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Abstract

This text describes the derivation and interpretation of the Generalized Langevin equation for
classical and quantum observables, following the lines of R. Zwanzig’s textbook “Nonequilibrium
statistical mechanics” [1].

1 Time evolution of classical and quantum observables

1.1 Liouville operator in classical mechanics

A classical mechanical Hamiltonian system is described by a set of generalized coordinates and asso-
ciated momenta, {qk, pk} (k = 1, . . . , n). The dynamics of these variables is described by Hamilton’s
equations of motion,

q̇i =
∂H

∂pi
, (1)

ṗi = −∂H
∂qi

, (2)

where H(p, q) is the Hamilton function of the system. We use the notation p and q for the ensemble
of all momenta and coordinates, respectively. For a closed system the Hamilton function does not
explicitly depend on time and has usually the form

H(p, q) =
1

2
aij(q)pipj + U(q), (3)

where the quadratic form in the momenta is the kinetic energy and U(q) is the potential energy. Here
and in the following we use Einstein’s summation convention, where summation over pairwise equal
indices is implicitly assumed.

In classical mechanics, any observable is a function of the coordinates and momenta, A ≡ A(p, q),
and its time evolution is obtained from the equation of motion

dA

dt
= q̇i

∂A

∂qi
+ ṗi

∂A

∂pi
=
∂H

∂pi

∂A

∂qi
− ∂H

∂qi

∂A

∂pi
,

where A is supposed not to depend explicitly on time, such that ∂tA = 0. Introducing the Poisson
bracket

{A,B} =
∂A

∂pi

∂B

∂qi
− ∂A

∂qi

∂B

∂pi
, (4)

and the Liouville operator
L = {H, .} , (5)

the equation of motion for A can thus be written in the compact form

dA

dt
= LA. (6)
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It has the formal solution
A(t) = etLA(0), (7)

where A(t) ≡ A(p, q; t) and A(0) ≡ A(p, q). Considering that A(δt) ≈ A(0) + δt dA(t)/dt|t=0 for a
small increment in time, δt, it follows from the equation of motion (6) that Liouville operator is the
generator of the time evolution described by etL ,

A(δt) ≈ (1 + δtL )A(0). (8)

Using that exp(x) = limn→∞
(
1 + x

n

)n, a finite displacement in time can be written in the alternative
form

A(t) = lim
n→∞

(
1 +

t

n
L

)n
A(0), (9)

i.e. as a succession of an infinite number of infinitely small displacements.

1.2 Quantum Liouville operator

In quantum mechanics one has to distinguish between state vectors describing the state of a quantum
system and operators, which can be divided into unitary (norm-conserving) operators transforming
the state vector of the system and hermitian operators corresponding to physical observables. The
mean value for the measurement of a physical observable, A, is given by

A(t) = 〈ψ(t)|Â|ψ(t)〉, (10)

where the real eigenvalues of the hermitian operator Â are the possible outcomes of a measurement
and |ψ(t)〉 is the time-dependent state vector of the system. The bra-ket notation 〈a|b〉 = 〈b|a〉∗ is used
for a scalar product. The dynamics of the state vector is determined by the Schrödinger equation,

i~∂t|ψ(t)〉 = Ĥ|ψ(t)〉, (11)

where Ĥ is the Hamilton operator, and the formal solution of (11) is given by

|ψ(t)〉 = e−
it
~ Ĥ |ψ(0)〉, (12)

where exp(− it
~ Ĥ) is the unitary operator describing the time-evolution of the state vector. Inserting

the formal solution (19) into the Formula (10) for the mean value of A and using that Ĥ is Hermitian,
i.e. 〈φ|Âφ〉 = 〈Âφ|φ〉, we find that

A(t) = 〈ψ(0)|e
it
~ ĤÂe−

it
~ Ĥ |ψ(0)〉. (13)

This defines the time-dependent operator

ÂH(t) = e
it
~ ĤÂe−

it
~ Ĥ (14)

describing the dynamics of quantum mean values in the “Heisenberg picture”. An equation of mo-
tion for ÂH(t) can be derived by differentiating (14) with respect to t, where it is, again, assumed that
the operator Â does not explicitly depend on time. Defining the commutator

