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Normal modes

Harmonic potential

Normal modes = principal axes (mass-weighted)

Two classes of applications:

• Separation of frequencies

• Simple analytic description of the potential

Major limitation: harmonic potential



Harmonic approximations

potential surface
local minimum harmonic approximation
effective harmonic potential approximation

Local minimum:
• derived from standard all-atom potentials by

energy minimization
• vibrational motion
• time scale: < residence time in a minimum
• appropriate for studying fast motions

Effective potential well:
• derived from coarse-grained model
• diffusive motion (jumps between local minima)
• time scale: >> residence time in a minimum
• appropriate for studying slow motions



Harmonic approximations

Standard normal mode analysis:

• local minimum

• correctly describes fast vibrations
(→ infrared spectroscopy, Raman, ...)

• correctly identifies the directions of slow motions
(→ domain motions, conformational changes)

• overestimates time scales and underestimates
amplitudes of slow motions

Conclusion: the shapes of the local minima and
the effective potential well must be similar.



Separating frequencies

Frequency spectrum of a protein:
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• Most modes describe internal motions of
individual residues.

• Only very few modes (about 2%) describe
protein-specific motions.



Separating frequencies

Degenerate modes:

Almost degenerate modes:

frequencies are equal,
directions are arbitrary

frequency difference
is not significant, but
directions are unique

• Always analyze groups of modes with similar
frequencies together.

• Do not analyze the differences between modes
that are almost degenerate.



Fluctuation amplitudes

Kinetic energy in each mode:
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In an harmonic potential:
average potential energy = average kinetic energy
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Slow modes have large amplitudes.

Note: Normal mode analysis in a local minimum
underestimates the fluctuation amplitudes for slow
modes.



Collective motions

• Specific to a protein

• Usually related to its function

• Largest amplitudes

• Can be obtained from simplified models

- Residues are point masses

- Springs between nearby points



Domain motions

Domains: quasi-rigid regions in a protein,
separated by more flexible inter-domain regions.

Domain motions are
• a useful concept to describe slow dynamics
• not unique – several definitions exist
• an approximation – nothing is really rigid in a

protein



Domain motions

1. Identify the most rigid parts.
Local deformation energy for atom i:
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Keep atoms for which Ei < Elimit in all selected
modes.

2. Determine the rigid-body motion in small
subregions of the rigid parts for each mode:

di = Tj + D(nj, φj) ·Ri.

Tj: rigid-body translation of subregion j
D(n, φ): rotation matrix
nj, φj: rigid-body rotation (axis and angle) of
subregion j
In total: 6 parameters per mode.



Domain motions

3. Group the subregions into clusters of similar
rigid-body motion parameters in all selected
modes.

Similarity measure (empirical):

Sij = 3
|φini + φjnj|
|φini − φjnj|

+
|Ti + Tj|
|Ti −Tj|

Similarity threshold Smin determines cluster size

Result:
• Flexible regions
• Domains
• Semi-flexible inter-domain regions



Monte-Carlo integration

Equilibrium average of a quantity A(r):
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The normal mode decomposition permits

• sometimes the analytical evaluation
• easy Monte-Carlo integration using a standard

Gaussian random number generator
• improving efficiency by eliminating fast

small-amplitude modes



Other applications

Prediction of large-scale motions:

• in minimization algorithms

• in sampling algorithms (scaled-variable
Monte-Carlo)

• for verifying sampling quality

Modelling atomic fluctuations in structure
refinement

Analysing changes in higher-frequency
motions due to different environments
(analysis of spectroscopic data)

Slow dynamics of proteins using Brownian Modes

System-specific analysis: fluctuations,
correlations, ...



Normal modes in comparison

Main advantages:

• no sampling problem

• computational efficiency, especially for
coarse-grained models

• simplicity in application

Main limitations:

• single-well potentials, thus no possibility to study
conformational changes

• vibrational normal modes do not describe the
diffusive motion that dominates slow dynamics
(→ Brownian modes)


