
Leibniz: A Digital Scientific Notation

Konrad HINSEN

Centre de Biophysique Moléculaire, Orléans, France
and

Synchrotron SOLEIL, Saint Aubin, France

24 November 2016

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 1 / 38

Computational science today

B Y Z E E Y A M E R A L I

Z. Merali, Nature 467, 775 (2010)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 2 / 38

http://www.nature.com/doifinder/10.1038/467775a

Embarassing bugs

1856

NEWS>>

THIS WEEK A dolphin’s

demise

Indians wary of

nuclear pact

1860 1863

Until recently, Geoffrey Chang’s career was on
a trajectory most young scientists only dream
about. In 1999, at the age of 28, the protein
crystallographer landed a faculty position at
the prestigious Scripps Research Institute in
San Diego, California. The next year, in a cer-
emony at the White House, Chang received a
Presidential Early Career Award
for Scientists and Engineers, the
country’s highest honor for young
researchers. His lab generated a
stream of high-prof ile papers
detailing the molecular structures
of important proteins embedded in
cell membranes.

Then the dream turned into a
nightmare. In September, Swiss
researchers published a paper in
Nature that cast serious doubt on a
protein structure Chang’s group
had described in a 2001 Science

paper. When he investigated,
Chang was horrified to discover
that a homemade data-analysis pro-
gram had flipped two columns of
data, inverting the electron-density
map from which his team had
derived the final protein structure.
Unfortunately, his group had used
the program to analyze data for
other proteins. As a result, on page 1875,
Chang and his colleagues retract three Science

papers and report that two papers in other jour-
nals also contain erroneous structures.

“I’ve been devastated,” Chang says. “I hope
people will understand that it was a mistake,
and I’m very sorry for it.” Other researchers
don’t doubt that the error was unintentional,
and although some say it has cost them time
and effort, many praise Chang for setting the
record straight promptly and forthrightly. “I’m
very pleased he’s done this because there has
been some confusion” about the original struc-
tures, says Christopher Higgins, a biochemist
at Imperial College London. “Now the field
can really move forward.”

The most influential of Chang’s retracted
publications, other researchers say, was the

2001 Science paper, which described the struc-
ture of a protein called MsbA, isolated from the
bacterium Escherichia coli. MsbA belongs to a
huge and ancient family of molecules that use
energy from adenosine triphosphate to trans-
port molecules across cell membranes. These
so-called ABC transporters perform many

essential biological duties and are of great clin-
ical interest because of their roles in drug resist-
ance. Some pump antibiotics out of bacterial
cells, for example; others clear chemotherapy
drugs from cancer cells. Chang’s MsbA struc-
ture was the first molecular portrait of an entire
ABC transporter, and many researchers saw it
as a major contribution toward figuring out how
these crucial proteins do their jobs. That paper
alone has been cited by 364 publications,
according to Google Scholar.

Two subsequent papers, both now being
retracted, describe the structure of MsbA from
other bacteria, Vibrio cholera (published in
Molecular Biology in 2003) and Salmonella

typhimurium (published in Science in 2005).
The other retractions, a 2004 paper in the
Proceedings of the National Academy of

Sciences and a 2005 Science paper, described
EmrE, a different type of transporter protein.

Crystallizing and obtaining structures of
five membrane proteins in just over 5 years
was an incredible feat, says Chang’s former
postdoc adviser Douglas Rees of the Califor-
nia Institute of Technology in Pasadena. Such
proteins are a challenge for crystallographers
because they are large, unwieldy, and notori-
ously diff icult to coax into the crystals
needed for x-ray crystallography. Rees says
determination was at the root of Chang’s suc-
cess: “He has an incredible drive and work
ethic. He really pushed the field in the sense

of getting things to crystallize that
no one else had been able to do.”
Chang’s data are good, Rees says,
but the faulty software threw
everything off.

Ironically, another former post-
doc in Rees’s lab, Kaspar Locher,
exposed the mistake. In the 14 Sep-
tember issue of Nature, Locher,
now at the Swiss Federal Institute
of Technology in Zurich, described
the structure of an ABC transporter
called Sav1866 from Staphylococcus

aureus. The structure was dramati-
cally—and unexpectedly—differ-
ent from that of MsbA. After
pulling up Sav1866 and Chang’s
MsbA from S. typhimurium on a
computer screen, Locher says he
realized in minutes that the MsbA
structure was inverted. Interpreting
the “hand” of a molecule is always
a challenge for crystallographers,

Locher notes, and many mistakes can lead to
an incorrect mirror-image structure. Getting
the wrong hand is “in the category of monu-
mental blunders,” Locher says.