[Â, B̂] ≡ ÂB̂ − B̂Â, (15)

and the quantum Liouville operator

L̂ =
i

~
[Ĥ, .], (16)

the equation of motion for ÂH(t) reads

dÂH(t)

dt
= L̂ÂH(t), (17)
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and its formal solution can again be written in exponential form,

ÂH(t) = etL̂ÂH(0). (18)

All practical calculations in quantum mechanics are performed with matrix representations of
operators and state vectors. The state vectors are elements of a Hilbert space, which is endowed with
an orthonormal basis, {|uk〉}, whose elements satisfy 〈uk|ul〉 = δkl. For simplicity we assume that the
basis vectors are enumerable and that the Hilbert space has finite dimension, n. The matrix represen-
tation of the state vector |ψ(t)〉 is then a n-dimensional column vector ψ(t), where ψk(t) = 〈uk|ψ(t)〉,
and all operators, Â, are represented by (n × n)-matrices, A, whose elements are Akl = 〈uk|Â|ul〉.
Using the completeness relation

∑
k |uk〉〈un| = 1̂, one finds for example that matrix representation of

Eq. (19) reads
ψ(t) = e−

it
~ Hψ(0), (19)

where (H)kl = 〈uk|Ĥ|ul〉. From Eq. (18) one obtains instead

AH(t) = etLAH(0), (20)

where L = (Lkl,mn) has four indices, since etL maps a matrixAH(0) onto a matrixAH(t), and each
of these matrices has two indices. Expression (20) is the equivalent of Expression (7) for classical
observables and the equivalent of Expression (19) for quantum state vectors. The concrete form of
the time evolution operator etL acting on matrices can be obtained from Eq. (14), writing

(AH(t))kl =
(
etLA

)
kl

=
(
e
it
~ H
)
km

Amn

(
e−

it
~ H
)
nl
,

where it has been used thatAH(0) = A. It follows then that(
etL
)
kl,mn

=
(
e
it
~ H
)
km

(
e−

it
~ H
)
nl
. (21)

From this equation one derives the coefficients Lkl,mn through

Lkl,mn =
d

dt

(
etL
)
kl,mn

∣∣∣∣
t=0

=
i

~
(Hkmδnl − δkmHnl) . (22)

2 Generalized Langevin equation

2.1 Classical Langevin equation for Brownian motion

The Langevin equation for a Brownian particle [2],

v̇(t) + γv(t) = F (s)(t)/M (23)

is the prototype of an equation of motion in which a “relevant” dynamical variable – the velocity v(t)
of the Brownian particle – is separated from the “irrelevant” dynamical variables describing the sur-
rounding solvent molecules, which are not explicitly considered. The frequent collisions of the Brow-
nian particle with the surrounding solvent molecules are described by the stochastic force, F (s)(t),
which is modeled as white noise in order to account for the time scale separation between the slow
motions of the heavy Brownian particle and the fast motions of the much lighter solvent molecules.
The amplitude of the stochastic force is chosen such that the energy loss resulting from the friction
of the Brownian particle with the surrounding solvent is compensated. The friction is here modeled
by the friction force −γv(t) (γ > 0). The time scale separation between the relevant and irrelevant
variables leads to an absence of correlations between the velocity of the Brownian particle and the
stochastic force,

〈v(0) · F (s)(t)〉 ≈ 0. (24)
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The symbol 〈. . .〉 denotes here an equilibrium ensemble average over all initial velocities, v(0). It
follows from (24) and the Langevin equation (23) that the velocity autocorrelation function (VACF)
of the Brownian particle, which is defined through

cvv(t) = 〈v(0) · v(t)〉, (25)

fulfills the closed differential equation

d

dt
cvv(t) + γcvv(t) = 0. (26)

The solution is an exponential function,

cvv(t) = cvv(0)e−γt, (27)

where cvv(0) = 〈v · v〉 = 3v2
th and vth =

√
kBT/M is the thermal velocity. Time scale separation thus

leads to exponentially decaying (auto)correlation functions.

