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Until recently, Geoffrey Chang’s career was on
a trajectory most young scientists only dream
about. In 1999, at the age of 28, the protein
crystallographer landed a faculty position at
the prestigious Scripps Research Institute in
San Diego, California. The next year, in a cer-
emony at the White House, Chang received a
Presidential Early Career Award
for Scientists and Engineers, the
country’s highest honor for young
researchers. His lab generated a
stream of high-prof ile papers
detailing the molecular structures
of important proteins embedded in
cell membranes.

Then the dream turned into a
nightmare. In September, Swiss
researchers published a paper in
Nature that cast serious doubt on a
protein structure Chang’s group
had described in a 2001 Science

paper. When he investigated,
Chang was horrified to discover
that a homemade data-analysis pro-
gram had flipped two columns of
data, inverting the electron-density
map from which his team had
derived the final protein structure.
Unfortunately, his group had used
the program to analyze data for
other proteins. As a result, on page 1875,
Chang and his colleagues retract three Science

papers and report that two papers in other jour-
nals also contain erroneous structures.

“I’ve been devastated,” Chang says. “I hope
people will understand that it was a mistake,
and I’m very sorry for it.” Other researchers
don’t doubt that the error was unintentional,
and although some say it has cost them time
and effort, many praise Chang for setting the
record straight promptly and forthrightly. “I’m
very pleased he’s done this because there has
been some confusion” about the original struc-
tures, says Christopher Higgins, a biochemist
at Imperial College London. “Now the field
can really move forward.”

The most influential of Chang’s retracted
publications, other researchers say, was the

2001 Science paper, which described the struc-
ture of a protein called MsbA, isolated from the
bacterium Escherichia coli. MsbA belongs to a
huge and ancient family of molecules that use
energy from adenosine triphosphate to trans-
port molecules across cell membranes. These
so-called ABC transporters perform many

essential biological duties and are of great clin-
ical interest because of their roles in drug resist-
ance. Some pump antibiotics out of bacterial
cells, for example; others clear chemotherapy
drugs from cancer cells. Chang’s MsbA struc-
ture was the first molecular portrait of an entire
ABC transporter, and many researchers saw it
as a major contribution toward figuring out how
these crucial proteins do their jobs. That paper
alone has been cited by 364 publications,
according to Google Scholar.

Two subsequent papers, both now being
retracted, describe the structure of MsbA from
other bacteria, Vibrio cholera (published in
Molecular Biology in 2003) and Salmonella

typhimurium (published in Science in 2005).
The other retractions, a 2004 paper in the
Proceedings of the National Academy of

Sciences and a 2005 Science paper, described
EmrE, a different type of transporter protein.

Crystallizing and obtaining structures of
five membrane proteins in just over 5 years
was an incredible feat, says Chang’s former
postdoc adviser Douglas Rees of the Califor-
nia Institute of Technology in Pasadena. Such
proteins are a challenge for crystallographers
because they are large, unwieldy, and notori-
ously diff icult to coax into the crystals
needed for x-ray crystallography. Rees says
determination was at the root of Chang’s suc-
cess: “He has an incredible drive and work
ethic. He really pushed the field in the sense

of getting things to crystallize that
no one else had been able to do.”
Chang’s data are good, Rees says,
but the faulty software threw
everything off.

Ironically, another former post-
doc in Rees’s lab, Kaspar Locher,
exposed the mistake. In the 14 Sep-
tember issue of Nature, Locher,
now at the Swiss Federal Institute
of Technology in Zurich, described
the structure of an ABC transporter
called Sav1866 from Staphylococcus

aureus. The structure was dramati-
cally—and unexpectedly—differ-
ent from that of MsbA.  After
pulling up  Sav1866 and Chang’s
MsbA from S. typhimurium on a
computer screen, Locher says he
realized in minutes that the MsbA
structure was inverted. Interpreting
the “hand” of a molecule is always
a challenge for crystallographers,

Locher notes, and many mistakes can lead to
an incorrect mirror-image structure. Getting
the wrong hand is “in the category of monu-
mental blunders,” Locher says.

