
EMBO Practical Course on Biomolecular
Simulations: Normal mode analysis

Konrad Hinsen
Centre de Biophysique Moléculaire (CNRS)
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1 Getting started

1.1 Python and MMTK

For the normal mode exercises we will use the Molecular Modelling Toolkit
(MMTK). This is a library that contains most standard techniques (and some
non-standard ones) for molecular simulations, and is written mostly in a high-level
language called Python. The main goal of the exercises is to become familiar with
normal mode techniques, not with MMTK or Python, and therefore the techni-
cal details are kept to a minimum. Python will appear again in the practical on
programming, and will be treated in more detail there.
For more information, consult the following references:

• Python: http://www.python.org/

• MMTK: http://dirac.cnrs-orleans.fr/MMTK/

To run any of the examples in this practical, do one of the following:

• Type “python” (without the quotes) and then type in the example code
line by line. To exit from Python, type Ctrl-D.

• Type the example code into a file with an editor of your choice and then
type “python -i example.py” (without the quotes), assuming that your
file is called example.py. To exit from Python, type Ctrl-D. If you do not
use the “-i”, Python will exit immediately after executing the program.

More convenient methods of using Python exist, but these two one have the
advantage of working on all computers without additional programs.
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When typing Python code, watch out for the number of spaces at the beginning of
a line. Python uses this information for determining the structure of a program,
i.e. to find out which lines belong to a loop or to a conditional block. The precise
number of spaces is not important, but within one block all lines must have the
same number of initial spaces, i.e. the first characters must line up properly.
Some of the material and exercises are not essential or require special knowledge. They are

indicated by this text style. You are invited to look at these parts if you have time, but it

is not required to go on with the rest.

2 Preliminary exercises

Run the following code:

from MMTK import *

molecule = Molecule(’water’)

molecule.view()

The first line tells Python to make the core parts of MMTK available; all examples
will begin with that line. The second line creates a water molecule which is
assigned to the variable molecule. Since no conformation is specified, a default
conformation is used. The last line starts a visualization program (VMD in our
installation) for viewing the water molecule.
The initially somewhat unusual syntax in the last line occurs very frequently in
Python. It executes an operation named “view” which was defined for the kind of
objects to which “molecule” belongs. Anything that can be visualized supports
an operation called “view”, although the details of what it does may vary. For
example, we will see later that for normal modes this operation involves showing
an animation.

A slightly more complicated example:

from MMTK import *

universe = InfiniteUniverse()

universe.addObject(Molecule(’water’, position=Vector(0., 0., 0.)))

universe.addObject(Molecule(’water’, position=Vector(0.5, 0., 0.)))

universe.view()

Here the second line creates a universe object. A universe is a complete system
definition for a simulation; it consists not only of the molecules, but also a de-
scription of their environment: geometry (infinite or periodic), force field (none
define in the example), a thermostat (none present here) etc.
The following two lines add two water molecules to the universe. The first
molecule has its center of mass at the coordinate origin, the second one is shifted
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by 0.5 nm along the x-axis. The length unit in MMTK is the nanometer; if you
prefer to specify Ångstrom values, replace 0.5 by 5*Units.Ang.

We still cannot calculate energies, because there is no force field yet. MMTK
provides several force fields, but the only one suitable for our purposes is the
Amber 94 force field. Force fields are not in the core part of MMTK, so they
must be imported explicitly. And we must tell the universe which force field to
use. This yields the following code:

from MMTK import *

from MMTK.ForceFields import Amber94ForceField

universe = InfiniteUniverse(Amber94ForceField())

universe.addObject(Molecule(’water’, position=Vector(0., 0., 0.)))

universe.addObject(Molecule(’water’, position=Vector(0.5, 0., 0.)))

print universe.energy()

If you want to know which force field terms contribute how much, type

print universe.energyTerms()

3 A simple application: water

Now we are ready to tackle normal mode calculations. We start with a single
water molecule, which we assign to a variable in order to be able to work on it
later:

from MMTK import *

from MMTK.ForceFields import Amber94ForceField

universe = InfiniteUniverse(Amber94ForceField())

molecule = Molecule(’water’)

universe.addObject(molecule)

