
The Molecular Modelling Toolkit
Konrad Hinsen

Centre de Biophysique Moléculaire (CNRS)
Orléans, France

The Molecular Modelling Toolkit – p.1/19



Biomolecular Simulations

Features:

� Big and complex systems
complex data structures

� CPU intensive: several weeks per job
efficient code

� Models and algorithms in evolution
modifiable code

� Analysis specific to each situation
easy “programming”

The Molecular Modelling Toolkit – p.2/19



Lysozyme

The Molecular Modelling Toolkit – p.3/19



Description of biomolecular systems

� Multiple levels: atom, group, molecule,
complex, . . .

� Specialisations:
group amino acid residue
molecule peptide chain
complex protein

� Interaction parameters

� Multiple conformations, trajectories, . . .

object-oriented description
The Molecular Modelling Toolkit – p.4/19



Community

� Many users, few developers

� A few popular simulation packages (most not
free)

� No standard file formats

� Users are “trapped” by a package:

� Can’t switch between codes

� Can’t modify code (too messy)

� Can’t write their own (too much work)

The Molecular Modelling Toolkit – p.5/19



MMTK Design Goals (1/3)

Development, implementation, and testing of
computational techniques:

� code basis for all kinds of molecular
simulations

� central part: object-oriented representation of
molecular systems

� modular design

� carefully designed data structures

� interactive as well as batch use

The Molecular Modelling Toolkit – p.6/19



MMTK Design Goals (2/3)

Foundation for end-user applications:

� library approach

� compatibility with other libraries (user
interfaces etc.)

Reliability:

� modern software-engineering methods

� minimize the risk of user errors

The Molecular Modelling Toolkit – p.7/19



MMTK Design Goals (3/3)

Portability:

� built on portable tools

� use portable data formats

Efficiency:

� suitable for long MD simulations

� parallelization

The Molecular Modelling Toolkit – p.8/19



MMTK Design Choices

� High-level object-oriented language: Python
(18000 lines)

� Time-critical parts implemented in C
(10000 lines)

� Trajectory files in netCDF format, fully
self-contained

� Provide defaults wherever possible, but stay
on the safe side

The Molecular Modelling Toolkit – p.9/19



MMTK Overview

A Python library for molecular simulations . . .

. . . with C modules for time-critical routines.

The user writes programs in Python,

simple scripts or graphical applications

The Molecular Modelling Toolkit – p.10/19



Mixed Python/C programming

Advantages:

� all Python advantages:

� rapid development

� access to many existing libraries

� interactivity

� easy GUI construction

� no loss of speed in the C parts

� access to libraries in Fortran and C

The Molecular Modelling Toolkit – p.11/19



Partial Feature List

� construction and modification of molecular
systems

� analysis of conformations

� visualization (via external programs)

� energy evaluation (AMBER force field)

� energy minimization

� molecular dynamics (NVE, NVT, NPT)

� normal modes

� simplified protein models
The Molecular Modelling Toolkit – p.12/19



OpenSource building blocks

MMTK uses OpenSource projects:

� Python and its library

� Numerical Python (arrays, linear algebra)

� Scientific Python (geometry, IO, ...)

� netCDF (portable binary files)

� LAPACK (linear algebra)

MMTK is used by OpenSource projects:

� DomainFinder (protein domain analysis)

� nMOLDYN (MD trajectory analysis)
The Molecular Modelling Toolkit – p.13/19



Scientific software

Specificities:

� High specialization small user base

� Users are colleagues, need to know
algorithms in detail

� Scientific publication requires disclosure of all
procedures

� Publically funded research is for the public

OpenSource is the best solution!

The Molecular Modelling Toolkit – p.14/19



MMTK development

� 1 developer, �100 users

� some “power users” who contribute code

� Few potential developers: must know
simulation methods, object-oriented methods,
and Python

� Significant reduction of development time due
to Python

The Molecular Modelling Toolkit – p.15/19



Interfaces to other code

� Reads and writes PDB files

� Reads and writes CHARMM trajectory files

� Converters for DLPOLY and AMBER
trajectory files

� Reads AMBER forcefield parameter files

The Molecular Modelling Toolkit – p.16/19



Wish list

� Common data formats for system definitions
and trajectories

� More sharing of results, especially trajectories

� More OpenSource in neighbouring fields (e.q.
quantum chemistry)

� Support for software development from
scientific organizations

The Molecular Modelling Toolkit – p.17/19



Conclusions (1/2)

After some years’ experience:

� Python

� made MMTK possible

� scares away potential developers

� causes some memory overhead

� Basic design works well

� netCDF was a good choice

� further optimization of the C parts desirable

The Molecular Modelling Toolkit – p.18/19



Conclusions (2/2)

Recommendations for OpenSource in
science:

� Write building blocks (libraries)

� Document interfaces (and don’t change them)

� Use high-level languages for easier
interfacing

� Profit from other people’s (OpenSource) work

The Molecular Modelling Toolkit – p.19/19


	
	Biomolecular Simulations
	Lysozyme
	Description of biomolecular systems
	Community
	 MMTK Design Goals (1/3)
	 MMTK Design Goals (2/3)
	 MMTK Design Goals (3/3)
	 MMTK Design Choices
	 MMTK Overview
	Mixed Python/C programming
	Partial Feature List
	OpenSource building blocks
	Scientific software
	 MMTK development
	Interfaces to other code
	Wish list
	Conclusions (1/2)
	Conclusions (2/2)