On reading the Nature paper, Chang
quickly traced the mix-up back to the analysis
program, which he says he inherited from
another lab. Locher suspects that Chang
would have caught the mistake if he’d taken
more time to obtain a higher resolution struc-
ture. “I think he was under immense pressure
to get the first structure, and that’s what made
him push the limits of his data,” he says. Oth-
ers suggest that Chang might have caught the
problem if he’d paid closer attention to bio-
chemical findings that didn’t jibe well with the
MsbA structure. “When the first structure
came out, we and others said, ‘We really

A Scientist’s Nightmare: Software

Problem Leads to Five Retractions
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Flipping fiasco. The structures of MsbA (purple) and Sav1866 (green) overlap

little (left) until MsbA is inverted (right).
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Unexpected behavior

The Effects of FreeSurfer Version, Workstation Type, and
Macintosh Operating System Version on Anatomical
Volume and Cortical Thickness Measurements
Ed H. B. M. Gronenschild1,2*, Petra Habets1,2, Heidi I. L. Jacobs1,2,3, Ron Mengelers1,2, Nico Rozendaal1,2,

Jim van Os1,2,4, Machteld Marcelis1,2

1Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Alzheimer Center

Limburg, The Netherlands, 2 European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands, 3Cognitive Neurology Section,

Institute of Neuroscience and Medicine-3, Research Centre Jülich, Jülich, Germany, 4 King’s College London, King’s Health Partners, Department of Psychosis Studies
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Abstract

FreeSurfer is a popular software package to measure cortical thickness and volume of neuroanatomical structures. However,
little if any is known about measurement reliability across various data processing conditions. Using a set of 30 anatomical
T1-weighted 3T MRI scans, we investigated the effects of data processing variables such as FreeSurfer version (v4.3.1, v4.5.0,
and v5.0.0), workstation (Macintosh and Hewlett-Packard), and Macintosh operating system version (OSX 10.5 and OSX
10.6). Significant differences were revealed between FreeSurfer version v5.0.0 and the two earlier versions. These differences
were on average 8.866.6% (range 1.3–64.0%) (volume) and 2.861.3% (1.1–7.7%) (cortical thickness). About a factor two
smaller differences were detected between Macintosh and Hewlett-Packard workstations and between OSX 10.5 and OSX
10.6. The observed differences are similar in magnitude as effect sizes reported in accuracy evaluations and
neurodegenerative studies. The main conclusion is that in the context of an ongoing study, users are discouraged to
update to a new major release of either FreeSurfer or operating system or to switch to a different type of workstation
without repeating the analysis; results thus give a quantitative support to successive recommendations stated by FreeSurfer
developers over the years. Moreover, in view of the large and significant cross-version differences, it is concluded that
formal assessment of the accuracy of FreeSurfer is desirable.
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Introduction

FreeSurfer (Athinoula A. Martinos Center for Biomedical
Imaging, Harvard-MIT, Boston) comprises a popular and freely
available set of tools for deriving neuroanatomical volume and
cortical thickness measurements from automated brain segmenta-
tion (http://surfer.nmr.mgh.harvard.edu), recently summarised by
Fischl [1]. A number of reported studies discussed the accuracy of
the technique by comparing the volume of specific brain
structures, such as the hippocampus or amygdala, with manually
derived volumes [2–5]. The measurement of cortical thickness was
validated against histological analysis [6] and manual measure-
ments [7,8]. Also the reliability of the measurements was subject of
a number of investigations. Some of these studies addressed the
effect of scanner-specific parameters, including field strength, pulse
sequence, scanner upgrade, and vendor (cortical thickness: [9,10];
volume: [11]). In addition, the scan-rescan variability of a number
of subcortical brain volumes was assessed [12–14]. Finally, it has
been shown that Freesurfer is capable of reliably capturing (subtle)
morphological and pathological changes in the brain (e.g., [5,13]).

Since FreeSurfer is CPU-intensive (20–30 hours per brain for a
full segmentation is not exceptional), it is common practice to
distribute the computational load among the available central
processor units (CPUs) on a single workstation and/or among
several workstations. Given this context, a number of questions
suggest themselves: (1) does every CPU produce the same results;
(2) is there any interaction between the processes running
simultaneously on the same workstation; (3) does every workstation
produce the same results?
Just like similar neuroimaging packages, new releases of

FreeSurfer are issued regularly, fixing known bugs and improving
existing tools and/or adding new ones. Each release is accompa-
nied with documentation describing the changes relative to the
previous release (http://surfer.nmr.mgh.harvard.edu/fswiki/
ReleaseNotes). However, transition to a new release during the
course of a study may affect the results and is therefore
discouraged by the developers of FreeSurfer. This potential source
of variation in outcome may invalidate comparisons between
different studies. As yet, the sources and effect sizes of these
variations have never been investigated in detail.