On reading the Nature paper, Chang
quickly traced the mix-up back to the analysis
program, which he says he inherited from
another lab. Locher suspects that Chang
would have caught the mistake if he’d taken
more time to obtain a higher resolution struc-
ture. “I think he was under immense pressure
to get the first structure, and that’s what made
him push the limits of his data,” he says. Oth-
ers suggest that Chang might have caught the
problem if he’d paid closer attention to bio-
chemical findings that didn’t jibe well with the
MsbA structure. “When the first structure
came out, we and others said, ‘We really

A Scientist’s Nightmare: Software

Problem Leads to Five Retractions

SCIENTIFIC PUBLISHING

C
R

E
D

IT
:
R

.
J
.
P.

 D
A

W
S

O
N

 A
N

D
 K

.
P.

 L
O

C
H

E
R

,
N

A
T

U
R

E
4

4
3

,
1

8
0

 (
 2

0
0

6
)

22 DECEMBER 2006 VOL 314 SCIENCE www.sciencemag.org

Flipping fiasco. The structures of MsbA (purple) and Sav1866 (green) overlap

little (left) until MsbA is inverted (right).

▲

Published by AAAS

 o
n

N
ov

em
be

r 8
, 2

01
6

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d
fr

om

G. Miller, Science 314 1856 (2007)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 3 / 38

http://dx.doi.org/10.1126/science.314.5807.1856

Unexpected behavior

The Effects of FreeSurfer Version, Workstation Type, and
Macintosh Operating System Version on Anatomical
Volume and Cortical Thickness Measurements
Ed H. B. M. Gronenschild1,2*, Petra Habets1,2, Heidi I. L. Jacobs1,2,3, Ron Mengelers1,2, Nico Rozendaal1,2,

Jim van Os1,2,4, Machteld Marcelis1,2

1Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Alzheimer Center

Limburg, The Netherlands, 2 European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands, 3Cognitive Neurology Section,

Institute of Neuroscience and Medicine-3, Research Centre Jülich, Jülich, Germany, 4 King’s College London, King’s Health Partners, Department of Psychosis Studies

Institute of Psychiatry, London, United Kingdom

Abstract

FreeSurfer is a popular software package to measure cortical thickness and volume of neuroanatomical structures. However,
little if any is known about measurement reliability across various data processing conditions. Using a set of 30 anatomical
T1-weighted 3T MRI scans, we investigated the effects of data processing variables such as FreeSurfer version (v4.3.1, v4.5.0,
and v5.0.0), workstation (Macintosh and Hewlett-Packard), and Macintosh operating system version (OSX 10.5 and OSX
10.6). Significant differences were revealed between FreeSurfer version v5.0.0 and the two earlier versions. These differences
were on average 8.866.6% (range 1.3–64.0%) (volume) and 2.861.3% (1.1–7.7%) (cortical thickness). About a factor two
smaller differences were detected between Macintosh and Hewlett-Packard workstations and between OSX 10.5 and OSX
10.6. The observed differences are similar in magnitude as effect sizes reported in accuracy evaluations and
neurodegenerative studies. The main conclusion is that in the context of an ongoing study, users are discouraged to
update to a new major release of either FreeSurfer or operating system or to switch to a different type of workstation
without repeating the analysis; results thus give a quantitative support to successive recommendations stated by FreeSurfer
developers over the years. Moreover, in view of the large and significant cross-version differences, it is concluded that
formal assessment of the accuracy of FreeSurfer is desirable.

Citation: Gronenschild EHBM, Habets P, Jacobs HIL, Mengelers R, Rozendaal N, et al. (2012) The Effects of FreeSurfer Version, Workstation Type, and Macintosh
Operating System Version on Anatomical Volume and Cortical Thickness Measurements. PLoS ONE 7(6): e38234. doi:10.1371/journal.pone.0038234

Editor: Satoru Hayasaka, Wake Forest School of Medicine, United States of America

Received January 12, 2012; Accepted May 1, 2012; Published June 1, 2012

Copyright: ! 2012 Gronenschild et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Geestkracht program of the Dutch Health Research Council (ZON-MW, grant number 10-000-1002), and the European
Community’s Seventh Framework Program under grant agreement No. HEALTH-F2-2009-241909 (Project EU-GEI). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ed.gronenschild@maastrichtuniversity.nl

