When all else fails: do-it-yourself
programming

Konrad Hinsen
Centre de Biophysique Moléculaire (CNRS)
Orléans, France

8 July, 2000

Biomolecular simulations

Standard tasks:

e Run an MD simulation.
e Calculate atomic fluctuations.
e Visualize trajectory.

= standard programs

Nonstandard tasks:

e Automatize a multistep operation.
e Extract data from a file.

e File format conversion.

e Implement new algorithms.

e Nonstandard visualization.

= do-it-yourself programming

Programming options

Shell scripts:

e quick to write

e Work on any (Unix) system
e very limited possibilities

e difficult to read

e very slow execution

Suitable for: automatization of simple operations

Low-level languages (C, C++, Fortran, .. .):

e fast execution

e good development tools

e require significant experience
e long development times

e can be difficult to read

Suitable for: time-critical algorithms

Programming options

High-level languages (Perl, Python , Ruby, ...):

complete programming languages
easy to learn

fast development

easy to read

Interface to low-level languages
slow execution

Suitable for: everything that is not time-critical

Empirical rule: 90% of any program is not time
critical

Therefore:

Everyone should use a high-level language.

Developers of numerical methods must also
know a low-level language.

High-level languages

Features:

e Interpreted (no compilation)

e High-level data types (lists, dictionaries, ...)
e No variable type declarations

e Automatic memory management

e Large library of existing code

Applications:

e Complete programs (file format conversion, ...)
e “Glue” between other programs

e “Scripting” of library code

e Mixed high/low-level programs

Python

Features:

Clean syntax

Object-oriented
(— problem-oriented data structures)

Good low-level language interface
(C, C++, Fortran)

Free and portable implementation

Examples:

Sum up numbers in the third column of a text file

from Scientific.I0.TextFile import TextFile
from string import atof, split
sum = O.
for line in TextFile(’my_data’):

sum = sum + atof(string.split(line) [2])
print sum

Python

Examples:

e Calculate the radius of gyration of a protein

from MMTK.Proteins import Protein
import Numeric

protein = Protein(’protein.pdb’)
center = protein.centerOfMass()
r_sq = 0.
for atom in protein.atomList():
mass = atom.mass()
distance = atom.position()-center
r_sq = r_sq + mass*distance*distance
r_sq = r_sq/protein.mass()
print Numeric.sqrt(r_sq)

Modules

Python code is structured into modules. Objects in
another module must be imported before they can
be used. One can import the module, individual
objects from a module, or everything from a
module.

Examples:

import Numeric
print Numeric.sin(Numeric.pi/3)

from Numeric import pi, sin
print sin(pi/3)

from Numeric import *
print sin(pi/3)
Modules can contain other modules:

from Scientific.Geometry import Vector
print Vector(l., -2., 0.5).length()

from Scientific import Geometry
print Geometry.Vector(l., -2., 0.5).length()

import Scientific
print Scientific.Geometry.Vector(1l., -2.,

o« o

Basic math

Numbers
Integer 0,1,2,3,-1,-2,-3
Real 0., 3.1415926, -2.05e30, 1le-4

Imaginary/Complex 1j, -2.5j, 3+4j

Special numbers: Numeric.pi, Numeric.e

Arithmetic

Addition 3+4, 42.+3, 1+0j
Subtraction 2-5, 3.-1, 3j-7.5
Multiplication 4*3, 2*3.14, 1j*3]

Division 1/3, 1./3., 5/3]
Power 1.5**3, 2j**2, 2**-0.5
Functions

Numeric.sgrt, Numeric.log, Numeric.log10,
Numeric.exp, Numeric.sin, Numeric.cos,
Numeric.tan, Numeric.arcsin, Numeric.arccos,
Numeric.arctan, Numeric.sinh, Numeric.cosh

Text strings

Two forms: >abc’ or "abc"
Multiline strings:

>?’This string extends
over two lines.’’’

Control characters: >end of line:\n’

Concatenation: ’abc’ + 'def’/ gives ’abcdef’
Repetition: 3*"ab" gives "ababab"

Indexing: >abc’ [0] IS ’a’, ’abc’ [1:] IS *bc’
String operations in module string:

strip, split, join, atoi, atof, find, index, replace and
many others

Lists

Lists are sequences of arbitrary objects:

some_prime_numbers = [2, 3, 5, 7, 11]
names = [’Smith’, ’Jones’]
a_mixed_list = [3, [2, ’b’]]

Elements and subsequences are accessed by
iIndexing:

print names[O0]

names[1] = ’Python’

print a_mixed_list[-1]
some_prime_numbers[3:] = [17, 19, 23, 29]

Concatenation: [1, 2]+[’a’] gives [1, 2, ’a’]
Repetition: 3«[0] is [0, 0, 0]
Some more list operations:

names .append(’van Rossum’)
some_prime_numbers.sort ()
a_mixed_list.reverse()
print len(names)

print names.index(’Smith’)

Dictionaries

Dictionaries map (almost) arbitrary keys to arbitrary
values.