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e38234

E. Gronenschild et al., PLoS ONE 7(6) e38234 (2012)
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Misuse of black-box software

Cluster failure: Why fMRI inferences for spatial extent
have inflated false-positive rates
Anders Eklunda,b,c,1, Thomas E. Nicholsd,e, and Hans Knutssona,c

aDivision of Medical Informatics, Department of Biomedical Engineering, Linköping University, S-581 85 Linköping, Sweden; bDivision of Statistics and
Machine Learning, Department of Computer and Information Science, Linköping University, S-581 83 Linköping, Sweden; cCenter for Medical Image
Science and Visualization, Linköping University, S-581 83 Linköping, Sweden; dDepartment of Statistics, University of Warwick, Coventry CV4 7AL, United
Kingdom; and eWMG, University of Warwick, Coventry CV4 7AL, United Kingdom

Edited by Emery N. Brown, Massachusetts General Hospital, Boston, MA, and approved May 17, 2016 (received for review February 12, 2016)

The most widely used task functional magnetic resonance imaging
(fMRI) analyses use parametric statistical methods that depend on a
variety of assumptions. In this work, we use real resting-state data
and a total of 3 million random task group analyses to compute
empirical familywise error rates for the fMRI software packages SPM,
FSL, and AFNI, as well as a nonparametric permutation method. For a
nominal familywise error rate of 5%, the parametric statistical
methods are shown to be conservative for voxelwise inference
and invalid for clusterwise inference. Our results suggest that the
principal cause of the invalid cluster inferences is spatial autocorre-
lation functions that do not follow the assumed Gaussian shape. By
comparison, the nonparametric permutation test is found to produce
nominal results for voxelwise as well as clusterwise inference. These
findings speak to the need of validating the statistical methods being
used in the field of neuroimaging.

fMRI | statistics | false positives | cluster inference | permutation test

Since its beginning more than 20 years ago, functional magnetic
resonance imaging (fMRI) (1, 2) has become a popular tool

for understanding the human brain, with some 40,000 published
papers according to PubMed. Despite the popularity of fMRI as a
tool for studying brain function, the statistical methods used have
rarely been validated using real data. Validations have instead
mainly been performed using simulated data (3), but it is obviously
very hard to simulate the complex spatiotemporal noise that arises
from a living human subject in an MR scanner.
Through the introduction of international data-sharing initia-

tives in the neuroimaging field (4–10), it has become possible to
evaluate the statistical methods using real data. Scarpazza et al.
(11), for example, used freely available anatomical images from
396 healthy controls (4) to investigate the validity of parametric
statistical methods for voxel-based morphometry (VBM) (12).
Silver et al. (13) instead used image and genotype data from 181
subjects in the Alzheimer’s Disease Neuroimaging Initiative
(8, 9), to evaluate statistical methods common in imaging ge-
netics. Another example of the use of open data is our previous
work (14), where a total of 1,484 resting-state fMRI datasets from
the 1,000 Functional Connectomes Project (4) were used as null
data for task-based, single-subject fMRI analyses with the SPM
software. That work found a high degree of false positives, up to
70% compared with the expected 5%, likely due to a simplistic
temporal autocorrelation model in SPM. It was, however, not
clear whether these problems would propagate to group studies.
Another unanswered question was the statistical validity of other
fMRI software packages. We address these limitations in the
current work with an evaluation of group inference with the three
most common fMRI software packages [SPM (15, 16), FSL (17),
and AFNI (18)]. Specifically, we evaluate the packages in their
entirety, submitting the null data to the recommended suite of
preprocessing steps integrated into each package.
The main idea of this study is the same as in our previous one

(14). We analyze resting-state fMRI data with a putative task
design, generating results that should control the familywise error

(FWE), the chance of one or more false positives, and empirically
measure the FWE as the proportion of analyses that give rise to
any significant results. Here, we consider both two-sample and
one-sample designs. Because two groups of subjects are randomly
drawn from a large group of healthy controls, the null hypothesis
of no group difference in brain activation should be true. More-
over, because the resting-state fMRI data should contain no
consistent shifts in blood oxygen level-dependent (BOLD) activity,
for a single group of subjects the null hypothesis of mean zero
activation should also be true. We evaluate FWE control for both
voxelwise inference, where significance is individually assessed at
each voxel, and clusterwise inference (19–21), where significance
is assessed on clusters formed with an arbitrary threshold.
In brief, we find that all three packages have conservative

voxelwise inference and invalid clusterwise inference, for both
one- and two-sample t tests. Alarmingly, the parametric methods
can give a very high degree of false positives (up to 70%, com-
pared with the nominal 5%) for clusterwise inference. By com-
parison, the nonparametric permutation test (22–25) is found to
produce nominal results for both voxelwise and clusterwise in-
ference for two-sample t tests, and nearly nominal results for one-
sample t tests. We explore why the methods fail to appropriately
control the false-positive risk.