Introduction

FreeSurfer (Athinoula A. Martinos Center for Biomedical
Imaging, Harvard-MIT, Boston) comprises a popular and freely
available set of tools for deriving neuroanatomical volume and
cortical thickness measurements from automated brain segmenta-
tion (http://surfer.nmr.mgh.harvard.edu), recently summarised by
Fischl [1]. A number of reported studies discussed the accuracy of
the technique by comparing the volume of specific brain
structures, such as the hippocampus or amygdala, with manually
derived volumes [2–5]. The measurement of cortical thickness was
validated against histological analysis [6] and manual measure-
ments [7,8]. Also the reliability of the measurements was subject of
a number of investigations. Some of these studies addressed the
effect of scanner-specific parameters, including field strength, pulse
sequence, scanner upgrade, and vendor (cortical thickness: [9,10];
volume: [11]). In addition, the scan-rescan variability of a number
of subcortical brain volumes was assessed [12–14]. Finally, it has
been shown that Freesurfer is capable of reliably capturing (subtle)
morphological and pathological changes in the brain (e.g., [5,13]).

Since FreeSurfer is CPU-intensive (20–30 hours per brain for a
full segmentation is not exceptional), it is common practice to
distribute the computational load among the available central
processor units (CPUs) on a single workstation and/or among
several workstations. Given this context, a number of questions
suggest themselves: (1) does every CPU produce the same results;
(2) is there any interaction between the processes running
simultaneously on the same workstation; (3) does every workstation
produce the same results?
Just like similar neuroimaging packages, new releases of

FreeSurfer are issued regularly, fixing known bugs and improving
existing tools and/or adding new ones. Each release is accompa-
nied with documentation describing the changes relative to the
previous release (http://surfer.nmr.mgh.harvard.edu/fswiki/
ReleaseNotes). However, transition to a new release during the
course of a study may affect the results and is therefore
discouraged by the developers of FreeSurfer. This potential source
of variation in outcome may invalidate comparisons between
different studies. As yet, the sources and effect sizes of these
variations have never been investigated in detail.

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e38234

E. Gronenschild et al., PLoS ONE 7(6) e38234 (2012)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 4 / 38

http://dx.doi.org/10.1371/journal.pone.0038234

Misuse of black-box software

Cluster failure: Why fMRI inferences for spatial extent
have inflated false-positive rates
Anders Eklunda,b,c,1, Thomas E. Nicholsd,e, and Hans Knutssona,c

aDivision of Medical Informatics, Department of Biomedical Engineering, Linköping University, S-581 85 Linköping, Sweden; bDivision of Statistics and
Machine Learning, Department of Computer and Information Science, Linköping University, S-581 83 Linköping, Sweden; cCenter for Medical Image
Science and Visualization, Linköping University, S-581 83 Linköping, Sweden; dDepartment of Statistics, University of Warwick, Coventry CV4 7AL, United
Kingdom; and eWMG, University of Warwick, Coventry CV4 7AL, United Kingdom

Edited by Emery N. Brown, Massachusetts General Hospital, Boston, MA, and approved May 17, 2016 (received for review February 12, 2016)

The most widely used task functional magnetic resonance imaging
(fMRI) analyses use parametric statistical methods that depend on a
variety of assumptions. In this work, we use real resting-state data
and a total of 3 million random task group analyses to compute
empirical familywise error rates for the fMRI software packages SPM,
FSL, and AFNI, as well as a nonparametric permutation method. For a
nominal familywise error rate of 5%, the parametric statistical
methods are shown to be conservative for voxelwise inference
and invalid for clusterwise inference. Our results suggest that the
principal cause of the invalid cluster inferences is spatial autocorre-
lation functions that do not follow the assumed Gaussian shape. By
comparison, the nonparametric permutation test is found to produce
nominal results for voxelwise as well as clusterwise inference. These
findings speak to the need of validating the statistical methods being
used in the field of neuroimaging.