The first step is energy minimization. MMTK provides two “minimization en-
gines” which use different algorithms. We use the conjugate gradient minimizer,
which is more efficient at getting close to a minimum than the simpler steepest-
descent minimizer:

from MMTK.Minimization import ConjugateGradientMinimizer

from MMTK.Trajectory import StandardLogOutput

minimizer = ConjugateGradientMinimizer(universe,

actions=[StandardLogOutput(1)])

minimizer(convergence = 1.e-4, steps = 100)
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The first two lines are imports, nothing new. Then a minimization engine is
created for the universe. The second parameter (“actions=...”) is optional. It
specifies additional actions that are performed periodically, usually for generation
output. StandardLogOutput(1) prints some relevant information at every step
as minimization goes on.
The last line starts the minimization engine. It is told to continue until it has
converged to the minimum such that the average root-mean-square force on the
atoms is 10−4 kJ/mol/nm or less, or to stop after 100 steps if convergence is
not yet reached. The minimization takes only a few step because the default
configuration for water is very close to the energy minimum in the Amber 94
force field.

Now we are ready for the normal mode calculation:

from MMTK.NormalModes import NormalModes

modes = NormalModes(universe)

3.1 Analysis

First of all we look at the frequencies:

for mode in modes:

print mode

As expected, the first six modes (numbered 0 to 5) have frequencies very close to
zero; those with a j in the end are imaginary. The frequency unit is 1 THz = 1 ps−1.
The modes with zero frequency represent the rigid-body motions of the molecule.

Exercise: Compare the time scales of the vibrations to the typical time steps
used in Molecular Dynamics simulations.

Exercise: Calculate the distance between the quantum energy levels of a harmonic os-

cillator (hν, or Units.h*modes[6].frequency for the computer) and compare it to the

thermal energy at 300 K (300.*Units.k B). Is classical dynamics a reasonable approxima-

tion for a water molecule?

To get a first impression of what the modes look like, we can look at an animation:

modes[6].view()

By default, the amplitudes of the modes are calculated to correspond to the
amplitude of thermal fluctuations at a temperature of 300 K.

Exercise: Give an approximate description of the three modes with non-zero
frequency from the animations.
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Next we do a quantitative analysis, using the two bond lengths (O-H1 and O-H2)
and the bond angle (H1-O-H2) as convenient coordinates. First we must calculate
their values in the minimized configuration:

d_O_H1 = universe.distance(molecule.O, molecule.H1)

d_O_H2 = universe.distance(molecule.O, molecule.H2)

a_H1_O_H2 = universe.angle(molecule.H1, molecule.O, molecule.H2)

You might wonder why the universe is mentioned in the calculation. The reasons
is that distances and angles have to be calculated differently in periodic systems,
and this information is stored in the universe.
Next we construct a configuration in which all atoms are displaced along the
directions that correspond to the first normal mode:

minimum_configuration = copy(universe.configuration())

displaced_configuration = minimum_configuration + modes[6]

Then we calculate the internal coordinates for the displaced configuration:

universe.setConfiguration(displaced_configuration)

displaced_d_O_H1 = universe.distance(molecule.O, molecule.H1)

displaced_d_O_H2 = universe.distance(molecule.O, molecule.H2)

displaced_a_H1_O_H2 = universe.angle(molecule.H1, molecule.O,

molecule.H2)

universe.setConfiguration(minimum_configuration)

Finally, we calculate the changes in the three internal coordinates:

print "Change in distance O-H1:", displaced_d_O_H1 - d_O_H1

print "Change in distance O-H2:", displaced_d_O_H2 - d_O_H2

print "Change in angle H1-O-H2:", displaced_a_H1_O_H2 - a_H1_O_H2

Exercise: Repeat this calculation for the three non-zero modes and compare the
results with your visual analysis.
Exercise: The “CRC Handbook of Physics and Chemistry” gives the following
spectroscopical values:

Mode Frequency [cm−1]
symmetric stretch 3657
bend 1595
asymmetric stretch 3756

Compare with the results of the calculation.
Note: For historical reasons, spectroscopists measure frequencies in inverse cen-
timeters. Multiply by the speed of light to obtain real frequency units. With
MMTK, the conversion can be written as e.g. 3657*Units.invcm.
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4 A more interesting application: an α-helix

Since a normal mode study on a complete protein takes too much time, we limit
ourselves to a piece of a protein: the 20 last residues (i.e. the C-terminal portion)
of myoglobin (PDB entry 1MBD), which forms an α-helix. The original extract
can be found in the file helix original.pdb. A prepared version (with hydro-
gens added and energy minimized up to a gradient RMS of 10−3 kJ/mol/nm) can
be found in the file helix minimized.pdb.

