Note that g(ω) = ψ̃(ω)/π.
It follows from definition (I.63) that g(ω) can be expressed by ψ̂(s)

g(ω) =
2

π
�{ψ̂(iω)}. (I.65)
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FIGURE I.5. DOS of a Langevin oscillator The solid line corre-
sponds to ω0 = 1, γ = 1/2 (underdamped) and the dashed line to
ω = 1, γ = 3 (overdamped).

Using (I.53) and (I.54) one finds that (see Fig. I.5)

g(ω) =
2

π

γω2

�
(ω − Ω)2 + γ2

4

��
(ω + Ω)2 + γ2

4

� , 2ω0 > γ (I.66)

in the underdamped case and that

g(ω) =
2

π

γω2

�
ω2 + (γ

2 − Ω)2
� �

ω2 + (γ
2 + Ω)2

� , 2ω0 < γ (I.67)

in the overdamped case. The aperiodic limit is characterised by Ω = 0, where

g(ω) =
2

π

16γω2

(γ2 + 4ω2)2
, 2ω0 = γ (I.68)

7. Some general properties of the mean square displacement

We have seen that the MSD for free Brownian motion has the properties
W (t) ∝ t if t → ∞ and W (t) ∝ t2 in the vicinity of t = 0. This is not a
particularity of the dynamical model under consideration, but follows from
general properties of the Laplace transformed VACF. Any VACF which fulfils

underdamped

overdamped
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in the overdamped case. The aperiodic limit is characterised by ω̃0 = 0, where

g(ω) =
2

π

16γω2

(γ2 + 4ω2)2
, 2ω0 = γ (I.70)
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in the underdamped case and that
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in the overdamped case. The aperiodic limit is characterised by ω̃0 = 0, where

g(ω) =
2

π

16γω2

(γ2 + 4ω2)2
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This equation can be easily solved by Laplace transform. Using that
cvv(0) = kBT/M and that L{

� t

0 dτf(τ), t, s} = f̂(s)/s one obtains

ĉvv(s) =
kBT

M

s

s2 + γs + ω2
0

.

The denominator can be factorised,

ĉvv(s) =
kBT

M

s

(s− s1)(s− s2)
, (I.53)

where the poles s1,2 are

s1,2 = −γ

2
± iΩ, where Ω =

�
ω2

0 −
γ2

4
. (I.54)

The VACF is now obtained by inverse Laplace transform, using the contour
integral (I.53),

cvv(t) =
kBT

M
exp

�
−γt

2

� �
cos(Ωt)− γ

2Ω
sin(Ωt)

�
(I.55)

Two regimes must be distinguished. The underdamped regime is charac-
terised by γ < 2ω0, and the overdamped regime by γ > 2ω0. The case γ = 2ω0

is the critical limit for the passage from oscillatory behaviour to completely
non-periodic behaviour (see Fig. I.4).

6.3. Mean square displacement. The MSD is again calculated from the
Laplace transform of relation (I.36). Combining relations (I.44) and (I.53) one
obtains

Ŵ (s) =
2kBT

M

1

s(s− s1)(s− s2)
(I.56)

and a subsequent inverse Laplace transform leads to the MSD in the time do-
main

W (t) =
2kBT

Mω2
0

�
1− exp

�
−γt

2

� �
cos(Ωt) +

γ

2Ω
sin(Ωt)

��
(I.57)

In contrast to the freely diffusing Brownian particle the MSD approaches a
plateau value in the limit t→∞, independently of the dynamical regime,

lim
t→∞

W (t) =
2kBT

Mω2
0

(I.58)

If we define the time-dependent diffusion coefficient

D(t) =
1

2

dW (t)

dt
(I.59)

it follows that
lim
t→∞

D(t) = 0, (I.60)

5. MEAN SQUARE DISPLACEMENT 13

FIGURE I.2. Integration domains for the variables (t�, t��) and (u, v).

Using the normalised form of the VACF, this may be written as

W (t) =
2kBT

M

� t

0

du (t− u)ψ(u) (I.37)

5.2. Mean square displacement for a Brownian particle. In the preceding
section we have derived a relation between the MSD and the VACF.

Relation (I.37) will now be used to derive the MSD for the concrete case of
a freely diffusing Brownian particle. For this purpose it is very convenient to
work with the Laplace transform. For an arbitrary function f(t) = Θ(t)f(t) the
Laplace transform and its inverse and its inverse are defined by

f̂(s) =

� ∞

0

dt exp(−st)f(t) (I.38)

f(t) =
1

2πi

�

C

ds f̂(s) exp(−st). (I.39)

The Laplace transform of f(t) exists if one can find a constant a > 0 such that
|f(t)| < exp(at). The variable s must be chosen such that �{s} > a. The
contour C in relation (I.39) includes all singularities of f̂(s). In many cases one
uses the residue method to obtain f(t) from relation (I.39). In some cases the
notations

f̂(s) ≡ L{f(t), t, s}, (I.40)
f(t) = L−1{f̂(s), s, t}. (I.41)

will also be used.
Expression (I.37) shows that the MSD is formally proportional to a con-

volution of the functions f(t) = t and g(t) = ψ(t). The general form for the
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FIGURE I.4. The normalised VACF of a Langevin oscillator
and the corresponding MSD. The solid line corresponds to ω0 =
1, γ = 1/2 (underdamped) and the dashed line to ω = 1, γ = 3
(overdamped). The MSD is normalised to 2�x2�τ .

since W (t) approaches a plateau value for long times.
Since the MSD is confined in space one can write

W (t) = �[x(t)− x(0)]2�τ = �x2(t) + x2(0)− 2x(t)x(0)�τ = 2�x2�τ − 2�x(t)x(0)�τ ,

and since limt→∞�x(t)x(0)�τ = 0 one finds that

lim
t→∞

W (t) = 2�x2�τ . (I.61)

The position fluctuation is thus given by

�x2�τ =
kBT

Mω2
0

(I.62)

The Wiener-Khintchine theorem (I.23) shows that the Fourier spectrum of
the VACF represents a distribution of the kinetic energy as a function of angu-
lar frequency. One defines the density of states (DOS) through

g(ω) ≡ 2

π

� ∞

0

dt cos(ωt)ψ(t) (I.63)

With this definition it follows that the DOS is normalised to one,
� ∞

0

dω g(ω) = 1 (I.64)

Note that g(ω) = ψ̃(ω)/π.
It follows from definition (I.63) that g(ω) can be expressed by ψ̂(s)

g(ω) =
2

π
�{ψ̂(iω)}. (I.65)
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This equation can be easily solved by Laplace transform. Using that
cvv(0) = kBT/M and that L{

� t

0 dτf(τ), t, s} = f̂(s)/s one obtains

ĉvv(s) =
kBT

M

s

s2 + γs + ω2
0

.

The denominator can be factorised,

ĉvv(s) =
kBT

M

s

(s− s1)(s− s2)
, (I.55)

where the poles s1,2 are

s1,2 = −γ

2
± iω̃0, where ω̃0 =

�
ω2

0 −
γ2

4
. (I.56)

The VACF is now obtained by inverse Laplace transform, using the contour
integral (I.55),

cvv(t) =
kBT

M
exp

�
−γt

2

� �
cos(ω̃0t)−

γ

2ω̃0
sin(ω̃0t)

�
(I.57)

Two regimes must be distinguished. The underdamped regime is charac-
terised by γ < 2ω0, and the overdamped regime by γ > 2ω0. The case γ = 2ω0

is the critical limit for the passage from oscillatory behaviour to completely
non-periodic behaviour (see Fig. I.4).