Results
A total of 2,880,000 random group analyses were performed to
compute the empirical false-positive rates of SPM, FSL, and
AFNI; these comprise 1,000 one-sided random analyses repeated
for 192 parameter combinations, three thresholding approaches,
and five tools in the three software packages. The tested parameter

Significance

Functional MRI (fMRI) is 25 years old, yet surprisingly its most
common statistical methods have not been validated using real
data. Here, we used resting-state fMRI data from 499 healthy
controls to conduct 3 million task group analyses. Using this null
data with different experimental designs, we estimate the in-
cidence of significant results. In theory, we should find 5% false
positives (for a significance threshold of 5%), but instead we
found that the most common software packages for fMRI anal-
ysis (SPM, FSL, AFNI) can result in false-positive rates of up to
70%. These results question the validity of some 40,000 fMRI
studies and may have a large impact on the interpretation of
neuroimaging results.

Author contributions: A.E. and T.E.N. designed research; A.E. and T.E.N. performed re-
search; A.E., T.E.N., and H.K. analyzed data; and A.E., T.E.N., and H.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. Email: anders.eklund@liu.se.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1602413113/-/DCSupplemental.
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Why can’t we fix this?

Insufficient software engineering

Testing numerical software is very difficult.

Most scientific software has no specification.

Most scientific software is badly documented.
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Testing floating-point code

Reliable tests check for equality...

... but exact equality never happens with floats.

... but exact equality never happens with floats. Why ???

... therefore we must introduce tolerances ...

... but nobody knows how to choose them.

Full discussion:
K. Hinsen, The Approximation Tower in Computational Science: Why Testing
Scientific Software Is Difficult, Comp. Sci. Eng. 17(4) 72-77 (2015)
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Specifications and documentation

Informal specifications / documentation
Theory: should be published in journal articles etc.

Practice: complexity of models and methods prevents a full
description

Formal specifications
Unknown to most computational scientists

No domain-specific languages and tools
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Climate models

66 COMPUTING IN SCIENCE & ENGINEERING

meteorological research and development (Met 
R&D) effort. The two groups primarily occupy 
a single, open-plan office space on the second 
floor of the Met Office’s Exeter headquarters 
and have built a single unified code base. This 
close relationship with an operational weather 
forecasting center is unusual for a climate mod-
eling group, as is use of a unified code base. The 
results we present here focus primarily on cli-
mate research, but our interviews—and the de-
velopment practices we observed—cover both 
groups.

Climate Modeling Basics
Climate scientists use a range of computational 
models in their research. The most sophisticated 
are general circulation models (GCMs), which 
represent the atmosphere and oceans using a 
3D grid and solve the equations for fluid mo-
tion to calculate energy transfer between grid 
points. GCMs are designed so that the various 
subsystems (atmosphere, ocean, ice sheets, veg-
etation, and so on) can run either independent-
ly or coupled, with a coupler handling energy  

and mass transfers between subsystems (see  
Figure 1). Researchers can run the models at dif-
ferent resolutions, depending on the available 
computing power. Coarse-resolution GCMs can 
simulate large-scale phenomena, such as mid-
latitude weather systems, while finer-resolution 
models are needed to simulate smaller-scale phe-
nomena, such as tropical cyclones.10

Scientists make many trade-offs when build-
ing climate models. It’s not computationally fea-
sible to simulate all relevant climate processes (to  
the level they’re currently understood), so climate 
scientists must decide which processes to resolve 
explicitly and which to parameterize. They de-
velop parameter schemes from observational data 
or from uncoupled runs of models that do resolve 
the phenomena. For example, they can use a sepa-
rate cloud-resolving model to generate aggregate 
cloud formation data for use as GCM parameters. 
Judgment is needed to determine which processes 
and resolutions are relevant to a given research 
question.

The Earth’s climate is a complex system, ex-
hibiting chaotic behavior. The models might 

Figure 1. Conceptual view of the components and couplings of a coupled Earth system model.
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Protein models

A small protein (lysozyme) in the Amber99 force field

1960 atoms (1001 shown)

183 distinct atom types

interaction energy: a
function of 5880 variables,
with a few thousand
numerical parameters

Remember that this is a small
protein!
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Biomolecular force fields (1/2)

This is how a typical research paper describes the AMBER force field:

U =
X
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missing details

not quite true common approximations
not mentioned
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Biomolecular force fields (2/2)

Protein parameter files for Amber 12, in somewhat documented
formats:

lines filename
984 amino12.in
814 aminoct12.in
782 aminont12.in
533 frcmod.ff12SB
744 parm99.dat

For the details... read the source code!

For the algorithms that select the parameters for a given protein
structure... read the source code!
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Read the source code!