2.2 Generalized Langevin equation through projection

2.2.1 Projectors in the Hilbert space of dynamical variables

In the following we describe the derivation of a generalized Langevin equation, where the dynamics
of relevant and irrelevant and dynamical variables is separated by projection techniques. The goal is
to avoid the assumption of a time scale separation, as the one expressed through Eq. (24). In order
to construct projection operators onto the space of “relevant” dynamical variables, we define a scalar
product of two dynamical variables U and V through the ensemble averages

(U, V ) =

{∫
d2nX ρeq(X)U∗(X)V (X) for classical systems,

tr
{
ρeq ·U † · V

}
for quantum systems.

(28)

Here X ≡ {p, q} is the ensemble of phase space variables for a classical system with n generalized co-
ordinates and momenta, respectively, and ρeq(X) = exp(−βH(X))/Zcl is the equilibrium distribution
function. As usual, β = (kBT )−1 and Zcl =

∫
d2nX exp(−βH(X)) is the classical partition function.

In the quantum case ρeq = exp(−βH)/Z is the density matrix and U and V are matrix representa-
tions of the observables U and V , respectively. Here “tr” stands for the trace and Z = tr {exp(−βH)}
is the quantum partition function. It follows from the definition (28) of the scalar product that

(U, V )∗ = (V,U). (29)

It should be noted that the definition of a scalar product in the space dynamical variables according
to Eq. (28) is chosen such that Expression (24) appears as (approximate) orthogonality of the velocity
of a Brownian particle and the stochastic force. Time correlation functions are then scalar products of
the form

CUV (t) = (U, V (t)). (30)

We suppose now that the relevant dynamical variables to be considered are A1, . . . , Af . They
can be considered as basis vectors spanning an f -dimensional subspace V‖ of the infinite dimen-
sional Hilbert space of all dynamical variables. Using the definition (28) for the scalar product of two
dynamical variables, we can construct a projector on that subspace through (we assume again the
Einstein summation convention)

P = Ak(G
−1)kl(Al, .), (31)

where (G−1)kl are the elements of the inverse of the matrixG, where

Gij = (Ai, Aj). (32)
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In the language of tensor analysis the matrix G is the matrix representation of the metric tensor. The
projection of a dynamical variable U onto the subspace V‖ spanned by A1, . . . , Af is then given by

PU = Ak(G
−1)kl(Al, U) (33)

and for U = Aj one obtains in particular

PAj = Ak(G
−1)kl (Al, Aj)︸ ︷︷ ︸

Glj

= Akδkj = Aj . (34)

Here we have used a common notation for classical and quantum systems and we note that one
would write explicitly

PU =

{
Ak(X)(G−1)kl(Al, U) for classical systems,
Ak(G

−1)kl(Al, U) for quantum systems.
(35)

This emphasizes that the projection of U onto V‖ is a linear combination of the dynamical variables
Ak(X) in case of classical systems and a linear combination of the matrix representations Ak of the
observables Ak in case of quantum systems.

2.2.2 Deriving the Generalized Langevin Equation

To derive a “universal” generalized Langevin equation (GLE) for the dynamical variables of interest
we split the Liouville operator into two orthogonal components,

L = PL + (1−P)L , (36)

where PL generates an infinitesimal displacement in time in the subspace V‖ and (1 − P)L a
corresponding displacement in the orthogonal complement, V⊥, spanned by the “noise variables”.
The total time evolution operator can then be written as [1]

etL = et(1−P)L +

∫ t

0
dτ e(t−τ)L (PL )eτ(1−P)L , (37)

which is proven in the Appendix. Following Zwanzig [1], we act with this operator on (1−P)LAj ,

etL (1−P)LAj = et(1−P)L (1−P)LAj +

∫ t

0
dτ e(t−τ)L (PL )eτ(1−P)L (1−P)LAj ,

which yields an equation of motion for Aj ,

d

dt
(etLAj)︸ ︷︷ ︸
Aj(t)

− etLAk︸ ︷︷ ︸
Ak(t)

(G−1)kl(Al,LAj)︸ ︷︷ ︸
Ωkj

= et(1−P)L (1−P)LAj︸ ︷︷ ︸
f⊥j (t)

+

∫ t

0
dτ e(t−τ)L (PL ) eτ(1−P)L (1−P)LAj︸ ︷︷ ︸

f⊥j (τ)

.