6.3. Mean square displacement. The MSD is again calculated from the
Laplace transform of relation (I.36). Combining relations (I.44) and (I.55) one
obtains

Ŵ (s) =
2kBT

M

1

s(s− s1)(s− s2)
(I.58)

and a subsequent inverse Laplace transform leads to the MSD in the time do-
main

W (t) =
2kBT

Mω2
0

�
1− exp

�
−γt

2

� �
cos(ω̃0t) +

γ

2ω̃0
sin(ω̃0t)

��
(I.59)

In contrast to the freely diffusing Brownian particle the MSD approaches a
plateau value in the limit t→∞, independently of the dynamical regime,

lim
t→∞

W (t) =
2kBT

Mω2
0

(I.60)

If we define the time-dependent diffusion coefficient

D(t) =
1

2

dW (t)

dt
(I.61)dimanche 5 juin 2011
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ψ̂(0) �= 0 leads to a pole of order 2 for Ŵ (s) at s = 0. Applying the residue
method to calculate W (t) one finds from (I.39) and (I.44)

W (t) =
2kBT

M
lim
s→0

d

ds

�
exp(st)ψ̂(s)

�
+ exponentially decaying terms,

if one assumes that Ŵ (s) is a rational function in s. In the limit t→∞ one has
thus always

W (t) ≈ 2kBT

M
ψ̂(0) t.

The definition (I.38) of the Laplace transform shows that

ψ̂(0) =

� ∞

0

dtψ(t). (I.71)

One can thus write
W (t) ≈ 2Dt (I.72)

where the diffusion constant is given by

D =
kBT

M

� ∞

0

dtψ(t) (I.73)

or, equivalently, by

D =

� ∞

0

dt cvv(t) (I.74)

If ψ̂(s) ∝ s in the limit s → 0, as in case of the Langevin oscillator, the
residue theorem yields

W (t) =
2kBT

M
lim
s→0

�
exp(st)

ψ̂(s)

s

�
+ exponentially decaying terms.

We assume again that Ŵ (s) is a rational function in s. It follows thus that

lim
t→∞

W (t) = const.

The diffusion constant is simply zero in this case, since D = kBT/M ψ̂(0) = 0.
The behaviour of the MSD in the limit t → 0 can be studied by using

Fourier transformed VACF. Since ψ(t) is an even function, the same is true
for its Fourier transform, and consequently

ψ(t) =
1

π

� ∞

0

dω cos(ωt)ψ̃(ω).

Inserting now relation (I.37) permits to write

W (t) =
2kBT

M

1

π

� ∞

0

dω ψ̃(ω)

� ∞

0

du (t− u) cos(ωu).

decaying terms
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Using the normalised form of the VACF, this may be written as
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5.2. Mean square displacement for a Brownian particle. In the preceding
section we have derived a relation between the MSD and the VACF.

Relation (I.37) will now be used to derive the MSD for the concrete case of
a freely diffusing Brownian particle. For this purpose it is very convenient to
work with the Laplace transform. For an arbitrary function f(t) = Θ(t)f(t) the
Laplace transform and its inverse and its inverse are defined by

f̂(s) =
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0

dt exp(−st)f(t) (I.38)

f(t) =
1

2πi

�

C

ds f̂(s) exp(−st). (I.39)

The Laplace transform of f(t) exists if one can find a constant a > 0 such that
|f(t)| < exp(at). The variable s must be chosen such that �{s} > a. The
contour C in relation (I.39) includes all singularities of f̂(s). In many cases one
uses the residue method to obtain f(t) from relation (I.39). In some cases the
notations

f̂(s) ≡ L{f(t), t, s}, (I.40)
f(t) = L−1{f̂(s), s, t}. (I.41)

will also be used.
Expression (I.37) shows that the MSD is formally proportional to a con-

volution of the functions f(t) = t and g(t) = ψ(t). The general form for the

W (t) =
1

2πi

∮
C

ds exp(st)
2kBT

M

ψ̂(s)

s2
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ψ̂(0) �= 0 leads to a pole of order 2 for Ŵ (s) at s = 0. Applying the residue
method to calculate W (t) one finds from (I.39) and (I.44)

W (t) =
2kBT

M
lim
s→0

d

ds

�
exp(st)ψ̂(s)

�
+ exponentially decaying terms,
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M
ψ̂(0) t.

The definition (I.38) of the Laplace transform shows that

ψ̂(0) =

� ∞

0
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where the diffusion constant is given by

D =
kBT

M

� ∞

0

dtψ(t) (I.73)

or, equivalently, by

D =

� ∞

0

dt cvv(t) (I.74)

If ψ̂(s) ∝ s in the limit s → 0, as in case of the Langevin oscillator, the
residue theorem yields

W (t) =
2kBT

M
lim
s→0

�
exp(st)

ψ̂(s)

s

�
+ exponentially decaying terms.

We assume again that Ŵ (s) is a rational function in s. It follows thus that

lim
t→∞

W (t) = const.

The diffusion constant is simply zero in this case, since D = kBT/M ψ̂(0) = 0.
The behaviour of the MSD in the limit t → 0 can be studied by using

Fourier transformed VACF. Since ψ(t) is an even function, the same is true
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“Kubo relation”
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FIGURE I.2. Integration domains for the variables (t�, t��) and (u, v).

Using the normalised form of the VACF, this may be written as

W (t) =
2kBT

M

� t

0

du (t− u)ψ(u) (I.37)

5.2. Mean square displacement for a Brownian particle. In the preceding
section we have derived a relation between the MSD and the VACF.

Relation (I.37) will now be used to derive the MSD for the concrete case of
a freely diffusing Brownian particle. For this purpose it is very convenient to
work with the Laplace transform. For an arbitrary function f(t) = Θ(t)f(t) the
Laplace transform and its inverse and its inverse are defined by

f̂(s) =

� ∞

0

dt exp(−st)f(t) (I.38)

f(t) =
1

2πi

�

C

ds f̂(s) exp(−st). (I.39)

The Laplace transform of f(t) exists if one can find a constant a > 0 such that
|f(t)| < exp(at). The variable s must be chosen such that �{s} > a. The
contour C in relation (I.39) includes all singularities of f̂(s). In many cases one
uses the residue method to obtain f(t) from relation (I.39). In some cases the
notations

f̂(s) ≡ L{f(t), t, s}, (I.40)
f(t) = L−1{f̂(s), s, t}. (I.41)

will also be used.
Expression (I.37) shows that the MSD is formally proportional to a con-

volution of the functions f(t) = t and g(t) = ψ(t). The general form for the

ψ(u) =
1

π

∫
∞

0

dω cos(ωu) g(ω)
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Since the integral over u yields
� ∞

0

du (t− u) cos(ωu) =
1− cos(ωt)

ω2

one finds that

W (t) =
2kBT

M

1

π

� ∞

0

dω

�
1− cos(ωt)

ω2

�
ψ̃(ω) (I.75)

Using defintion (I.65) for g(ω) instead of ψ̃(ω) one obtains the equivalent rep-
resentation

W (t) =
kBT

M

� ∞

0

dω

�
1− cos(ωt)

ω2

�
g(ω) (I.76)

These expressions allow to derive a formula for the behaviour of the MSD for
small times. In this case one can use the approximation cos(ωt) ≈ 1− (ωt)2/2,
which leads to

W (t) ≈ �v2�τ t2 =
kBT

M
t2 (I.77)

In the vicinity of t = 0 MSD grows thus proportionally to ∝ t2, independently
of the properties of the VACF. The relations (I.75) and (I.76) allow to draw the
important conclusion that most of the contributions to the MSD come from the
low frequency motions.

8. Generalised Langevin equation and memory functions

For two simple examples we have shown how the motion of a particle
can be described if the forces acting on it can be separated into determinis-
tic, “slow” forces and a “fast” random force, representing a surrounding fluid.
A closed differential equation describing the time evolution of the velocity au-
tocorrelation function could be derived on the basis of the assumption of a
separation of the time scales describing the velocity of the particle and the fast,
fluctuating random force, respectively. Here we follow Zwanzig and present
the derivation of generalized form of the Langevin equation, which can be es-
tablished without such an assumption, and which allows to write down an
equation of motion for time correlation functions in general [2]. The original
work has been performed in the 1960’s [9] and presentations in various text-
books have been given later (see for example [8, 10]).