10 Computing in Science & Engineering 1521-9615/14/$31.00 © 2014 IEEE Copublished by the IEEE CS and the AIP May/June 2014

Streamlining Development of a Multimillion-Line 
Computational Chemistry Code

Robin M. Betz and Ross C. Walker | San Diego Supercomputer Center

Software engineering methodologies can be helpful in computational science and engineering projects. Here, a 
continuous integration software engineering strategy is applied to a multimillion-line molecular dynamics code; the 
implementation both streamlines the development and release process and unifies a team of widely distributed, 
academic developers.

The needs of computational science and en-
gineering (CSE) projects greatly differ from 
those of more traditional business enterprise 
software, especially in terms of code valida-

tion and testing. Although software engineers have 
expended considerable effort to simplify and stream-
line the development and testing process, such ap-
proaches often encounter problems when applied to 
the scientific software domain. Testing is a notorious 
example of this difference between the two fields. 
Although business applications with a well-defined 
usage are easily testable, scientific applications are 
quite a different story. When the desired outcome 
of a program is an unknown subject of research, the 
traditional measurements of software validity used 
by software engineers are difficult or even impossible 
to define or establish. Tools designed to simplify the 
development process often don’t mesh readily with 
the goals and development timescale of CSE codes, 
and as a result, test suites are typically written from 
scratch or not at all.

CSE codes are also typically developed quite dif-
ferently from other applications. Developers work-
ing on scientific code usually have backgrounds 
that are quite different from those of software en-
gineers, approaching the discipline primarily from 
a scientific background, and as such they’re often 
unfamiliar with good development practices. This 
is further complicated by the fact that groups are 
often distributed among many universities and even 
countries, making collaboration and group deci-
sion making complicated compared to a group of 
software engineers working in the same office. CSE 

developers are also researchers first and foremost, 
and their goal is primarily to generate publication-
quality research, rather than develop maintainable, 
extensible code using the latest development meth-
odologies. This frequently results in a developer cul-
ture that’s resistant to change, as the time required 
to implement and understand a new methodology 
can be prohibitive in a research environment.

Although the tools and methods used in soft-
ware engineering can be difficult to apply to sci-
entific projects, they provide significant benefits to 
the development of scientific software. In this case 
study, we adapt the software engineering practice 
of continuous integration to assist in the validation 
and testing of the molecular dynamics code pack-
age, Assisted Model Building with Energy Refine-
ment (Amber; http://ambermd.org).1 Although 
there were several challenges in applying this meth-
odology to Amber’s complex and diverse code base, 
the introduction of software engineering tools to 
Amber has proven to be extremely useful in unify-
ing a geographically separated group of developers 
with different computer and science backgrounds, 
and ultimately has provided considerable benefits to 
the project as a whole.

Background
Amber is a package of molecular simulation pro-
grams that’s widely used within the computational 
chemistry and computational molecular biology 
communities. It includes a wide variety of programs 
that enable the simulation of molecular systems at 
the atomic level. It includes tools for all stages of 

SOFTWARE ENGINEERING FOR CSE

CISE-16-03-Betz.indd   10 28/05/14   4:50 PM

Betz & Walker, Comp. Sci. Eng. 16(3), 10-17 (2014)
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Can we do science with computers?

Science requires verifiability of all findings, but:

We cannot discuss computational models and methods
... because we cannot write them down.

We cannot compare different models and methods
... for the same reason.

We cannot test scientific software
... because we have no specifications.

Users don’t understand their software
... because it’s too complex ...

... and there is no specification.
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Similar issues elsewhere (1/2)

Reports and Articles 

Social Processes and Proofs of Theorems 
and Programs 
Richard A. De Millo 
Georgia Institute of Technology 

Richard J. Lipton and Alan J. Perlis 
Yale University 

It is argued that formal verifications of programs, 
no matter how obtained, will not play the same key role 
in the development of computer science and software 
engineering as proofs do in mathematics. Furthermore 
the absence of continuity, the inevitability of change, 
and the complexity of specification of significantly 
many real programs make the formal verification 
process difficult to justify and manage. It is felt that 
ease of formal verification should not dominate 
program language design. 

Key Words and Phrases: formal mathematics, 
mathematical proofs, program verification, program 
specification 

CR Categories: 2.10, 4.6, 5.24 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

This work was supported in part by the U.S. Army Research 
Office on grants DAHC 04-74-G-0179 and DAAG 29-76-G-0038 
and by the National Science Foundation on grant MCS 78-81486. 
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Science, Yale University, New Haven, CT 06520. 
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I should like to ask the same question that Descartes asked. You 
are proposing to give a precise definition of logical correctness 
which is to be the same as my vague intuitive feeling for logical 
correctness. How do you intend to show that they are the same? 
... The average mathematician should not forget that intuition is 
the final authority. 