Exercise: Compare the original and the minimized configuration visually.

The following Python program calculates the RMS distance between the original
and the minimized configurations:

# Construct system

from MMTK import *

from MMTK.Proteins import Protein

universe = InfiniteUniverse()

molecule = Protein(’helix_original.pdb’)

universe.addObject(molecule)

original_conf = copy(universe.configuration())

# Load minimized configuration

from MMTK.PDB import PDBConfiguration

pdb = PDBConfiguration(’helix_minimized.pdb’)

pdb.applyTo(molecule)

minimized_conf = copy(universe.configuration())

# Calculate RMS distance

print "RMS distance:", molecule.rmsDifference(original_conf,

minimized_conf)

Whereas a water molecule is constructed simply by specifying its name (which
MMTK finds in its database), proteins are usually constructed from PDB files.
This happens in line 6. The class Protein used here has to be imported explicitly,
because it is not in the core part of MMTK. It handles a lot of operations: load
the PDB file, generate a model for the protein, add missing hydrogen positions,
and find disulphur bridges.
The file for the minimized configuration must be handled differently, because we
do not want to create a second protein, but assign a new configuration to an
existing one. This is handled by another class, which is also used internally when

6



a protein is created. The details are explained in the MMTK manual [2] for
details.

Note: To get a more detailed description of the major changes, we can ask for the atoms
that moved by the largest distance. This code will not be explained here, but it serves to
illustrate what can be done with a few lines of Python code:

# Find the 10 atoms that moved most
distances = []
for atom in molecule.atomList():

dist = (original_conf[atom]-minimized_conf[atom]).length()
distances.append([atom, dist])

distances.sort(lambda x, y: cmp(x[1], y[1]))
for atom, dist in distances[-10:]:

print atom, "moved by", dist, "nm"

The minimization and normal mode calculation proceeds just like for water, only
one line must be changed:

molecule = Protein(’helix_minimized.pdb’)

However, to save time we will minimize only up to a gradient RMS of 10−2

kJ/mol/nm, and allow some more steps:

minimizer(convergence = 1.e-2, steps = 500)

After the normal mode calculation, it is advisable to save the result in a file, then
it does not have to be repeated later:

save(modes, ’helix.modes’)

Later, the modes can be retrieved by executing

modes = load(’helix.modes’)

Now run the minimization and the normal mode calculation. This will take some
time.

Exercise: The input structure had been minimized to 10−3 kJ/mol/nm. Yet we
minimize it again, and only to 10−2 kJ/mol/nm, and it still takes a considerable
number of steps. Why? (Hint: looking at the PDB file might give you an idea.)

Exercise: Look at animations for some modes at the lower and upper end of the
spectrum, as well as in the middle. Try to characterize the size of the units that
move in each part of the spectrum.
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4.1 Analysis

With so many densely spaced modes, it is useful to plot a frequency spectrum,
which is nothing but a histogram of the frequency values. Since we have about
1000 modes, we can make a nice histogram with 100 bins:

from Scientific.Statistics.Histogram import Histogram

from Gnuplot import plot

frequencies = []

for i in range(6, len(modes)):

frequencies.append(modes[i].frequency)

histogram = Histogram(frequencies[6:], 100)

plot(histogram)

Note that we can’t just make a histogram of modes.frequencies because it
contains imaginary numbers. The first six modes have to be excluded.

Exercise: The frequency spectrum of the helix looks much like the frequency
spectrum of a complete protein, except at the very lower end. Can you explain
why, based on your characterization of the modes in different frequency intervals?

Exercise: Which kinds of motions can safely be treated classically, and which ought to

be treated quantum-mechanically?