8.1. Formal framework. To derive the generalized Langevin equation we
start with a Hamiltonian description of a system which consists of a tracer par-
ticle, whose dynamics will be followed, and the surrounding medium, whose
dynamics will not be explicitly considered. The dynamics of the system is

Large amplitude motions 
contribute the most to W(t).
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Relation between MSD and DOS
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Introducing the “generalized force”

f+(t) = exp(tQL)QLv (I.89)

one may write

(II) = f+(t) +

� t

0

dτ exp((t − τ)L)
(v,Lf+(τ))

(v, v)
v

= f+(t) +

� t

0

dτ
(v,Lf+(τ))

(v, v)
v(t − τ) = f+(t) −

� t

0

dτ
(Lv, f+(τ))

(v, v)
v(t − τ).

Here it has been used that the Liouville operator is anti-hermitean, (a,Lb) =
−(La, b), and that it commutes with scalar products of the form (a, b), which
are numbers. Using that Lv = v̇, we define the quantity

Ω =
(v̇, v)

(v, v)
(I.90)

and the memory function

κ(t) = θ(t)
(v̇, f+(t))

(v, v)
(I.91)

Equating (I) and (II), one obtains then the generalized Langevin equation,

v̇(t) + Ωv(t) +

� t

0

dτ κ(τ)v(t − τ) = f+(t). (I.92)

The unit step function introduced in (I.91) allows to interchange the memory
function and the velocity in the convolution integral appearing in (I.92)

v̇(t) + Ωv(t) +

� t

0

dτ κ(t − τ)v(τ) = f+(t) (I.93)

and emphasizes that memory effects imply causality.
As in the case of conventional Brownian dynamics, the force f+ is not cor-

related with the velocity, although it is not a random force at all. Writing

(v, f+(t)) = (v, exp(tQL)QLv) = (v,QL exp(tQL)v) = (Qv,L exp(tQL)v)

we see that
(v, f+(t)) = 0 (I.94)

on account of Qv = 0. The fact that v and f+ are not correlated allows to derive
a closed equation for the autocorrelation functions of v. Using that ċvv(t) =
�v(0)v̇(t)� = (v(0), v̇(t)) and taking the scalar product of (I.93), we obtain

ċvv(t) + Ωcvv(t) +

� t

0

dτ κ(t − τ)cvv(τ) = 0 (I.95)

〈v(0)f+(t)〉 = 0where
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�v(0)v̇(t)� = (v(0), v̇(t)) and taking the scalar product of (I.93), we obtain
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Derive an equation of motion for the 
correlation function
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Derive an exact equation of Langevin type
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described by a Hamiltonian, H(p, q), which depends on n generalized coor-
dinates, q = {q1, . . . , qn}, and n associated momenta, p = {p1, . . . , pn}. The
equation of motion for the full system read

q̇i =
∂H

∂pi
, (I.78)

ṗi = −
∂H

∂qi
. (I.79)

The variables (p, q) span the phase space of the system. For the formal consider-
ations it is convenient to introduce the Liouville operator,

L =
�

i

�
∂H

∂pi

∂

∂qi
−

∂H

∂qi

∂

∂pi

�
, (I.80)

which allows to write the time derivative of an arbitrary phase space variable
a(p, q, t) in the compact form

da

dt
=

∂a

∂t
+ La. (I.81)

Here it must be emphasized that a depends on time implicitly through (p, q) ≡
(p(t), q(t)). In the following we will consider phase space variables whic do not
explpcitly depend on time, a ≡ a(p, q), such that the differential equation (I.81)
may be formally integrated to give

a(t) = exp{tL}a(0). (I.82)

For the following considerations we introduce the scalar product of two phase
space functions, a and b, through

(a, b) = Z
−1

� �
d

n
pd

n
q exp(−βH(p, q))a∗(p, q)b(p, q), (I.83)

where β = 1/(kBT ) and Z is the partition function of the system,

Z =

� �
d

n
pd

n
q exp(−βH(p, q)). (I.84)

The time correlation of a and b may then be written as scalar product of a(t1)
and b(t2), where t1 and t2 are the points on the time axis to be correlated,

�a(t1)b(t2)� := (a(t1), b(t2)). (I.85)

Using relation (I.82) and that LH = 0 one finds easily that �a(t1)b(t2)� =
�a(t1 − t2)b(0)�. One obtains thus explicitly the time translational invariance
of correlation functions describing systems in thermal equilibrium. Using the
definition (I.83) for the scalar product of two phase space functions, we note
that (1, 1) = 1, �a� = (1, a), and that �|a|2� = (a, a).

Liouville operator

Dynamical variable
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(a, b) = Z
−1

� �
d

n
pd

n
q exp(−βH(p, q))a∗(p, q)b(p, q), (I.83)

where β = 1/(kBT ) and Z is the partition function of the system,

Z =

� �
d

n
pd

n
q exp(−βH(p, q)). (I.84)

The time correlation of a and b may then be written as scalar product of a(t1)
and b(t2), where t1 and t2 are the points on the time axis to be correlated,

�a(t1)b(t2)� := (a(t1), b(t2)). (I.85)

Using relation (I.82) and that LH = 0 one finds easily that �a(t1)b(t2)� =
�a(t1 − t2)b(0)�. One obtains thus explicitly the time translational invariance
of correlation functions describing systems in thermal equilibrium. Using the
definition (I.83) for the scalar product of two phase space functions, we note
that (1, 1) = 1, �a� = (1, a), and that �|a|2� = (a, a).

Scalar 
product
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With these preliminaries we define the projection operator on a phase space
variable a ≡ a(p, q), which is defined by the action

Pab =
(a, b)

(a, a)
a (I.86)

and which fulfills the projector properties P2
a = Pa and (u,Pav) = (v,Pau)∗.

One verifies easily that
Qa = 1− Pa (I.87)

is the orthogonal projector to Pa, i.e. PaQa = PaQa = 0. The concept of
operators allows to construct uncorrelated phase space variables. Suppose that
b = (1− Pa)f . We have then by construction (a, f) = �af� = 0.

8.2. Generalizing the Langevin equation. In the cases of the Langevin
equation with and without a harmonic external force an “equation of mo-
tion” for the velocity autocorrelation function could be derived by using that
the particles velocity and the stochastic force (strictly speaking the accelera-
tion) acting on it are uncorrelated �v(0)fs(t)�τ = 0. The idea is now to con-
struct such an equation of motion in the framework of classical statistical me-
chanics, where fs(t) is replaced by a deterministic force, f+(t), which fulfills
�v(0)f+(t)�τ = 0. For this purpose the Liouville operator is split into two mu-
tually orthogonal parts, where the orthogonality concerns the variable under
consideration. Choosing the latter to be the velocity of a tracer particle (in a
particular direction), we write

L = PvL+QvL.

The next step is to use the operator identity

exp(tL) = exp(tQvL) +

� t

0

dτ exp((t− τ)L)PvL exp(τQvL), (I.88)

which can be proven by differentiation, using that d
dt

� t

0 dτ f(t, τ) = f(t, t) +� t

0 dτ ∂tf(t, τ) for an arbitrary function f(t). We follow now the derivation
in [2] and operate with both sides of the identity (I.88) on the operator QLv.
Denoting the corresponding expressions with (I) and (II) respectively, we ob-
tain for (I)

(I) = exp(tL)QLv = exp(tL)Lv − exp(tL)PLv

= exp(tL)Lv + exp(tL)
(v,Lv)

(v, v)
v = v̇(t) +

(v,Lv)

(v, v)
v(t).

Correspondingly one obtains for (II)

(II) = exp(tQL)QLv� �� �
f+(t)

+

� t

0

dτ exp((t− τ)L)PL exp(τQL)QLv� �� �
f+(τ)

.
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22 1. LANGEVIN’S APPROACH TO BROWNIAN DYNAMICS

With these preliminaries we define the projection operator on a phase space
variable a ≡ a(p, q), which is defined by the action

Pab =
(a, b)

(a, a)
a (I.86)

and which fulfills the projector properties P2
a = Pa and (u,Pav) = (v,Pau)∗.

One verifies easily that
Qa = 1− Pa (I.87)

is the orthogonal projector to Pa, i.e. PaQa = PaQa = 0. The concept of
operators allows to construct uncorrelated phase space variables. Suppose that
b = (1− Pa)f . We have then by construction (a, f) = �af� = 0.

