The Molecular Modelling Toolkit

Konrad Hinsen
Centre de Biophysique Moléculaire (CNRS)
Orléans, France



Biomolecular Simulations

Features:

Big and complex systems
= complex data structures

CPU intensive: several weeks per job
= efficient code

Models and algorithms in evolution

= modifia
Analysis s

nle code

necific to each situation

= easy “programming”






Description of biomolecular systems

Multiple levels: atom, group, molecule,
complex, ...

Specialisations:
group — amino acid residue

molecule — peptide chain
complex — protein

Interaction parameters
Multiple conformations, trajectories, ...

= object-oriented description



Community

Many users, few developers

A few popular simulation packages (most not
free)

No standard file formats

Users are “trapped” by a package:
Can’t switch between codes
Can’t modify code (too messy)
Can’t write their own (too much work)



MMTK Design Goals (1/3)

Development, iImplementation, and testing of
computational techniques:

code basis for all kinds of molecular
simulations

central part: object-oriented representation of
molecular systems

modular design
carefully designed data structures
Interactive as well as batch use

The Molecular Modelling Toolkit — p.6/19



MMTK Design Goals (2/3)

Foundation for end-user applications:
library approach

compatibility with other libraries (user
Interfaces etc.)

Reliability:
modern software-engineering methods
minimize the risk of user errors

The Molecular Modelling Toolkit — p.7/19



MMTK Design Goals (3/3)

Portability:
bullt on portable tools
use portable data formats

Efficiency:
suitable for long MD simulations
parallelization

The Molecular Modelling Toolkit — p.8/19



MMTK Design Choices

High-level object-oriented language: Python
(18000 lines)

Time-critical parts implemented in C
(10000 lines)

Trajectory files in netCDF format, fully
self-contained

Provide defaults wherever possible, but stay
on the safe side

The Molecular Modelling Toolkit — p.9/19



MMTK Overview

A Python library for molecular simulations . ..
... with C modules for time-critical routines.

The user writes programs in Python,

simple scripts or graphical applications

print 'Temperature

o o ° o ° o o ° o
The Molecular Modelling Toolkit — p.10/19



Mixed Python/C programming

Advantages:

all Python advantages:
rapid development
access to many existing libraries
Interactivity
easy GUI construction

no loss of speed in the C parts
access to libraries in Fortran and C



Partial Feature List

construction and modification of molecular
systems

analysis of conformations
visualization (via external programs)
energy evaluation (AMBER force field)
energy minimization

molecular dynamics (NVE, NVT, NPT)
normal modes

simplified protein models



OpenSource building blocks

MMTK uses OpenSource projects:
Python and its library
Numerical Python (arrays, linear algebra)
Scientific Python (geometry, 10, ...)
netCDF (portable binary files)
LAPACK (linear algebra)

MMTK is used by OpenSource projects:

DomainFinder (protein domain analysis)
NMOLDYN (MD trajectory analysis)

The Molecular Modelling Toolkit — p.13/19



Scientific software

Specificities:
High specialization — small user base

Users are colleagues, need to know
algorithms in detall

Scientific publication requires disclosure of all
procedures

Publically funded research is for the public

OpenSource Is the best solution!



MMTK development

1 developer, ~100 users
some “power users” who contribute code

Few potential developers: must know
simulation methods, object-oriented methods,
and Python

Significant reduction of development time due
to Python



Interfaces to other code

Reads and writes PDB files
Reads and writes CHARMM trajectory files

Converters for DLPOLY and AMBER
trajectory files

Reads AMBER forcefield parameter files



Wish list

Common data formats for system definitions
and trajectories

More sharing of results, especially trajectories

More OpenSource in neighbouring fields (e.q.
guantum chemistry)

Support for software development from
scientific organizations

The Molecular Modelling Toolkit — p.17/19



Conclusions (1/2)

After some years’ experience:

Python
made MMTK possible
scares away potential developers
causes some memory overhead

Basic design works well
netCDF was a good choice
further optimization of the C parts desirable



Conclusions (2/2)

Recommendations for OpenSource In
sclence:

Write building blocks (libraries)
Document interfaces (and don’t change them)

Use high-level languages for easier
Interfacing

Profit from other people’s (OpenSource) work

The Molecular Modelling Toolkit — p.19/19



	
	Biomolecular Simulations
	Lysozyme
	Description of biomolecular systems
	Community
	 MMTK Design Goals (1/3)
	 MMTK Design Goals (2/3)
	 MMTK Design Goals (3/3)
	 MMTK Design Choices
	 MMTK Overview
	Mixed Python/C programming
	Partial Feature List
	OpenSource building blocks
	Scientific software
	 MMTK development
	Interfaces to other code
	Wish list
	Conclusions (1/2)
	Conclusions (2/2)