Defining the “projected force”,

f⊥j (t) = et(1−P)L (1−P)LAj (38)

and the matrix Ω,
Ωkj = (G−1)kl(Al,LAj) (39)
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the equation of motion for Aj becomes

d

dt
Aj(t)− ΩkjAk(t) = f⊥j (t) +

∫ t

0
dτ e(t−τ)L P

{
L f⊥j (τ)

}
.

With the explicit form for the projector P we obtain

d

dt
Aj(t)−Ak(t)Ωkj = f⊥j (t) +

∫ t

0
dτ e(t−τ)LAk(G

−1)kl

(
Al,L f⊥j (τ)

)
and noting that exp((t− τ)L )Ak = Ak(t− τ) and that L is skew-hermitian,

(U,L V ) = −(LU, V ), (40)

the above equation of motion for Aj can be written in the alternative form

d

dt
Aj(t)−Ak(t)Ωkj = f⊥j (t)−

∫ t

0
dτ Ak(t− τ) (G−1)kl

(
LAl, f

⊥
j (τ)

)
︸ ︷︷ ︸

Mkj(τ)

.

This equation defines the memory kernel,

Mkj(t) = (G−1)kl

(
LAl, f

⊥
j (t)

)
, (41)

which can be brought to a more convenient form observing that f⊥l (0) = (1−P)LAl and therefore(
f⊥l (0), f⊥l (t)

)
=
(

(1−P)LAl, f
⊥
j (t)

)
=
(
LAl, (1−P)f⊥j (t)

)
=
(
LAl, f

⊥
j (t)

)
,

since Pf⊥l (t) = 0 by construction. Expression (41) is thus equivalent to

Mkj(t) = (G−1)kl

(
f⊥l (0), f⊥j (t)

)
(42)

which shows that the memory kernel is the correlation matrix of the projected forces, pre-multiplied
by the inverse of metric matrix, G. With these prerequisites the equation of motion for Aj takes the
final form of a generalized Langevin equation,

d

dt
Aj(t)−Ak(t)Ωkj +

∫ t

0
dτ Ak(t− τ)Mkj(τ) = f⊥j (t) (43)

which is an exact equation of motion that has been obtained by purely mathematical arguments. It
ressembles though the Langevin equation, considering that f⊥j (t) plays the role of a stochastic force
and the convolution term the role of a (negative) friction force. An interpretation of the coefficients
Ωkj will be discussed in Section 2.4.

2.3 Correlation functions

2.3.1 Memory function equation

In many situations one is interested in time correlation functions of the relevant dynamical vari-
ables, A1, . . . , Af , and not in the trajectories which are obtained by solving the GLE for given initial
conditions. This concerns in particular the interpretation of spectroscopic experiments, where one
measures usually the Fourier transform of time correlation functions. A closed equation of motion
for time correlation functions can be derived from the GLE by noting that(

Ai(0), f⊥j (t)
)

= 0, (44)

6



since Ai(0) ≡ Ai ∈ V‖ and f⊥j (t) ∈ V⊥ are in orthogonal subspaces. Eq. (44) corresponds to the
time separation condition (24) of the Langevin equation, but in the context of the GLE time scale
separation needs not to be assumed since Eq. (44) holds by construction. It follows then from (44)
and from the GLE (43) that the time correlation functions

Cij(t) = (Ai(0), Aj(t)) (45)

verify the closed equation

d

dt
Cij(t)− Cik(t)Ωkj +

∫ t

0
dτ Cik(t− τ)Mkj(τ) = 0 (46)

in which the projected force does not appear anymore. Eq. (46), which is referred to as memory
function equation, is a very powerful tool for modeling time correlation functions by assuming a
particular form for the memory kernel [3].