8.2. Generalizing the Langevin equation. In the cases of the Langevin
equation with and without a harmonic external force an “equation of mo-
tion” for the velocity autocorrelation function could be derived by using that
the particles velocity and the stochastic force (strictly speaking the accelera-
tion) acting on it are uncorrelated �v(0)fs(t)�τ = 0. The idea is now to con-
struct such an equation of motion in the framework of classical statistical me-
chanics, where fs(t) is replaced by a deterministic force, f+(t), which fulfills
�v(0)f+(t)�τ = 0. For this purpose the Liouville operator is split into two mu-
tually orthogonal parts, where the orthogonality concerns the variable under
consideration. Choosing the latter to be the velocity of a tracer particle (in a
particular direction), we write

L = PvL+QvL.

The next step is to use the operator identity

exp(tL) = exp(tQvL) +

� t

0

dτ exp((t− τ)L)PvL exp(τQvL), (I.88)

which can be proven by differentiation, using that d
dt

� t

0 dτ f(t, τ) = f(t, t) +� t

0 dτ ∂tf(t, τ) for an arbitrary function f(t). We follow now the derivation
in [2] and operate with both sides of the identity (I.88) on the operator QLv.
Denoting the corresponding expressions with (I) and (II) respectively, we ob-
tain for (I)

(I) = exp(tL)QLv = exp(tL)Lv − exp(tL)PLv

= exp(tL)Lv + exp(tL)
(v,Lv)

(v, v)
v = v̇(t) +

(v,Lv)

(v, v)
v(t).

Correspondingly one obtains for (II)

(II) = exp(tQL)QLv� �� �
f+(t)

+

� t

0

dτ exp((t− τ)L)PL exp(τQL)QLv� �� �
f+(τ)

.

Definitions

Qa = 1− Pa Q2
a = Qa Pa +Qa = 1

dimanche 5 juin 2011



22 1. LANGEVIN’S APPROACH TO BROWNIAN DYNAMICS

With these preliminaries we define the projection operator on a phase space
variable a ≡ a(p, q), which is defined by the action

Pab =
(a, b)

(a, a)
a (I.86)

and which fulfills the projector properties P2
a = Pa and (u,Pav) = (v,Pau)∗.

One verifies easily that
Qa = 1− Pa (I.87)

is the orthogonal projector to Pa, i.e. PaQa = PaQa = 0. The concept of
operators allows to construct uncorrelated phase space variables. Suppose that
b = (1− Pa)f . We have then by construction (a, f) = �af� = 0.

8.2. Generalizing the Langevin equation. In the cases of the Langevin
equation with and without a harmonic external force an “equation of mo-
tion” for the velocity autocorrelation function could be derived by using that
the particles velocity and the stochastic force (strictly speaking the accelera-
tion) acting on it are uncorrelated �v(0)fs(t)�τ = 0. The idea is now to con-
struct such an equation of motion in the framework of classical statistical me-
chanics, where fs(t) is replaced by a deterministic force, f+(t), which fulfills
�v(0)f+(t)�τ = 0. For this purpose the Liouville operator is split into two mu-
tually orthogonal parts, where the orthogonality concerns the variable under
consideration. Choosing the latter to be the velocity of a tracer particle (in a
particular direction), we write

L = PvL+QvL.

The next step is to use the operator identity

exp(tL) = exp(tQvL) +

� t

0

dτ exp((t− τ)L)PvL exp(τQvL), (I.88)

which can be proven by differentiation, using that d
dt

� t

0 dτ f(t, τ) = f(t, t) +� t

0 dτ ∂tf(t, τ) for an arbitrary function f(t). We follow now the derivation
in [2] and operate with both sides of the identity (I.88) on the operator QLv.
Denoting the corresponding expressions with (I) and (II) respectively, we ob-
tain for (I)

(I) = exp(tL)QLv = exp(tL)Lv − exp(tL)PLv

= exp(tL)Lv + exp(tL)
(v,Lv)

(v, v)
v = v̇(t) +

(v,Lv)

(v, v)
v(t).

Correspondingly one obtains for (II)

(II) = exp(tQL)QLv� �� �
f+(t)

+

� t

0

dτ exp((t− τ)L)PL exp(τQL)QLv� �� �
f+(τ)

.

22 1. LANGEVIN’S APPROACH TO BROWNIAN DYNAMICS

With these preliminaries we define the projection operator on a phase space
variable a ≡ a(p, q), which is defined by the action

Pab =
(a, b)

(a, a)
a (I.86)

and which fulfills the projector properties P2
a = Pa and (u,Pav) = (v,Pau)∗.

One verifies easily that
Qa = 1− Pa (I.87)

is the orthogonal projector to Pa, i.e. PaQa = PaQa = 0. The concept of
operators allows to construct uncorrelated phase space variables. Suppose that
b = (1− Pa)f . We have then by construction (a, f) = �af� = 0.

8.2. Generalizing the Langevin equation. In the cases of the Langevin
equation with and without a harmonic external force an “equation of mo-
tion” for the velocity autocorrelation function could be derived by using that
the particles velocity and the stochastic force (strictly speaking the accelera-
tion) acting on it are uncorrelated �v(0)fs(t)�τ = 0. The idea is now to con-
struct such an equation of motion in the framework of classical statistical me-
chanics, where fs(t) is replaced by a deterministic force, f+(t), which fulfills
�v(0)f+(t)�τ = 0. For this purpose the Liouville operator is split into two mu-
tually orthogonal parts, where the orthogonality concerns the variable under
consideration. Choosing the latter to be the velocity of a tracer particle (in a
particular direction), we write

L = PvL+QvL.

The next step is to use the operator identity

exp(tL) = exp(tQvL) +

� t

0

dτ exp((t− τ)L)PvL exp(τQvL), (I.88)

which can be proven by differentiation, using that d
dt

� t

0 dτ f(t, τ) = f(t, t) +� t

0 dτ ∂tf(t, τ) for an arbitrary function f(t). We follow now the derivation
in [2] and operate with both sides of the identity (I.88) on the operator QLv.
Denoting the corresponding expressions with (I) and (II) respectively, we ob-
tain for (I)

(I) = exp(tL)QLv = exp(tL)Lv − exp(tL)PLv

= exp(tL)Lv + exp(tL)
(v,Lv)

(v, v)
v = v̇(t) +

(v,Lv)

(v, v)
v(t).

Correspondingly one obtains for (II)

(II) = exp(tQL)QLv� �� �
f+(t)

+

� t

0

dτ exp((t− τ)L)PL exp(τQL)QLv� �� �
f+(τ)

.

22 1. LANGEVIN’S APPROACH TO BROWNIAN DYNAMICS

With these preliminaries we define the projection operator on a phase space
variable a ≡ a(p, q), which is defined by the action

Pab =
(a, b)

(a, a)
a (I.86)

and which fulfills the projector properties P2
a = Pa and (u,Pav) = (v,Pau)∗.

One verifies easily that
Qa = 1− Pa (I.87)

is the orthogonal projector to Pa, i.e. PaQa = PaQa = 0. The concept of
operators allows to construct uncorrelated phase space variables. Suppose that
b = (1− Pa)f . We have then by construction (a, f) = �af� = 0.

8.2. Generalizing the Langevin equation. In the cases of the Langevin
equation with and without a harmonic external force an “equation of mo-
tion” for the velocity autocorrelation function could be derived by using that
the particles velocity and the stochastic force (strictly speaking the accelera-
tion) acting on it are uncorrelated �v(0)fs(t)�τ = 0. The idea is now to con-
struct such an equation of motion in the framework of classical statistical me-
chanics, where fs(t) is replaced by a deterministic force, f+(t), which fulfills
�v(0)f+(t)�τ = 0. For this purpose the Liouville operator is split into two mu-
tually orthogonal parts, where the orthogonality concerns the variable under
consideration. Choosing the latter to be the velocity of a tracer particle (in a
particular direction), we write

L = PvL+QvL.