As an example for calculating thermal averages from normal modes, we will calculate the
thermal fluctuations of the atoms in the helix. These fluctuations are often compared to
crystallographic temperature factors, although temperature factors also depend on other
effects. The fluctuation of atom i can be expressed in terms of normal modes as

fi =
∑

modes j

kBT

miω2
j

∣∣∣u(j)
i

∣∣∣2 ,
where ωj = 2πνj is the angular frequency of mode j and u(j)

i is the displacement of atom
i in mode j.
The following code calculates the fluctuations and plots those of the Cα atoms as a function
of the residue number:

fluctuations = 0.
for i in range(6, len(modes)):

fluctuations = fluctuations + 0.5*modes[i]*modes[i]
calpha = []
for chain in molecule:

for residue in chain:
calpha.append(fluctuations[residue.peptide.C_alpha])

plot(calpha)

Note that again the first six modes are excluded from the sum. Note also that the atomic

displacements are already scaled by the amplitudes of thermal vibrations, such that only a

factor 1/2 remains to be applied to obtain the fluctuations.
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5 Domain analysis of proteins

Now we will turn to full proteins, even big ones, and try to analyze their slowest
collective motions in terms of dynamical domains, i.e. regions that behave approx-
imately like rigid bodies and which are seperated by more flexible interdomain
regions. This could be done with short Python scripts as well, but we will use an
interactive program called DomainFinder, which is written in Python and uses
MMTK internally. To start DomainFinder, type “DomainFinder” (without the
quotes). The following paragraphs give a short description of DomainFinder, for
a complete description see the DomainFinder manual [3]

5.1 Normal mode calculation

After starting DomainFinder, load your protein structure using “Load reference
structure...” in the File menu. DomainFinder will then propose reasonable values
for the number of calculated modes and the number of modes kept for analysis.
The number of calculated modes determines the accuracy of the normal mode
calculations; the more modes you calculate, the better the description of the
motions. The value proposed by DomainFinder should be taken as a minimum
value. The number of modes kept for analysis has no influence on the quality of
the results; it exists purely for efficiency reasons. The proposed value should in
general not be changed.
To start the normal mode calculation, press the button labeled “Calculate modes”.
The calculation takes from a few seconds to a few minutes. When the calculation
is finished, DomainFinder displays a list of the modes with non-zero frequencies
and the actual number of calculated modes. This number is in general different
from the one you entered, because not all values are possible for technical reasons
(see Ref. [4] for an explanation).
Now select the modes that you want to use for the deformation and domain
analysis. To help with this choice, the normal mode list indicates the average
deformation energy per residue for each mode. A deformation energy is associ-
ated with every atom; low values characterize rigid regions, whereas high values
indicate flexible regions. A low average deformation energy thus indicates a mode
with large rigid regions, which has a good chance of describing domain motions.
There is no simple recipe for selecting an optimal set of modes (otherwise Domain-
Finder would apply it automatically!). As a general guideline, look for jumps in
the average deformation energy from one mode to the next, and choose all modes
before such a jump; there is no justification for selecting only some out of a larger
set of modes with very similar deformation energies. Start with few modes, and
add more modes only if you are not satisfied with the amount of detail in the
domain analysis.
After selecting the modes, you must choose the deformation threshold that de-
fines which regions are sufficiently rigid to be candidates for domains. This choice
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is related to the mode selection; to have a reasonable number of rigid regions,
the deformation threshold should be of the same order of magnitude as the av-
erage deformation energy of the modes you have chosen. A higher deformation
threshold leads to larger rigid regions; if you find later that your domains cover
too small a part of the protein, you should increase the deformation threshold.

5.2 Deformation analysis

The entry “Show deformation” in the Deformation menu shows the reference con-
formation with a color code representing the deformation energies. Blue atoms
correspond to small deformation energies, green atoms are close to the deforma-
tion threshold, and red atoms are in particularly flexible regions of the protein.
Blue and green atoms are thus below the deformation threshold and candidates
for domains in a subsequent domain analysis; if you find that most of your atoms
are yellow or red, you should increase the deformation threshold before starting
the domain analysis. However, you should also consider the possibility that your
protein has no domains, either because it is too flexible to allow a description of its
slow motions by quasi-rigid substructures, or because the deformation associated
with these motions is uniformly distributed over the whole protein.