2.4 Orthonormal dynamical variables and the role of Ω

Starting from a set of arbitrary dynamical variables, A1, . . . , Af , it is always possible to introduce a
set of new dynamical variables, Ã1, . . . , Ãf , such that

(Ãk, Ãl) = δkl, and therefore Ω̃kj = −Ω̃∗jk (47)

Such variables are in particular useful to understand the role of the coefficients Ωkj in the GLE (43)
and the associated equation of motion (46) for the correlation matrix Cij(t). The new variables,
Ã1, . . . , Ãf , can always be found be introduced by performing a Gram-Schmidt orthogonalization
of the basis {Ai}, and technically this can be realized by a Cholesky-decomposition of the positive
definite matrix C(0). Writing

Ai = TkiÃk,

where Tkl are constant coefficients, we obtain

Cij(0) = (TkiÃk, TljÃl) = T ∗ki (Ãk, Ãl)︸ ︷︷ ︸
δkl

Tlj = T ∗kiTkj ,

which is indeed obtained by a Cholesky-factorization [4],

C(0) = T † · T ,

where T has upper triangular form.

In the new variables the memory function equation (46) takes the matrix form

d

dt
C̃(t)− C̃(t) · Ω̃ +

∫ t

0
dτ C̃(t− τ) · M̃(τ) = 0, (48)

where
C̃(0) = 1 and Ω̃

†
= −Ω̃. (49)

We assume now that1

Ω̃ 6= 0 and that M̃(t) ≈ 0, (50)

1One may well have the situation Ω̃ = 0 (see Section 2.5), but in this case the memory kernel should not vanish, too,
since this would lead to the trivial and uninteresting result C̃(t) = 1 for all times.

7



i.e. that the memory function is negligible. In this case, the correlation matrix C̃(t) fulfills approxi-
mately the equation of motion of a rotation matrix,

d

dt
C̃(t) = C̃(t) · Ω̃, (51)

where Ω is a constant “angular velocity” matrix. The solution for the initial condition C̃(0) = 1 is

C̃(t) = etΩ̃ (52)

and C̃(t) fulfills indeed the orthogonality relation

C̃
†
(t) · C̃(t) =

(
etΩ̃
)†
· etΩ̃ = etΩ̃

†
· etΩ̃ = e−tΩ̃ · etΩ̃ = 1, (53)

since Ω̃ is skew-hermitian. Using the Frobenius (Euclidean) matrix norm [4],

‖C̃(t)‖ ≡
√

tr
{
C̃
†
(t) · C̃(t)

}
, (54)

it follows from Eq. (52) that
‖C̃(t)‖ = f, (55)

and solving the exact equation of motion (51) for the correlation matrix, leads to “damping effects”2

produced by the memory kernel, such that

‖C̃(t)‖ t→∞= 0, (56)

with the initial value ‖C̃(0)‖ = f . In the general case, which includes the memory kernel, Eq. (51) is
only valid at t = 0, which shows that

Ω̃ =
d

dt
C̃(t)

∣∣∣∣
t=0

, (57)

since C̃(0) = 1.

2.5 Retrieving the Langevin equation for Brownian motion from the GLE

Brownian dynamics, as described by the Langevin equation, is a stochastic model for a Brownian
particle, whereas the GLE is by construction an exact equation of motion, where the underlying
dynamics is deterministic. Considering a classical mechanical system for the Brownian particle and
the solvent molecules in which it is immersed, the dynamics of the total system is described by
Hamiltonian mechanics for 3N coordinates qk and 3N associated momenta pk, where N is the total
number of particles in the system. Choosing the the first three coordinates and velocities to be those
of the Brownian particle, the “relevant” dynamical variables, Ak, are the components of the velocity
of the Brownian particle in a Cartesian coordinate system,

Aj = vj , j = 1, 2, 3. (58)

To go from the Hamiltonian dynamics of the Brownian we make the basic assumption is that the
projected force varies much faster than the velocity of the Brownian particle, such that the projected
forces are delta-correlated, (

f⊥l (0), f⊥j (t)
)

= aδljδ(t). (59)

2Strictly speaking, the term “damping” should be replaced by “decay” or “effective damping” since the GLE is a deter-
ministic equation of motion.
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The constant a is here still to be determined by the requirement that friction and fluctuation mut be
balanced, such that the energy of the Brownian particle is conserved on average. Here the compo-
nents of the metric matrix read (see Appendix C),

Gkl = (vk, vl) = δkl(vk, vk) = v2
thδkl, (60)

where v2
th = kBT/M is the mean squared velocity of the Brownian particle in an arbitrary direction.