The next step is to use the operator identity

exp(tL) = exp(tQvL) +

� t

0

dτ exp((t− τ)L)PvL exp(τQvL), (I.88)

which can be proven by differentiation, using that d
dt

� t

0 dτ f(t, τ) = f(t, t) +� t

0 dτ ∂tf(t, τ) for an arbitrary function f(t). We follow now the derivation
in [2] and operate with both sides of the identity (I.88) on the operator QLv.
Denoting the corresponding expressions with (I) and (II) respectively, we ob-
tain for (I)

(I) = exp(tL)QLv = exp(tL)Lv − exp(tL)PLv

= exp(tL)Lv + exp(tL)
(v,Lv)

(v, v)
v = v̇(t) +

(v,Lv)

(v, v)
v(t).

Correspondingly one obtains for (II)

(II) = exp(tQL)QLv� �� �
f+(t)

+

� t

0

dτ exp((t− τ)L)PL exp(τQL)QLv� �� �
f+(τ)

.

apply to 

22 1. LANGEVIN’S APPROACH TO BROWNIAN DYNAMICS

With these preliminaries we define the projection operator on a phase space
variable a ≡ a(p, q), which is defined by the action

Pab =
(a, b)

(a, a)
a (I.86)

and which fulfills the projector properties P2
a = Pa and (u,Pav) = (v,Pau)∗.

One verifies easily that
Qa = 1− Pa (I.87)

is the orthogonal projector to Pa, i.e. PaQa = PaQa = 0. The concept of
operators allows to construct uncorrelated phase space variables. Suppose that
b = (1− Pa)f . We have then by construction (a, f) = �af� = 0.

8.2. Generalizing the Langevin equation. In the cases of the Langevin
equation with and without a harmonic external force an “equation of mo-
tion” for the velocity autocorrelation function could be derived by using that
the particles velocity and the stochastic force (strictly speaking the accelera-
tion) acting on it are uncorrelated �v(0)fs(t)�τ = 0. The idea is now to con-
struct such an equation of motion in the framework of classical statistical me-
chanics, where fs(t) is replaced by a deterministic force, f+(t), which fulfills
�v(0)f+(t)�τ = 0. For this purpose the Liouville operator is split into two mu-
tually orthogonal parts, where the orthogonality concerns the variable under
consideration. Choosing the latter to be the velocity of a tracer particle (in a
particular direction), we write

L = PvL+QvL.

The next step is to use the operator identity

exp(tL) = exp(tQvL) +

� t

0

dτ exp((t− τ)L)PvL exp(τQvL), (I.88)

which can be proven by differentiation, using that d
dt

� t

0 dτ f(t, τ) = f(t, t) +� t

0 dτ ∂tf(t, τ) for an arbitrary function f(t). We follow now the derivation
in [2] and operate with both sides of the identity (I.88) on the operator QLv.
Denoting the corresponding expressions with (I) and (II) respectively, we ob-
tain for (I)

(I) = exp(tL)QLv = exp(tL)Lv − exp(tL)PLv

= exp(tL)Lv + exp(tL)
(v,Lv)

(v, v)
v = v̇(t) +

(v,Lv)

(v, v)
v(t).

Correspondingly one obtains for (II)

(II) = exp(tQL)QLv� �� �
f+(t)

+

� t

0

dτ exp((t− τ)L)PL exp(τQL)QLv� �� �
f+(τ)

.

8. GENERALISED LANGEVIN EQUATION AND MEMORY FUNCTIONS 23

Correspondingly one obtains for (II)

(II) = exp(tQL)QLv� �� �
f+(t)

+

� t

0

dτ exp((t− τ)L)PL exp(τQL)QLv� �� �
f+(τ)

.

Introducing the “generalized force”

f+(t) = exp(tQL)QLv (I.89)

one may write

(II) = f+(t) +

� t

0

dτ exp((t− τ)L)
(v,Lf+(τ))

(v, v)
v

= f+(t) +

� t

0

dτ
(v,Lf+(τ))

(v, v)
v(t− τ) = f+(t)−

� t

0

dτ
(Lv, f+(τ))

(v, v)
v(t− τ).

Here it has been used that the Liouville operator is anti-hermitean, (a,Lb) =
−(La, b), and that it commutes with scalar products of the form (a, b), which
are numbers. Using that Lv = v̇, we define the quantity

Ω =
(v̇, v)

(v, v)
(I.90)

and the memory function

κ(t) = θ(t)
(v̇, f+(t))

(v, v)
(I.91)

Equating (I) and (II), one obtains then the generalized Langevin equation,

v̇(t) + Ωv(t) +

� t

0

dτ κ(τ)v(t− τ) = f+(t). (I.92)

The unit step function introduced in (I.91) allows to interchange the memory
function and the velocity in the convolution integral appearing in (I.92)

v̇(t) + Ωv(t) +

� t

0

dτ κ(t− τ)v(τ) = f+(t) (I.93)

and emphasizes that memory effects imply causality.
As in the case of conventional Brownian dynamics, the force f+ is not cor-

related with the velocity, although it is not a random force at all. Writing

(v, f+(t)) = (v, exp(tQL)QLv) = (v,QL exp(tQL)v) = (Qv,L exp(tQL)v)

we see that
(v, f+(t)) = 0 (I.94)
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we see that
(v, f+(t)) = 0 (I.94)

on account of Qv = 0. The fact that v and f+ are not correlated allows to derive
a closed equation for the autocorrelation functions of v. Using that ċvv(t) =
�v(0)v̇(t)� = (v(0), v̇(t)) and taking the scalar product of (I.93), we obtain

ċvv(t) + Ωcvv(t) +

� t

0

dτ κ(t − τ)cvv(τ) = 0 (I.95)
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are numbers. Using that Lv = v̇, we define the quantity

Ω =
(v̇, v)

(v, v)
(I.90)

and the memory function

κ(t) = θ(t)
(v̇, f+(t))

(v, v)
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Equating (I) and (II), one obtains then the generalized Langevin equation,

v̇(t) + Ωv(t) +
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0

dτ κ(τ)v(t − τ) = f+(t). (I.92)

The unit step function introduced in (I.91) allows to interchange the memory
function and the velocity in the convolution integral appearing in (I.92)

v̇(t) + Ωv(t) +

� t

0

dτ κ(t − τ)v(τ) = f+(t) (I.93)

and emphasizes that memory effects imply causality.
As in the case of conventional Brownian dynamics, the force f+ is not cor-

related with the velocity, although it is not a random force at all. Writing

(v, f+(t)) = (v, exp(tQL)QLv) = (v,QL exp(tQL)v) = (Qv,L exp(tQL)v)

we see that
(v, f+(t)) = 0 (I.94)

on account of Qv = 0. The fact that v and f+ are not correlated allows to derive
a closed equation for the autocorrelation functions of v. Using that ċvv(t) =
�v(0)v̇(t)� = (v(0), v̇(t)) and taking the scalar product of (I.93), we obtain

ċvv(t) + Ωcvv(t) +

� t

0

dτ κ(t − τ)cvv(τ) = 0 (I.95)

24 1. LANGEVIN’S APPROACH TO BROWNIAN DYNAMICS

A few points are important to note at the end of this paragraph.
(1) Although the equation of motion (I.93) has the form of a Langevin

equation, it is a perfectly deterministic equation of motion, which is
prepared to derive the closed form for the equation of motion for the
time correlation cvv(t).

(2) For a Hamiltonian system the initial slope of any autocorrelation func-
tion is zero, in particular ċvv(0) = (v, v̇) = 0. This property follows
from the symmetry of classical equilibrium time correlation functions,
cvv(−t) = cvv(t). Consequently

Ω = 0. (I.96)

In this framework the initial value of the memory function can be ob-
tained by combining (I.89), (I.91) and (v, v̇) = 0, which shows that
Qv̇ = v̇. One obtains

κ(0) =
(v̇, v̇)

(v, v)
(I.97)

(3) To set up models for the VACF, one can suppress the Ω-term in the
generalized Langevin equation and allow for Dirac distributions in
the memory function. In case of free Brownian one would have

κ(t) = γδ(t) (I.98)

and in the case of the Langevin oscillator

κ(t) = γδ(t) + ω2
0 (I.99)

(4) The derivation of eq. (I.93) does not depend on the dynamical variable
under consideration. Any other variable could have been chosen, too.