fMRI | statistics | false positives | cluster inference | permutation test

Since its beginning more than 20 years ago, functional magnetic
resonance imaging (fMRI) (1, 2) has become a popular tool

for understanding the human brain, with some 40,000 published
papers according to PubMed. Despite the popularity of fMRI as a
tool for studying brain function, the statistical methods used have
rarely been validated using real data. Validations have instead
mainly been performed using simulated data (3), but it is obviously
very hard to simulate the complex spatiotemporal noise that arises
from a living human subject in an MR scanner.
Through the introduction of international data-sharing initia-

tives in the neuroimaging field (4–10), it has become possible to
evaluate the statistical methods using real data. Scarpazza et al.
(11), for example, used freely available anatomical images from
396 healthy controls (4) to investigate the validity of parametric
statistical methods for voxel-based morphometry (VBM) (12).
Silver et al. (13) instead used image and genotype data from 181
subjects in the Alzheimer’s Disease Neuroimaging Initiative
(8, 9), to evaluate statistical methods common in imaging ge-
netics. Another example of the use of open data is our previous
work (14), where a total of 1,484 resting-state fMRI datasets from
the 1,000 Functional Connectomes Project (4) were used as null
data for task-based, single-subject fMRI analyses with the SPM
software. That work found a high degree of false positives, up to
70% compared with the expected 5%, likely due to a simplistic
temporal autocorrelation model in SPM. It was, however, not
clear whether these problems would propagate to group studies.
Another unanswered question was the statistical validity of other
fMRI software packages. We address these limitations in the
current work with an evaluation of group inference with the three
most common fMRI software packages [SPM (15, 16), FSL (17),
and AFNI (18)]. Specifically, we evaluate the packages in their
entirety, submitting the null data to the recommended suite of
preprocessing steps integrated into each package.
The main idea of this study is the same as in our previous one

(14). We analyze resting-state fMRI data with a putative task
design, generating results that should control the familywise error

(FWE), the chance of one or more false positives, and empirically
measure the FWE as the proportion of analyses that give rise to
any significant results. Here, we consider both two-sample and
one-sample designs. Because two groups of subjects are randomly
drawn from a large group of healthy controls, the null hypothesis
of no group difference in brain activation should be true. More-
over, because the resting-state fMRI data should contain no
consistent shifts in blood oxygen level-dependent (BOLD) activity,
for a single group of subjects the null hypothesis of mean zero
activation should also be true. We evaluate FWE control for both
voxelwise inference, where significance is individually assessed at
each voxel, and clusterwise inference (19–21), where significance
is assessed on clusters formed with an arbitrary threshold.
In brief, we find that all three packages have conservative

voxelwise inference and invalid clusterwise inference, for both
one- and two-sample t tests. Alarmingly, the parametric methods
can give a very high degree of false positives (up to 70%, com-
pared with the nominal 5%) for clusterwise inference. By com-
parison, the nonparametric permutation test (22–25) is found to
produce nominal results for both voxelwise and clusterwise in-
ference for two-sample t tests, and nearly nominal results for one-
sample t tests. We explore why the methods fail to appropriately
control the false-positive risk.

Results
A total of 2,880,000 random group analyses were performed to
compute the empirical false-positive rates of SPM, FSL, and
AFNI; these comprise 1,000 one-sided random analyses repeated
for 192 parameter combinations, three thresholding approaches,
and five tools in the three software packages. The tested parameter

Significance

Functional MRI (fMRI) is 25 years old, yet surprisingly its most
common statistical methods have not been validated using real
data. Here, we used resting-state fMRI data from 499 healthy
controls to conduct 3 million task group analyses. Using this null
data with different experimental designs, we estimate the in-
cidence of significant results. In theory, we should find 5% false
positives (for a significance threshold of 5%), but instead we
found that the most common software packages for fMRI anal-
ysis (SPM, FSL, AFNI) can result in false-positive rates of up to
70%. These results question the validity of some 40,000 fMRI
studies and may have a large impact on the interpretation of
neuroimaging results.

Author contributions: A.E. and T.E.N. designed research; A.E. and T.E.N. performed re-
search; A.E., T.E.N., and H.K. analyzed data; and A.E., T.E.N., and H.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. Email: anders.eklund@liu.se.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1602413113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1602413113 PNAS Early Edition | 1 of 6

N
EU

RO
SC

IE
N
CE

ST
A
TI
ST

IC
S

A. Eklund, T.E. Nichols, H. Knutsson, PNAS 113(28) 7900 (2016)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 5 / 38

http://dx.doi.org/10.1073/pnas.1602413113

Why can’t we fix this?

Insufficient software engineering

Testing numerical software is very difficult.

Most scientific software has no specification.

Most scientific software is badly documented.

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 6 / 38

Testing floating-point code

Reliable tests check for equality...

... but exact equality never happens with floats.

... but exact equality never happens with floats. Why ???

... therefore we must introduce tolerances ...