J. Barkley Rosser 

Many people have argued that computer program- 
ming should strive to become more like mathematics. 
Maybe so, but not in the way they seem to think. The 
aim of  program verification, an attempt to make pro- 
gramming more mathematics-like, is to increase dramat- 
ically one's confidence in the correct functioning of  a 
piece of software, and the device that verifiers use to 
achieve this goal is a long chain of formal, deductive 
logic. In mathematics, the aim is to increase one's con- 
fidence in the correctness of  a theorem, and it's true that 
one of  the devices mathematicians could in theory use to 
achieve this goal is a long chain of  formal logic. But in 
fact they don't. What they use is a proof, a very different 
animal. Nor does the proof  settle the matter; contrary to 
what its name suggests, a proof  is only one step in the 
direction of  confidence. We believe that, in the end, it is 
a social process that determines whether mathematicians 
feel confident about a theorem--and we believe that, 
because no comparable social process can take place 
among program verifiers, program verification is bound 
to fail. We can't see how it's going to be able to affect 
anyone's confidence about programs. 

Communications May 1979 
of Volume 22 
the ACM Number 5 

Communications of the ACM, 1979
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Similar issues elsewhere (2/2)
4XDQWD�0DJD]LQH

KWWSV���ZZZ�TXDQWDPDJD]LQH�RUJ����������LQ�FRPSXWHUV�ZH�WUXVW� )HEUXDU\���������
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$V�PDWK�JURZV�HYHU�PRUH�FRPSOH[��ZLOO�FRPSXWHUV�UHLJQ"

,OOXVWUDWLRQ�E\�6LPRQV�6FLHQFH�1HZV
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Quanta Magazine, 2013
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Digital Scientific Notations

Informal language programming language

Digital
Scientific
Notation

formal

embedded into
scholarly discourse

automated
(partial) validation

verifiable by
human readers
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Full story

K. Hinsen, The Self-Journal of Science, 2016
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Commented summary

630 NATURE PHYSICS | VOL 12 | JULY 2016 | www.nature.com/naturephysics

thesis

Digital science
Technology is transforming science. We 
can calculate faster than ever before, and 
gather more precise data, of an ever-
expanding variety. We now store staggering 
volumes of information, and draw on it 
ever more creatively. Communication 
between scientists is changing too, even 
if the scientific paper still remains the 
standard element of information transfer 
and recording. The web, e-mail and blogs, as 
well as social media including Facebook and 
Twitter, have completely altered how we 
exchange thoughts.

The standard scientific paper increasingly 
offers only a limited glimpse of today’s 
scientific process. After all, computer 
software of innumerable kinds has 
established itself implicitly within the fabric 
of scientific practice — in the structuring 
of databases, and in computer algorithms 
used to process such data, or to carry out 
mathematical analyses. How the intricate 
details of software and algorithms influence 
results isn’t always clear.

Indeed, one might worry that the 
standards of science are quietly being 
eroded. Can we trust the results of a new 
paper if they depend on calculations carried 
out by proprietary software with non-public 
source code? Just recently, mathematicians 
reported the proof of a long-standing 
conjecture — the Boolean Pythagorean 
triples problem. The proof resides in some 
200 terabytes of computer-generated output. 
If only computers running other algorithms 
can check the result, how can we really know 
it’s all ok?

These issues have been raised recently 
by biophysicist Konrad Hinsen (preprint 
at https://arxiv.org/abs/1605.02960; 2016), 
who has drawn motivation from years of 
relying on software to run biomolecular 
simulations. As he points out, computing 
applications have become so utterly familiar 
to all of us that we treat them as practical 
tools not requiring further analysis. We see 
tools for integrating, simulating, sorting 
and transforming as the equivalent of forks, 
spoons and other tableware; as unquestioned 
things to be used and judged only by their 
capacity to produce results.

Yet beyond results, science aims to record 
the process of logic and argument that leads 
to a deduction or interpretation. Scientists 
judging work need to scrutinize the path 
leading to results. An experiment, for 
example, only leads to new understanding 
if we understand all the details of how the 

apparatus was set up and used; we accept 
theoretical arguments only if each step is 
made explicit. Likewise, Hinsen argues, 
trusting the results of any calculation 
run on scientific software requires full 
understanding of the functioning of that 
software. Unfortunately, most software used 
today never gets any peer review.

Hinsen offers an illustration of the 
problem. Consider using Newton’s equations 
to calculate the celestial mechanics of planets 
and predict their future trajectories. The 
scientific knowledge relevant to the problem 
is embodied in Newton’s laws of motion and 
gravitation, the mathematics of calculus, as 
well as a considerable body of astronomical 
observation and experimental knowledge 
(on telescopes and the interpretation of their 
output, for example) that yields accurate 
initial conditions for the bodies in question 
at some moment. The calculation of future 
motion can then be carried forward, in 
principle using only pencil and paper.