(5) The concrete form of the Liouville operator was not important and
any other time evolution operator for the dynamical variables could
have been considered, too. This indicates that the concept of memory
functions can be extended to other dynamical regimes.

8.3. Analytical models – Mori-Zwanzig approach.
8.3.1. Formal solution of the memory function equation. The essential result of

Zwanzig’s approach is that one obtains a rigourous description of relaxation
processes in complex systems. The memory function equation (I.95) is an exact
equation and can be used a starting point to develop analytical models for the
autocorrelation function of a dynamical variable under consideration. Here
we are concerned with the velocity of a tagged particle in a liquid. The expo-
nential decay of the VACF of a Brownian particle is retrieved by considering a
memoryless process, where

κ(t) = γδ(t) (I.100)

(I) = exp(tL)QLv = exp(tL)Lv − exp(tL)PLv

= exp(tL)Lv − exp(tL)
(v,Lv)

(v, v)
v = v̇ +

(Lv, v)

(v, v)
v(t)
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“Conventional language”

Ω =
〈v̇v〉

〈v2〉
= ψ̇(0)
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� t

0

dτ exp((t − τ)L)
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(v, v)
v

= f+(t) +

� t

0

dτ
(v,Lf+(τ))

(v, v)
v(t − τ) = f+(t) −
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v(t − τ).
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are numbers. Using that Lv = v̇, we define the quantity

Ω =
(v̇, v)

(v, v)
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As in the case of conventional Brownian dynamics, the force f+ is not cor-

related with the velocity, although it is not a random force at all. Writing

(v, f+(t)) = (v, exp(tQL)QLv) = (v,QL exp(tQL)v) = (Qv,L exp(tQL)v)

we see that
(v, f+(t)) = 0 (I.94)

on account of Qv = 0. The fact that v and f+ are not correlated allows to derive
a closed equation for the autocorrelation functions of v. Using that ċvv(t) =
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κ(t) =
〈v̇(0)f+(t)〉

〈v2〉
=
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are numbers. Using that Lv = v̇, we define the quantity

Ω =
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and the memory function
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Equating (I) and (II), one obtains then the generalized Langevin equation,
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function and the velocity in the convolution integral appearing in (I.92)
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and emphasizes that memory effects imply causality.
As in the case of conventional Brownian dynamics, the force f+ is not cor-

related with the velocity, although it is not a random force at all. Writing

(v, f+(t)) = (v, exp(tQL)QLv) = (v,QL exp(tQL)v) = (Qv,L exp(tQL)v)

we see that
(v, f+(t)) = 0 (I.94)

on account of Qv = 0. The fact that v and f+ are not correlated allows to derive
a closed equation for the autocorrelation functions of v. Using that ċvv(t) =
�v(0)v̇(t)� = (v(0), v̇(t)) and taking the scalar product of (I.93), we obtain
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Memory function
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Remarks

• The generalized Langevin equation is exact.

• For a Hamiltonian system Ω=0.

• L’ELG can be derived for any dynamical 
variable.

• L’ELG can be derived for any time evolution 
operator. 
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Diffusion, friction
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−(La, b), and that it commutes with scalar products of the form (a, b), which
are numbers. Using that Lv = v̇, we define the quantity
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and the memory function
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function and the velocity in the convolution integral appearing in (I.92)

v̇(t) + Ωv(t) +

� t

0

dτ κ(t − τ)v(τ) = f+(t) (I.93)

and emphasizes that memory effects imply causality.
As in the case of conventional Brownian dynamics, the force f+ is not cor-

related with the velocity, although it is not a random force at all. Writing

(v, f+(t)) = (v, exp(tQL)QLv) = (v,QL exp(tQL)v) = (Qv,L exp(tQL)v)

we see that
(v, f+(t)) = 0 (I.94)

on account of Qv = 0. The fact that v and f+ are not correlated allows to derive
a closed equation for the autocorrelation functions of v. Using that ċvv(t) =
�v(0)v̇(t)� = (v(0), v̇(t)) and taking the scalar product of (I.93), we obtain

ċvv(t) + Ωcvv(t) +

� t

0

dτ κ(t − τ)cvv(τ) = 0 (I.95)
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The general solution of the Volterra-type integral equation (I.95) for a given

memory kernel can be obtained by Laplace transform. For this purpose one

uses

d+f

dt
= lim

h→0+

f(t + h)− f(t)

h
L←→ sf̂(s)− f(0). (I.101)

Using the above relation one finds from (I.95) that

ĉvv(s) =
cvv(0)

s + Ω + κ̂(s)
(I.102)

Eq. (I.102) is a starting point for developing analytical models for the VACF.

If the memory function takes the form (I.100) one finds that κ̂(s) = 0, yielding

thus a Laplace transform for the VACF which has a simple pole in the s-plane,

ĉvv(s) =
cvv(0)

s + γ
. (I.103)

and an inverse Laplace transform yields thus a simple exponential, cvv(t) =
cvv(0) exp(−γt).

8.3.2. Diffusion constant. We know from relation (I.74) that the diffusion

constant is obtained from the integral over the VACF, which is equivalent to

the Laplace transform at s = 0, D = ĉvv(0). Since cvv(0) = �v2�, it follows

therefore from (I.102) that

D =
�v2�
γ

, where γ = Ω +

� ∞

0

dtκ(t) (I.104)

This is the generalisation of (I.49), where the constant γ given above replaces

the phenomenological constant γ in the Langevin equation.

8.3.3. Mori-Zwanzig approach. Following the idea of Mori [11], the

form (I.103) can be considered as the simplest form in a hierarchy which is

generated by considering that the memory satisfies itself the same type of in-

tegral equation as the VACF, defining in this way a memory function of second

order. To the latter one can again associate a memory function, and so on,

κ̇n(t) + Ωnκn(t) +

� t

0

dτ κn+1(t− τ)κn(τ) = 0 (I.105)

At a certain order M the hierarchy ends by setting κn(t) = 0 for n > M . This

leads to the continued fraction representation

κ̂1(s) =
κ1(0)

s + Ω1 +
κ2(0)

s + Ω2 + . . .
κM(0)

s + ΩM

. (I.106)
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diffusion friction

D =

∫
∞

0

dt cvv(t) = ĉvv(0)
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a) Free diffusion: 
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Introducing the “generalized force”

f+(t) = exp(tQL)QLv (I.89)

one may write

(II) = f+(t) +

� t

0

dτ exp((t − τ)L)
(v,Lf+(τ))

(v, v)
v

= f+(t) +

� t

0

dτ
(v,Lf+(τ))

(v, v)
v(t − τ) = f+(t) −

� t

0

dτ
(Lv, f+(τ))

(v, v)
v(t − τ).

Here it has been used that the Liouville operator is anti-hermitean, (a,Lb) =
−(La, b), and that it commutes with scalar products of the form (a, b), which
are numbers. Using that Lv = v̇, we define the quantity

Ω =
(v̇, v)

(v, v)
(I.90)

and the memory function

κ(t) = θ(t)
(v̇, f+(t))

(v, v)
(I.91)

Equating (I) and (II), one obtains then the generalized Langevin equation,

v̇(t) + Ωv(t) +

� t

0

dτ κ(τ)v(t − τ) = f+(t). (I.92)

The unit step function introduced in (I.91) allows to interchange the memory
function and the velocity in the convolution integral appearing in (I.92)

v̇(t) + Ωv(t) +

� t

0

dτ κ(t − τ)v(τ) = f+(t) (I.93)

and emphasizes that memory effects imply causality.
As in the case of conventional Brownian dynamics, the force f+ is not cor-

related with the velocity, although it is not a random force at all. Writing

(v, f+(t)) = (v, exp(tQL)QLv) = (v,QL exp(tQL)v) = (Qv,L exp(tQL)v)

we see that
(v, f+(t)) = 0 (I.94)

on account of Qv = 0. The fact that v and f+ are not correlated allows to derive
a closed equation for the autocorrelation functions of v. Using that ċvv(t) =
�v(0)v̇(t)� = (v(0), v̇(t)) and taking the scalar product of (I.93), we obtain

ċvv(t) + Ωcvv(t) +

� t

0

dτ κ(t − τ)cvv(τ) = 0 (I.95)

b) Langevin oscillator: 

3. WIENER-KHINTCHINE THEOREM 7

any interval τ , and the same is true for the integral
� τ/2

−τ/2 dt Fs(t + t1)Fs(t + t0)

if t1 �= t0. If, however, t1 = t0, the product Fs(t + t1)Fs(t + t0) is always positive
and will not average to zero. This can be taken into account by writing

�Fs(t1)Fs(t0)�τ = lim
T→∞

1

T

� T/2

−T/2

dt Fs(t + t0)
2δ(t1 − t0) = C(t0)δ(t1 − t0).