... but nobody knows how to choose them.

Full discussion:
K. Hinsen, The Approximation Tower in Computational Science: Why Testing
Scientific Software Is Difficult, Comp. Sci. Eng. 17(4) 72-77 (2015)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 7 / 38

http://dx.doi.org/10.1109/MCSE.2015.75

Specifications and documentation

Informal specifications / documentation
Theory: should be published in journal articles etc.

Practice: complexity of models and methods prevents a full
description

Formal specifications
Unknown to most computational scientists

No domain-specific languages and tools

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 8 / 38

Climate models

66 COMPUTING IN SCIENCE & ENGINEERING

meteorological research and development (Met
R&D) effort. The two groups primarily occupy
a single, open-plan office space on the second
floor of the Met Office’s Exeter headquarters
and have built a single unified code base. This
close relationship with an operational weather
forecasting center is unusual for a climate mod-
eling group, as is use of a unified code base. The
results we present here focus primarily on cli-
mate research, but our interviews—and the de-
velopment practices we observed—cover both
groups.

Climate Modeling Basics
Climate scientists use a range of computational
models in their research. The most sophisticated
are general circulation models (GCMs), which
represent the atmosphere and oceans using a
3D grid and solve the equations for fluid mo-
tion to calculate energy transfer between grid
points. GCMs are designed so that the various
subsystems (atmosphere, ocean, ice sheets, veg-
etation, and so on) can run either independent-
ly or coupled, with a coupler handling energy

and mass transfers between subsystems (see
Figure 1). Researchers can run the models at dif-
ferent resolutions, depending on the available
computing power. Coarse-resolution GCMs can
simulate large-scale phenomena, such as mid-
latitude weather systems, while finer-resolution
models are needed to simulate smaller-scale phe-
nomena, such as tropical cyclones.10

Scientists make many trade-offs when build-
ing climate models. It’s not computationally fea-
sible to simulate all relevant climate processes (to
the level they’re currently understood), so climate
scientists must decide which processes to resolve
explicitly and which to parameterize. They de-
velop parameter schemes from observational data
or from uncoupled runs of models that do resolve
the phenomena. For example, they can use a sepa-
rate cloud-resolving model to generate aggregate
cloud formation data for use as GCM parameters.
Judgment is needed to determine which processes
and resolutions are relevant to a given research
question.

The Earth’s climate is a complex system, ex-
hibiting chaotic behavior. The models might

Figure 1. Conceptual view of the components and couplings of a coupled Earth system model.

Sea ice

Chemistry

Atmospheric
transport

Dynamics

Ice sheet
coupler Atmosphere

surface
interface

Land
surface
model

Ocean
coupler

Dynamics

Inland ice

Dynamics

Mass
balance

Bedrock
model

Thermo-
dynamics

Surface
vegetation
atmosphere

transfer (SVAT)

Ocean

Atmosphere

Solar
Hydrological

cycle

Thermo-
dynamics

Thermodynamics

Oceanic
transport

Carbon
cycle

Salinity

CO2

Terrestrial
carbon cycle

Vegetation
dynamics

Terrestrial vegetation

From: Easterbrook & Johns, Comp. Sci. Eng. 11(6), 65-74 (2009)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 9 / 38

Protein models

A small protein (lysozyme) in the Amber99 force field

1960 atoms (1001 shown)

183 distinct atom types

interaction energy: a
function of 5880 variables,
with a few thousand
numerical parameters

Remember that this is a small
protein!

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 10 / 38

Biomolecular force fields (1/2)

This is how a typical research paper describes the AMBER force field:

U =
X

bonds ij

kij
⇣
rij � r(0)ij

⌘2

+
X

angles ijk

kijk
⇣
�ijk � �(0)

ijk

⌘2

+
X

dihedrals ijkl

kijkl cos (nijkl✓ijkl � �ijkl)

+
X

all pairs ij

4✏ij

�12ij
r12

�
�6ij
r6

!

+
X

all pairs ij

qiqj
4⇡✏0rij

U =
X

bonds ij

kij
⇣
rij � r(0)ij

⌘2

+
X

angles ijk

kijk
⇣
�ijk � �(0)

ijk

⌘2

+
X

dihedrals ijkl

kijkl cos (nijkl✓ijkl � �ijkl)

+
X

all pairs ij

4✏ij

�12ij
r12

�
�6ij
r6

!