In practice, we use computers, as 
otherwise we could calculate little of 
practical interest. This introduces another 
layer of required specification, for the 
numerical algorithm used to approximate 
the continuous dynamical equations with 
finite difference analogues, as well as for 
the software that determines how real 
numbers get approximated by floating 
point operations. Calculations relying on 
software need to be explicit on such details 
if they are to fully describe the pathway 
to a set of results, so other scientists can 
reproduce them. Today, this is often — 
probably even typically — not the case. Our 
casual familiarity with software is partially 
to blame.

But the nature of software, Hinsen argues, 
makes the problem worse. The programming 
languages behind it all aren’t anything like 
human languages, and only permit writing 
instructions for a computer, and nothing 
else. This disrupts the ordinary process by 
which scientists record what they’re doing 
in a way that can be easily understood 
by others, as anything scientific has to be 

reduced to numerics. The result is a series 
of diabolical tendencies all too familiar 
to computational scientists. As he notes, 
scientists can develop software using the best 
practices of software engineering and the 
result may still compute something different 
from what its users think it computes. Of 
course, concerned users can in principle 
consult the documentation, but how do 
they know that documentation is complete 
and accurate?

All of this would be avoided if computing 
source code were intelligible to human 
readers, but that’s very far from the 
case. At the moment, Hinsen suggests, 
“most scientific software source code is 
unintelligible to its users, and sometimes it 
even becomes unintelligible to its developers 
over time.”

Hinsen got concerned about the issue 
after having to abandon a research project 
when he could not reproduce the most 
important prior work on the topic, which 
relied on software that no longer existed. 
He wrote his own software, obtained 
very different results, yet couldn’t explore 
where the differences might come from. 
He couldn’t publish on the topic, given 
the lack of real information to make 
any comparisons.

What’s the solution? Hinsen doesn’t 
offer any specific solution, but merely raises 
the question and outlines possible routes 
to better practice. At the moment, many 
people don’t even realize that there is a 
problem. It can be solved, he suggests, if 
scientists relying on computation — and 
this is increasingly just about everyone — 
take the issue seriously. Yet it will require 
insight from computer science itself to find 
the right techniques. Hinsen has started an 
open science project in the hope of finding 
collaborators to start working toward better 
practices (see https://www.guaana.com/ 
projects/scientific-notations-for-
the-digital-era).

Scientists haven’t learned yet that 
software represents more than just tools 
for doing things; it’s part of the precious 
repository of knowledge. It’s currently being 
built up out of language that the majority of 
human scientists can’t read or understand, 
and this is a big problem, even if it is largely 
invisible. There’s no guarantee that the 
cumulative and self-correcting history of 
science will automatically continue.  ❐

MARK BUCHANAN

Computer software 
of innumerable kinds 
has established itself 
implicitly within the fabric 
of scientific practice.

M. Buchanan, Nature Physics 12 630 (2016)
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Leibniz - a digital notation for the physical sciences

My first attempt at a Digital Scientific Notation

Still in a very early stage

Any feedback welcome:
Open Science project on Digital Scientific Notations in general
Leibniz on GitHub

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 20 / 38

https://www.guaana.com/projects/scientific-notations-for-the-digital-era
http://github.com/khinsen/leibniz


Gottfried Wilhelm Leibniz (1646-1716)

Leibniz attributed all his discov-
eries in mathematics to the de-
velopment and use of good no-
tations.

Ideas most relevant to Digital
Scientific Notations:

Leibniz’s notation in
calculus: dy/dx,

R
etc.

Calculus ratiocinator:
computing, formal logic,
etc.
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Approximation chain in numerical simulations

Mathematical
model

Simulation
program

Discretization

Real→Float

Optimization

Model parameters

Model
transformations

Specification

Leibniz
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Leibniz syntax

<context id="point-kinematics">
<sorts>
<sort id="point_system" />
<sort id="velocities" />
<sort id="a_trajectory" />
<sort id="positions" />
<sort id="velocity" />
<sort id="position" />
<sort id="v_trajectory" />
<sort id="accelerations" />
<sort id="acceleration" />
<sort id="trajectory" />
<sort id="point" />
<sort id="time" />

</ sorts>
<subsorts>
<subsort sort="point" sort="point_system" />

</ subsorts>
<ops>
<op id="at">

<arity>
<sort id="a_trajectory" />
<sort id="time" />

</ ar i ty>
<sort id="accelerations" />

</op>

. . .
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Software tools around Leibniz

Leibniz

Authoring
tools

Manipulation
tools

Numerical
tools

Visualization
tools
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Leibniz authoring environment (just a demo for now)
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Output for human readers
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“Development” syntax (works now)
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Leibniz in a nutshell

An algebraic specification language

based on equational logic

... and term rewriting

Today, Leibniz is a subset of Maude with different syntax.