In thermal equilibrium C does not depend of the choice of t0 and is thus a
constant. The relation C = 2kBTα will be justified later.

In the following we will consider the velocity autocorrelation function
(VACF) and its normalised form,

cvv(t) := �v(t)v(0)�τ , (I.8)

ψ(t) :=
�v(t)v(0)�τ

�v2�τ
. (I.9)

It is convenient to introduce the mass-weighted friction constant γ = α/M ,
which has the dimension 1/s in SI units and the stochastic acceleration fs(t) =
Fs(t)/M . With these definitions Eq. (I.1) takes the form

v̇ + γv = fs(t) (I.10)

Multiplying this equation by v(0) and averaging over t, one can derive a dif-
ferential equation for the VACF and its normalised form:

ψ̇ + γψ = 0 (I.11)

The important relation which leads to an independent differential equation for
the VACF is �v(0)fs(t)�τ = 0. The solution of (I.11) yields

ψ(t) = exp(−γt) (I.12)

with the initial condition ψ(0) = 1. The VACF of a Brownian particle is thus
an exponential function. Exponential relaxation with a single relaxation time
τ = γ−1 is characteristic for “slow”dynamical variables which are coupled to
many “fast” variables whose characteristic time scales are much shorter.

3. Wiener-Khintchine theorem

The Wiener-Khintchine theorem relies the Fourier spectrum of an autocor-
relation function to the Fourier spectrum of the corresponding dynamical vari-
able itself. In the following the Fourier transform of a function f and its inverse
are defined by

f̃(ω) =

� +∞

−∞
dt f(t) exp(−iωt), (I.13)

f(t) =
1

2π

� +∞

−∞
dt f̃(ω) exp(iωt). (I.14)

6. THE LANGEVIN OSCILLATOR 15

FIGURE I.3. The normalised VACF ψ(t) of a a Brownian particle
and corresponding MSD.

6. The Langevin oscillator

6.1. Equation of motion. We consider now a Brownian particle which dif-
fuses under the influence of an external harmonic force, F (x) = −Kx. Here x
is the displacement of the Brownian particle with respect its equilibrium posi-
tion and K > 0 is the force constant describing the strength of the harmonic
force. The Langevin equation (I.1) reads thus

Mv̇ = −Kx − αv + Fs(t), K > 0, α > 0. (I.51)

The properties of the stochastic force are the same as for the freely diffusing
Brownian particle (see Eqs. (I.3) and (I.4)). For the following considerations it
is convenient to use the normalised form of (I.51),

ẍ + γẋ + ω2
0x = fs(t) (I.52)

where ω2
0 = K/M and γ = α/M . In the following we will again consider the

VACF and the MSD.

6.2. Velocity autocorrelation function. In order to derive an equation in-
volving the VACF only Eq. (I.52) is first rewritten as5

v̇ + γv + ω2
0

� t

0

dτv(τ) = fs(t) (I.53)

Multiplication with v(0) and averaging over time yields

ċvv + γcvv + ω2
0

� t

0

dτcvv(τ) = 0 (I.54)

since �v(0)fs(t)�τ = 0.

5One may think that the integral could be avoided by a further differentiation, but this is
not so since the stochastic force is not a differentiable function.

Ω = γ, κ(t) = θ(t)ω2

0

Ω = γ, κ(t) = 0
Ω = 0, κ(t) = γδ(t)or

or Ω = 0, κ(t) = γδ(t) + θ(t)ω2

0

Two known examples
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☛ Model with M+1 poles
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The general solution of the Volterra-type integral equation (I.95) for a given

memory kernel can be obtained by Laplace transform. For this purpose one

uses

d+f

dt
= lim

h→0+

f(t + h)− f(t)

h
L←→ sf̂(s)− f(0). (I.101)

Using the above relation one finds from (I.95) that

ĉvv(s) =
cvv(0)

s + Ω + κ̂(s)
(I.102)

Eq. (I.102) is a starting point for developing analytical models for the VACF.

If the memory function takes the form (I.100) one finds that κ̂(s) = 0, yielding

thus a Laplace transform for the VACF which has a simple pole in the s-plane,

ĉvv(s) =
cvv(0)

s + γ
. (I.103)

and an inverse Laplace transform yields thus a simple exponential, cvv(t) =
cvv(0) exp(−γt).

8.3.2. Diffusion constant. We know from relation (I.74) that the diffusion

constant is obtained from the integral over the VACF, which is equivalent to

the Laplace transform at s = 0, D = ĉvv(0). Since cvv(0) = �v2�, it follows

therefore from (I.102) that

D =
�v2�
γ

, where γ = Ω +

� ∞

0

dtκ(t) (I.104)

This is the generalisation of (I.49), where the constant γ given above replaces

the phenomenological constant γ in the Langevin equation.

8.3.3. Mori-Zwanzig approach. Following the idea of Mori [11], the

form (I.103) can be considered as the simplest form in a hierarchy which is

generated by considering that the memory satisfies itself the same type of in-

tegral equation as the VACF, defining in this way a memory function of second

order. To the latter one can again associate a memory function, and so on,

κ̇n(t) + Ωnκn(t) +

� t

0

dτ κn+1(t− τ)κn(τ) = 0 (I.105)

At a certain order M the hierarchy ends by setting κn(t) = 0 for n > M . This

leads to the continued fraction representation

κ̂1(s) =
κ1(0)

s + Ω1 +
κ2(0)

s + Ω2 + . . .
κM(0)

s + ΩM

. (I.106)
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Using the above relation one finds from (I.95) that
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Mori-Zwanzig model

Continued fraction

ĉvv(s) =
cvv(0)

s + Ω + κ̂1(s)

cvv(t) is multi-exponential
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FIGURE I.6. Left: Normalised VACF of liquid argon for differ-
ent orders of the Mori-Zwanzig model as compared to MD re-
sults [12] (open circles). The solid line no. 2 corresponds to the
two-pole model discussed in the text. Right: The corresponding
Fourier spectra. The figures have been taken from ref. [8].

The initial values of the κn(t) can be obtained from the initial values of the
derivatives of cvv(t) with respect to time, which are static averages (“sum
rules”) [8]. The important point is that the resulting Laplace transformed
VACF is a rational form in s leading thus to a multiexponential form in the time
domain.