It follows then from Eq. (42) that the memory kernel takes the form

Mkj(t) = av−2
th δkjδ(t), (61)

expressing “memory-less” dynamics. In the framework of classical mechanics of a tagged Brownian
particle we have moreover (see Appendix C)

Ωkj = 0 (62)

if one assumes a Hamilton function of the standard form, H(p, q) = T (p) + U(q), where pk = Mkvk
and T (p) and U(q) are, respectively, the kinetic and the potential energy. On account of Eqs. (42)
and (59) the equation of motion for vj becomes then

d

dt
vj(t) +

∫ t

0
dτ vk(t− τ)av−2

th δkjδ(τ)︸ ︷︷ ︸
≈av−2

th vj(t)/2

= f⊥j (t),

noting that the integral
∫ t

0 dτ . . . includes half a delta function for any t > 0. Setting

γ = av−2
th /2 (63)

we obtain the approximated equation of motion

d

dt
vj(t) + γvj(t) = f⊥j (t), (64)

which is identical with the Langevin equation (23) if one sets f⊥j (t) = F
(s)
j (t)/Mj . Eq. (63) fixes

a = 2v2
thγ and assures that the mean (kinetic) energy of the Brownian particle is constant. It follows

from (64) and from the orthogonality relation(
vi, f

⊥
j (t)

)
= 0 (65)

that the components of the velocity correlation matrix of the Brownian particle,

cij(t) = (vi(0), vj(t)) , (66)

satisfy the equation of motion
d

dt
cij(t) + γcij(t) = 0. (67)

The solution is

cij(t) =

{
v2

the
−γt if i = j,

0 if i 6= j,
(68)

where it has been used that cij(0) = (vi, vj) = 0 for i 6= j. We note in this context that is has been
shown by computer simulation and by simple scaling arguments that the velocity autocorrelation
function of a tagged particle in a simple liquid becomes close to exponential if its mass is raised by a
factor of 10 and more compared to the mass of the remaining “solvent molecules” [5, 6].
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A Proof of formula (37)

Formula (37) can be proven by Laplace transform.3 Using the convolution theorem4 one obtains

1̂

s− L̂
=

1̂

s− Q̂L̂
+

1̂

s− L̂
(P̂ L̂)

1̂

s− Q̂L̂
. (69)

The righthand side of (69) may be rearranged to give

1̂

s− Q̂L̂
+

1̂

s− L̂
(P̂ L̂)

1̂

s− Q̂L̂
=

1̂

s− L̂
(s− L̂)

1̂

s− Q̂L̂
+

1̂

s− L̂
(P̂ L̂)

1̂

s− Q̂L̂

=
1̂

s− L̂
(s− L̂+ P̂ L̂)

1̂

s− Q̂L̂
=

1̂

s− L̂
(s− (P̂ + Q̂︸ ︷︷ ︸

=1̂

)L̂+ P̂ L̂)
1̂

s− Q̂L̂

=
1̂

s− L̂
(s− Q̂L̂)

1̂

s− Q̂L̂
=

1̂

s− L̂
.

This proves Eq. (69) and finally Eq. (37) by inverse Laplace transform.

B Proof of the symmetry relation (40)

B.1 Classical systems

Here we distinguish explicitly between generalized coordinates and momenta and write

(U,L V ) =
1

Zcl

∫ ∫
dnpdnq e−βH(p,q)A∗l (p, q)L V (p, q),

where Zcl =
∫ ∫

dnpdnq exp(−βH(p, q)) is the classical partition function. It follows then that

(U,L V ) =
1

Zcl

∫ ∫
dnpdnq e−βH(p,q)U∗(p, q)L V (p, q)

=

∫ ∫
dnpdnq e−βH(p,q)U∗(p, q)

{
∂H

∂pi

∂V (p, q)

∂qi
− ∂H

∂qi

∂V (p, q)

∂pi

}
−
∫ ∫

dnpdnq e−βH(p,q)V (p, q)

{
∂H

∂pi

∂U∗(p, q)

∂qi
− ∂H

∂qi

∂U∗(p, q)

∂pi

}
= −(LU, V ).