In the future, Leibniz will further diverge from Maude.
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Order-sorted term algebra

A Leibniz term is either a standard term or a special term.

A standard term has the form op(arg1 arg2 . . .),
or just op for zero arguments.

Special terms are integers, rationals, and floats.

Each term has an associated sort.

Sorts have a partial order, defined by subsort relations.

Subsort relations form a directed acyclic graph.

The connected components of this graph are called kinds.

All terms must be kind-correct (“static typing”)

Sort errors within a kind can be resolved during rewriting
(“dynamic typing”)
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Sort graph for the number sorts

NonZeroNatural

NonZeroIntegerPositiveRational Natural

NonNegativeRational

NonNegativeReal Rational

IEEE-binary64

IEEE-floating-point

NonZeroRational

NonZeroReal

Real

IntegerPositiveReal

Zero IEEE-binary32
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A very simple example

define-context mass
;
include real-numbers
;
sort Mass
;
; The sum of two masses is a mass.
op {Mass + Mass} Mass
; The product of a positive number with a mass is a mass.
op {PositiveReal * Mass} Mass
; A mass divided by a positive number is a mass.
op {Mass / PositiveReal} Mass
; The quotient of two masses is a positive number.
op {Mass / Mass} PositiveReal
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Using subsorts

define-context distance
;
include real-numbers
;
sort Distance
;
sort NonZeroDistance ; an important special case for division
subsort NonZeroDistance Distance
;
op {Distance + Distance} Distance
op {Distance - Distance} Distance
;
op {Real * Distance} Distance
op {NonZeroReal * NonZeroDistance} NonZeroDistance
op {Distance / NonZeroReal} Distance
;
op {Distance / NonZeroDistance} Real
op {NonZeroDistance / NonZeroDistance} NonZeroReal
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Terms

define-context distance-test
include distance
op d Distance
op nzd NonZeroDistance

with-context distance-test
displayln T(d)
displayln T(nzd)
displayln T{2 * d}
displayln T{2 * nzd}
displayln T{0 * nzd}
displayln T{d / nzd}
displayln T{nzd / d}

Distance:d
NonZeroDistance:nzd
Distance:(* 2 d)
NonZeroDistance:(* 2 nzd)
Distance:(* 0 nzd)
Real:(/ d nzd)
[NonZeroNatural]:(/ nzd d)
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Rewrite rules

define-context distance-with-rules
;
include distance
;
=> D : Distance

{1 * D}
D

=> F1 : Real
F2 : Real
D : Distance

{{F1 * D} + {F2 * D}}
{{F1 + F2} * D}

=> F : NonZeroReal
D : Distance

{D / F}
{{1 / F} * D}

=> F1 : Real
F2 : Real
D : Distance

{F1 * {F2 * D}}
{{F1 * F2} * D}

define-context distance-test
include distance-with-rules
op d Distance

with-context distance-test
displayln T{{2 * d} + {3 * d}}
displayln RT{{2 * d} + {3 * d}}
displayln RT{{2 * d} + {d / 2}}

Distance:(+ (* 2 d) (* 3 d))
Distance:(* 5 d)
Distance:(* 5/2 d)
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Equations and transformations

define-context distance-with-equations
;
include distance-with-rules
;
op d1 Distance
op d2 NonZeroDistance
;
eq #:label eq-1

d1
{2 * d2}

with-context distance-with-equations
;
displayln eq(eq-1)
;
displayln

A
tr #:var (D Distance) D {D / 2}
eq(eq-1)
#:label eq-2

(eq #:label eq-1 d1 (* 2 d2))

(eq #:label eq-2 (* 1/2 d1) d2)
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Unusual features

Embedding code into scholarly discourse leads to different priorities
from software development.

No namespaces, no scopes, no modularity.

Use explicit renaming instead (supported by the authoring
environment).

Minimal built-in contexts: just numbers and booleans.

No “standard library”.

Re-use and adapt published libraries instead.

Prevents the creation of large black-box code libraries.
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Play with it yourself

All the code is on GitHub.

Written in Racket, which provides excellent support for this kind
of project.
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Future work

Leibniz
Associative/commutative operators

Built-in collections: lists, sets, maybe more

Interfaces to external data (files, databases, ...)

Support tools
Authoring environment

Manipulation tools for numerical work (real ! float etc.)

Libraries for popular programming languages

Find funding
Project outside of every funding agency’s categories

Suggestions welcome!
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