8.3.4. Two-pole model. To illustrate the last point we consider a two-pole
model studied by Berne et al. [13]. Here one sets κn = 0 for n > 3, Ω2 ≡ η, such
that κ1(t) verifies

κ̇1(t) = −ηκ1(t). (I.107)
The Laplace transformed VACF has thus the form

ĉvv(s) =
cvv(0)

s + κ1(0)
s+η

(I.108)

It follows from (I.91) that

κ1(0) =
�v̇2�
�v2� =

�δF 2�
MkBT

. (I.109)

Here is was used that cvv(0) = kBT/M , where M is the mass of the tagged
particle, and that v̇ = F/M , where F is the force acting upon it. Since the
average force on a particle in a liquid is zero, �F � = 0, it follows that �δF 2� =
�(F − �F �)2� = �F 2� − �F �2 = �F 2�. The memory function at time zero is thus
proportional to the fluctuation of the force acting on a particle in a liquid. It

κn(t) = 0 pour n ≥ 2

Example with two poles
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should be noted that κ1(0) has the dimension of the square of a frequency, and

for this reason it is convenient to introduce

ω0 := +
�

κ(0). (I.110)

We obtain thus from (I.108)

ĉvv(s) =
kBT

M

s + η

s(s + η) + ω2
0

. (I.111)

This function has two poles in the complex s-plane,

s1,2 = −η

2
± iΩ, where Ω =

�
ω2

0 −
η2

4
, (I.112)

and inverse Laplace transform yields

cvv(t) =
kBT

M
exp

�
−ηt

2

� �
cos(Ωt) +

η

2Ω
sin(Ωt)

�
(I.113)

If η/2 < ω0 the time evolution of the resulting VACF is thus characterised by a

damped oscillation which is also seen in the VACF of liquid argon presented

in Fig. III.3.

It should be noted that the VACF of a Langevin oscillator given in Eq. (I.57)

is almost identical to one obtained above from the two pole model – only the

sign between the cosine and the sine function is different. The difference has,

however, important physical consequences. It follows from (I.104) that for the

two-pole model

D =
kBTη

Mω2
0

, (I.114)

using that
�∞

0 dtκ1(t) = ω2
0/η. For the Langevin oscillator we have instead

D = 0, referring to Eqs. (I.61) and (I.62). This follows also from the general

relation (I.74), since for the Langevin oscillator
�∞

0 dt cvv(t) = ĉvv(0) = 0.

Fig. I.6 shows that the two-pole model gives a VACF and a corresponding

Fourier spectrum which are qualitatively correct. The parameters η and ω2
0 are

here used as fit parameters. A quantitative agreement between model VACFs

and simulated VACFs is nevertheless difficult to obtain with, even with higher

orders.

ω0 = +
√

κ1(0)

B.J. Berne, J.P. Boon, and S.A. Rice.  J. Chem. Phys., 45:1086–1096, 1966.
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8.3.4. Two-pole model. To illustrate the last point we consider a two-pole
model studied by Berne et al. [13]. Here one sets κn = 0 for n ≥ 2, Ω2 ≡ η, such
that κ1(t) verifies

κ̇1(t) = −ηκ1(t). (I.107)
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Here is was used that cvv(0) = kBT/M , where M is the mass of the tagged
particle, and that v̇ = F/M , where F is the force acting upon it. Since the
average force on a particle in a liquid is zero, �F � = 0, it follows that �δF 2� =
�(F − �F �)2� = �F 2� − �F �2 = �F 2�. The memory function at time zero is thus
proportional to the fluctuation of the force acting on a particle in a liquid. It
should be noted that κ1(0) has the dimension of the square of a frequency, and
for this reason it is convenient to introduce

ω0 := +
�

κ(0). (I.110)

We obtain thus from (I.108)

ĉvv(s) =
kBT

M
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s(s + η) + ω2
0

. (I.111)

This function has two poles in the complex s-plane,

s1,2 = −η

2
± iω̃0, where ω̃0 =

�
ω2

0 −
η2

4
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and inverse Laplace transform yields

cvv(t) =
kBT

M
exp

�
−ηt

2

� �
cos(ω̃0t) +

η

2ω̃0
sin(ω̃0t)

�
(I.113)

If η/2 < ω0 the time evolution of the resulting VACF is thus characterised by a
damped oscillation which is also seen in the VACF of liquid argon presented
in Fig. III.4.

It should be noted that the VACF of a Langevin oscillator given in Eq. (I.57)
is almost identical to one obtained above from the two pole model – only the
sign between the cosine and the sine function is different. The difference has,
however, important physical consequences. It follows from (I.104) that for the
two-pole model

D =
kBTη

Mω2
0

, (I.114)
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Here is was used that cvv(0) = kBT/M , where M is the mass of the tagged
particle, and that v̇ = F/M , where F is the force acting upon it. Since the
average force on a particle in a liquid is zero, �F � = 0, it follows that �δF 2� =
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If η/2 < ω0 the time evolution of the resulting VACF is thus characterised by a
damped oscillation which is also seen in the VACF of liquid argon presented
in Fig. III.4.

It should be noted that the VACF of a Langevin oscillator given in Eq. (I.57)
is almost identical to one obtained above from the two pole model – only the
sign between the cosine and the sine function is different. The difference has,
however, important physical consequences. It follows from (I.104) that for the
two-pole model

D =
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Mω2
0
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Ω = 0, Ω1 ≡ η
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FIGURE I.6. Left: Normalised VACF of liquid argon for differ-
ent orders of the Mori-Zwanzig model as compared to MD re-
sults [12] (open circles). The solid line no. 2 corresponds to the
two-pole model discussed in the text. Right: The corresponding
Fourier spectra. The figures have been taken from ref. [8].

The initial values of the κn(t) can be obtained from the initial values of the
derivatives of cvv(t) with respect to time, which are static averages (“sum
rules”) [8]. The important point is that the resulting Laplace transformed
VACF is a rational form in s leading thus to a multiexponential form in the time
domain.

8.3.4. Two-pole model. To illustrate the last point we consider a two-pole
model studied by Berne et al. [13]. Here one sets κn = 0 for n ≥ 2, Ω2 ≡ η, such
that κ1(t) verifies

κ̇1(t) = −ηκ1(t). (I.107)
The Laplace transformed VACF has thus the form

ĉvv(s) =
cvv(0)

s + κ1(0)
s+η

(I.108)

It follows from (I.91) that

κ1(0) =
�v̇2�
�v2� =

�δF 2�
MkBT

. (I.109)

Here is was used that cvv(0) = kBT/M , where M is the mass of the tagged
particle, and that v̇ = F/M , where F is the force acting upon it. Since the
average force on a particle in a liquid is zero, �F � = 0, it follows that �δF 2� =
�(F − �F �)2� = �F 2� − �F �2 = �F 2�. The memory function at time zero is thus
proportional to the fluctuation of the force acting on a particle in a liquid. It
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The initial values of the κn(t) can be obtained from the initial values of the
derivatives of cvv(t) with respect to time, which are static averages (“sum
rules”) [8]. The important point is that the resulting Laplace transformed
VACF is a rational form in s leading thus to a multiexponential form in the time
domain.

8.3.4. Two-pole model. To illustrate the last point we consider a two-pole
model studied by Berne et al. [13]. Here one sets κn = 0 for n > 3, κ2(t) = Ω2 ≡
η, such that κ1(t) verifies

κ̇1(t) = −ηκ1(t). (I.107)
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Here is was used that cvv(0) = kBT/M , where M is the mass of the tagged
particle, and that v̇ = F/M , where F is the force acting upon it. Since the
average force on a particle in a liquid is zero, �F � = 0, it follows that �δF 2� =
�(F − �F �)2� = �F 2� − �F �2 = �F 2�. The memory function at time zero is thus
proportional to the fluctuation of the force acting on a particle in a liquid. It

g(ω)ψ(t)
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is almost identical to one obtained above from the two pole model – only the
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derivatives of cvv(t) with respect to time, which are static averages (“sum
rules”) [8]. The important point is that the resulting Laplace transformed
VACF is a rational form in s leading thus to a multiexponential form in the time
domain.

8.3.4. Two-pole model. To illustrate the last point we consider a two-pole
model studied by Berne et al. [13]. Here one sets κn = 0 for n ≥ 2, Ω2 ≡ η, such
that κ1(t) verifies

κ̇1(t) = −ηκ1(t). (I.107)
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It follows from (I.91) that

κ1(0) =
�v̇2�
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MkBT
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Here is was used that cvv(0) = kBT/M , where M is the mass of the tagged
particle, and that v̇ = F/M , where F is the force acting upon it. Since the
average force on a particle in a liquid is zero, �F � = 0, it follows that �δF 2� =
�(F − �F �)2� = �F 2� − �F �2 = �F 2�. The memory function at time zero is thus
proportional to the fluctuation of the force acting on a particle in a liquid. It
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