Here partial integration has been used for the transition from the second to the third line, assuming
that all phase space functions vanish at infinity. It thus follows that

(U,L V ) = −(LU, V ) �

B.2 Quantum systems

Noting that ρeq = exp(−βH)/Z, where Z = tr{exp(−βH)}, we write

(U,L V ) =
1

Z
tr
{
e−βH ·U † ·

(
i

~
[H,V ]

)}
=

1

Z
tr
{
e−βH ·U † ·

(
i

~
(H · V − V ·H)

)}
.

3The Laplace transform of an arbitrary function f(t) is defined as f̂(s) =
∫∞
0
dt e−stf(t), with <{s} > 0, and for the

time derivative of f(t) one obtains the correspondence f ′(t) ↔ sf̂(s) − f(0). The inverse Laplace transform is defined
through f(t) = 1

2πi

∮
ds estf̂(s).

4The convolution theorem of the Laplace transform reads
∫ t
0
f(t− τ)g(τ)↔ f̂(s)ĝ(s).
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Starting from this definition, we obtain

(U,L V )∗ =
1

Z
tr
{(
− i
~

(V † ·H −H · V †)
)
·U · e−βH

}
=

1

Z
tr
{
e−βH ·

(
− i
~

(V † ·H −H · V †)
)
·U
}

=
1

Z
tr
{
e−βH ·

(
− i
~

(V † ·H ·U −H · V † ·U)

)}
=

1

Z
tr
{
e−βH ·

(
− i
~

(V † ·H ·U − V † ·U ·H)

)}
=

1

Z
tr
{
e−βH · V † ·

(
− i
~

[H,U ]

)}
= −(V,LU),

where it has been used that

1

Z
tr
{
e−βH ·H · V † ·U

}
=

1

Z
tr
{
H · e−βH · V † ·U

}
=

1

Z
tr
{
e−βH · V † ·U ·H

}
.

With (V,LU) = (LU, V )∗, we have finally

(U,L V ) = −(LU, V ) �

C Proof of Eq. (62)

We consider classical Hamiltonian mechanics with a Hamilton function of the standard form

H(p, q) =

3N∑
k=1

p2
k

2Mk
+ U(q1, . . . , q3N ) ≡ T (p) + U(q), (70)

where T (p) is the kinetic energy and the U(q) the potential energy. The equilibrium phase space
distribution function factorizes as

ρeq(p, q) =
e−βT (p)

Zp

e−βU(q)

Zq
, (71)

where Zp =
∫
dnp exp(−βT (p) and Zq =

∫
dnq exp(−βU(q). Supposing that the coordinates of the

Brownian particle are the first three coordinates and that M1 = M2 = M2 = M , we have

Gkl = (vk, vl) = M−2

∫
dnp exp(−βT (p))pkpl = v2

thδkl, (72)

where vth =
√
kBT/M , and therefore

Ωkj = (G−1)kl(vl,L vj) = (δkl/v
2
th)(vl,L vj), k, j = 1, 2, 3.

Using that (vl,L vj) = (pl,L pj)/M
2, we compute

(pl,L pj) = −(pl, ∂H(p, q)/∂qj) = −(pl, ∂U(q)/∂qj).

With (71) the last term becomes

−(pl, ∂U(q)/∂qj) =

(
Z−1
p

∫
d3Np ple

−βT (p)

)
︸ ︷︷ ︸

=0

(
Z−1
q

∫
d3Nq e−βU(q)

(
−∂U
∂qj

))
︸ ︷︷ ︸

mean force=0

= 0,

where l, j = 1, 2, 3. Therefore
Ωkj = 0 � (73)
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