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Normal modes

Harmonic potential

Normal modes = principal axes (mass-weighted)

Two classes of applications:

e Separation of frequencies
e Simple analytic description of the potential

Major limitation: harmonic potential



Harmonic approximations

potential surface
local minimum harmonic approximation
effective harmonic potential approximation
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Local minimum:

e derived from standard all-atom potentials by
energy minimization

e vibrational motion

e time scale: < residence time in a minimum

e appropriate for studying fast motions

Effective potential well:

derived from coarse-grained model

diffusive motion (jumps between local minima)
time scale: >> residence time in a minimum
annronriate for <tudvina <low motions



Harmonic approximations

Standard normal mode analysis:

e local minimum

e correctly describes fast vibrations
(— Infrared spectroscopy, Raman, ...)

e correctly identifies the directions of slow motions
(— domain motions, conformational changes)

e overestimates time scales and underestimates
amplitudes of slow motions

Conclusion: the shapes of the local minima and
the effective potential well must be similar.




Separating frequencies

Frequency spectrum of a protein:
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e Most modes describe internal motions of
Individual residues.

e Only very few modes (about 2%) describe



Separating frequencies
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e Always analyze groups of modes with similar
frequencies together.

e Do not analyze the differences between modes
that are almo<t deadenerate



Fluctuation amplitudes

Kinetic energy in each mode:
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In an harmonic potential:
average potential energy = average kinetic energy
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Slow modes have large amplitudes.

Note: Normal mode analysis in a local minimum
underestimates the fluctuation amplitudes for slow
modes.



Collective motions

e Specific to a protein

e Usually related to its function

e Largest amplitudes

e Can be obtained from simplified models

- Residues are point masses
- Springs between nearby points



Domain motions

Domains: quasi-rigid regions in a protein,
separated by more flexible inter-domain regions.

Domain motions are

e a useful concept to describe slow dynamics

e NoOt unigue — several definitions exist

e an approximation — nothing is really rigid in a
protein




Domain motions

1. Identify the most rigid parts.
Local deformation energy for atom <:
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Keep atoms for which E; < Ejnit In all selected
modes.

2. Determine the rigid-body motion in small
subregions of the rigid parts for each mode:

di — Tj + D(l’lj, gbj) . Rz

T ;: rigid-body translation of subregion j
D(n, ¢): rotation matrix

n;, ¢;: rigid-body rotation (axis and angle) of
subregion j

INn total: 6 narameters ner mode



Domain motions

3. Group the subregions into clusters of similar
rigid-body motion parameters in all selected
modes.

Similarity measure (empirical):

S, = 3|¢z'ﬂ7; + ¢ n;| n 'T; + T
|pin; — ¢jn;| | T; — T

Similarity threshold S,,;, determines cluster size

Result:

e Flexible regions

e Domains

e Semi-flexible inter-domain regions




Monte-Carlo integration

Equilibrium average of a quantity A(r):
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Normal mode decomposition:
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The normal mode decomposition permits

e sometimes the analytical evaluation

e easy Monte-Carlo integration using a standard
Gaussian random number generator

e Improving efficiency by eliminating fast
<small-ambolittide modes




Other applications

Prediction of large-scale motions:

¢ IN mMinimization algorithms

¢ In sampling algorithms (scaled-variable
Monte-Carlo)

e for verifying sampling quality

Modelling atomic fluctuations  in structure
refinement

Analysing changes in higher-frequency
motions due to different environments
(analysis of spectroscopic data)

Slow dynamics of proteins using Brownian Modes

System-specific analysis:  fluctuations,
correlations, ...



Normal modes in comparison

Main advantages:

e NO sampling problem

e computational efficiency, especially for
coarse-grained models

e simplicity in application

Main limitations:

e single-well potentials, thus no possibility to study
conformational changes

¢ vibrational normal modes do not describe the
diffusive motion that dominates slow dynamics
(— Brownian modes)