5.3 Domain analysis

The techniques implemented in DomainFinder allow an identification of three
types of regions in a protein [5]:

• Flexible regions, for which a description of the motion by rigid bodies is
not useful. These regions are recognized during deformation analysis and
not used at all during domain analysis.

• Rigid regions with uniform motion. These regions are recognized as rigid
during deformation analysis; domain analysis then groups them together
according to the similarity of their overall motion. However, these regions
are not rigid bodies in any strict sense; they do show internal deformations,
but these deformations do not destroy the uniformity of the overall motion.
The term “dynamical domain” is best interpreted to describe these rigid
regions only.

• Intermediate regions, whose internal deformation is sufficiently small ev-
erywhere, but systematic enough that over the size of the region it adds
up to produce sufficiently different overall motion between extremal parts
of the region. Such intermediate regions often occur in between dynamical
domains.
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The central parameter which allows a distinction between rigid and intermediate
regions is the “domain coarseness” parameter. It specifies how similar the global
motions in a region must be to be considered similar enough to form a domain (see
Ref. [5] for details). However, this parameter does not have one specific “best”
value which one should find in order to obtain the “right” domain decomposition.
It is a parameter which should be varied, and the ensemble of results for several
values of this parameter provides the information for identifying domains and
intermediate regions.
In order to obtain the motion parameters necessary for the domain analysis,
DomainFinder first divides the protein into small cubic regions containing on
average six residues. For each cube, six motion parameters are calculated, three
for translation and three for rotation. In case of a normal mode based analysis,
there are six parameters per mode; this is one reason why a normal mode based
analysis usually gives better results. The cubes are then grouped into domains
according to the similarity of their motion parameters. For a single value of the
domain coarseness, it is not possible to distinguish between rigid and interme-
diate regions; the word “domain” therefore refers to both type of regions in the
program.
After choosing a value for the domain coarseness, select “Show domains” from
the Domains menu. This causes a window to be opened which shows the domain
decomposition for this coarseness level. In the top left, the protein structure
is drawn with various regions indicated by colors. The list to the right of the
structure display contains all these regions with their color and size. The order
in the list is significant; the best-defined domains are listed first, and the last
item(s) frequently contain cubes that do not really belong to any recognizable
domain. The bottom picture shows a parallel-axis plot of the motion parameters
for all cubes, color-coded by domain. In this plot, each line represents one cube,
and each vertical axis one motion parameter. For well-defined domains, the lines
belonging to the same domain (i.e. same color) should be very close, whereas
lines belonging to different domains should be clearly separated. A wide band of
lines indicates an intermediate region. The plot provides both a verification of
the domain decomposition and a first impression of the nature of the domains.
However, it should be interpreted with caution; the eye tends to consider two lines
with small differences in all axes more similar than two lines which coincide in
some axes but differ significantly in others, although from a mathematical point
of view both situations are equivalent.
It should be noted that the residues shown in black do not belong to any domain,
for one of the following reasons:

• they are part of a cube with less than three points, which is too small to
permit the calculation of the motion parameters

• they are in a cube whose average deformation energy is higher than the
deformation threshold
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For more detailed information on a particular domain, click on that domain’s
entry in the domain list. This will open another window with information for
this domain only. In the top left there is again the protein structure with just
one domain highlighted. To its right, a list of all residues in the domain is shown.
Below there is a parallel-axis plot showing only the cubes in this domain.
When you vary the domain coarseness limit, you will observe that some domains
remain essentially the same, growing or shrinking only by small amounts and
in response to significant coarseness variations, whereas others grow and shrink
rapidly, or tend to break up into smaller parts as the coarseness limit is decreased.
The first kind represents stable rigid regions, i.e. dynamical domains. The second
kind represents intermediate regions. The parallel-axis plot at the bottom of the
window helps in this classification by showing the variation of motion parameters
within the domains at one glance.

Exercise: Perform a dynamical domain analysis for lactoferrin (PDB entry
1LFH).
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