Examples:

atomic_mass = {’H’: 1., ’C’: 12., ’S’: 32.}
atomic_mass[’0’] = 16.
print atomic_mass[’0’] + 2*atomic_mass[’H’]

Lookup with default value:
atomic_mass.get(’X’, 0.)

Applications:

e Storing tables
e Counting (counted objects are keys!)
e Classifying (values are lists)

Flow control

Conditions:

if a > b:

print ’a > b’
elif a ==

print ’a == b’
else:

print ’a < b’

Loops over sequences (lists, strings, ...):

for x in [1.2, 2.5, -0.2]:

for n in range(10):

Conditional loops:

while n > O:

The block structure is defined by indentation.

Functions

def square(x):
return x**2

print square(3)

Multiple return values:

def sum_and_difference(a, b):
return atb, a-b

x, y = sum_and_difference(1, 2)

Variables created in a function are local:

def square(x):
Sq = X**2
return sq

sq = 5.

print square(1.)

print sq

prints 5., not 1.

Error handling

def inverse(x):
return 1./x
print inverse(0)

Output:

Traceback (innermost last):
File "demo.py", line 3, in 7
print inverse(0)
File "demo.py", line 2, in inverse
return 1./x
ZeroDivisionError: float division

Intercepting an error:

try:
print inverse(0)

except ZeroDivisionError:
print ’Division by Zero’

Object-oriented programming
Programming by creating problem-specific data
types and operations for these data types.
Example: a simple representation for atoms

from Scientific.Geometry import Vector
class Atom:

def init__(self, name, position):

self .name = name
self.position = position

def translateBy(self, vector):
self .position = self.positiont+vector

atom = Atom(’C-alpha’, Vector(i., 0., 0.))
atom.translateBy(Vector(0.1, -0.2, 0.05))

Procedural approach:

from Scientific.Geometry import Vector

atom = [’C-alpha’, Vector(l., 0., 0.)]
atom[1] = atom[1] + Vector(0.1, -0.2, 0.05)

Problem: code that works on atom data must

Object-oriented programming

Advantages of OOP:

e Encapsulation: users of a class don’t need to
know its implementation. All code that knows
how atom data are stored is located in the class
Atom.

Advantage: the implementation can be
changed without affecting client code.

e Data representations are more universal than
procedures.

Advantage: classes can be reused for other
projects.

e Classes directly represent real-world objects.

Advantage: code becomes easier to
understand.

Object-oriented programming

Functions defined in classes are called methods.
The class of an object determines which method is
called (polymorphism).

Suppose we also have a Molecule class:

class Molecule:

def __init__(self, atoms):
self.atoms = atoms

def translateBy(self, vector):
for atom in self.atoms:
atom.translateBy(vector)

m = Molecule([Atom(’01’, Vector(0., 0., 0.)),
Atom(’02’, Vector(0., 0.12, 0.))1)
Then x.translateBy (v)

e calls Atom.translateBy if x is an atom
e calls Molecule.translateBy if x iSs a molecule
e reports an error if x is something else

Advantage: higher-level code can be written such

Object-oriented programming

Inheritance is the definition of a data type as a
specialization of an existing one.

class Ion(Atom):

def __init__(self, name, position, charge):
Atom.__init__(name, position)
self.charge = charge

b

ion = Ion(’Fe, Vector(0., 1., 0.), 2.)
0.3, 0.05))

ion.translateBy(Vector(-0.1, -

An Ion inherits all the features of an Atom, and
adds its own ones (the charge).

Advantage: several specializations of general
classes can be written without changing existing
(tested!) code and without duplicating code.

Profiting from existing code

Python standard library:

string and text processing

object serialization: write any object to a file
thread support

database interfaces

profiling and debugging

most internet protocols

complete Web server

access to common data and file formats,
iIncluding HTML and XML

Other free libraries and packages:

Numerical Python, Scientific Python
plotting

signal processing

Interfaces to scientific data formats
distributed objects (CORBA etc.)

Zope (Web server management system)