+
X

all pairs ij

qiqj
4⇡✏0rij

missing details

not quite true common approximations
not mentioned

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 11 / 38

Biomolecular force fields (2/2)

Protein parameter files for Amber 12, in somewhat documented
formats:

lines filename
984 amino12.in
814 aminoct12.in
782 aminont12.in
533 frcmod.ff12SB
744 parm99.dat

For the details... read the source code!

For the algorithms that select the parameters for a given protein
structure... read the source code!

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 12 / 38

Read the source code!

10 Computing in Science & Engineering 1521-9615/14/$31.00 © 2014 IEEE Copublished by the IEEE CS and the AIP May/June 2014

Streamlining Development of a Multimillion-Line
Computational Chemistry Code

Robin M. Betz and Ross C. Walker | San Diego Supercomputer Center

Software engineering methodologies can be helpful in computational science and engineering projects. Here, a
continuous integration software engineering strategy is applied to a multimillion-line molecular dynamics code; the
implementation both streamlines the development and release process and unifies a team of widely distributed,
academic developers.

The needs of computational science and en-
gineering (CSE) projects greatly differ from
those of more traditional business enterprise
software, especially in terms of code valida-

tion and testing. Although software engineers have
expended considerable effort to simplify and stream-
line the development and testing process, such ap-
proaches often encounter problems when applied to
the scientific software domain. Testing is a notorious
example of this difference between the two fields.
Although business applications with a well-defined
usage are easily testable, scientific applications are
quite a different story. When the desired outcome
of a program is an unknown subject of research, the
traditional measurements of software validity used
by software engineers are difficult or even impossible
to define or establish. Tools designed to simplify the
development process often don’t mesh readily with
the goals and development timescale of CSE codes,
and as a result, test suites are typically written from
scratch or not at all.

CSE codes are also typically developed quite dif-
ferently from other applications. Developers work-
ing on scientific code usually have backgrounds
that are quite different from those of software en-
gineers, approaching the discipline primarily from
a scientific background, and as such they’re often
unfamiliar with good development practices. This
is further complicated by the fact that groups are
often distributed among many universities and even
countries, making collaboration and group deci-
sion making complicated compared to a group of
software engineers working in the same office. CSE

developers are also researchers first and foremost,
and their goal is primarily to generate publication-
quality research, rather than develop maintainable,
extensible code using the latest development meth-
odologies. This frequently results in a developer cul-
ture that’s resistant to change, as the time required
to implement and understand a new methodology
can be prohibitive in a research environment.

Although the tools and methods used in soft-
ware engineering can be difficult to apply to sci-
entific projects, they provide significant benefits to
the development of scientific software. In this case
study, we adapt the software engineering practice
of continuous integration to assist in the validation
and testing of the molecular dynamics code pack-
age, Assisted Model Building with Energy Refine-
ment (Amber; http://ambermd.org).1 Although
there were several challenges in applying this meth-
odology to Amber’s complex and diverse code base,
the introduction of software engineering tools to
Amber has proven to be extremely useful in unify-
ing a geographically separated group of developers
with different computer and science backgrounds,
and ultimately has provided considerable benefits to
the project as a whole.

Background
Amber is a package of molecular simulation pro-
grams that’s widely used within the computational
chemistry and computational molecular biology
communities. It includes a wide variety of programs
that enable the simulation of molecular systems at
the atomic level. It includes tools for all stages of

SOFTWARE ENGINEERING FOR CSE

CISE-16-03-Betz.indd 10 28/05/14 4:50 PM

Betz & Walker, Comp. Sci. Eng. 16(3), 10-17 (2014)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 13 / 38

Can we do science with computers?

Science requires verifiability of all findings, but:

We cannot discuss computational models and methods
... because we cannot write them down.

We cannot compare different models and methods
... for the same reason.

We cannot test scientific software
... because we have no specifications.

Users don’t understand their software
... because it’s too complex ...

... and there is no specification.

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 14 / 38

Similar issues elsewhere (1/2)

Reports and Articles

Social Processes and Proofs of Theorems
and Programs
Richard A. De Millo
Georgia Institute of Technology

Richard J. Lipton and Alan J. Perlis
Yale University

It is argued that formal verifications of programs,
no matter how obtained, will not play the same key role
in the development of computer science and software
engineering as proofs do in mathematics. Furthermore
the absence of continuity, the inevitability of change,
and the complexity of specification of significantly
many real programs make the formal verification
process difficult to justify and manage. It is felt that
ease of formal verification should not dominate
program language design.

Key Words and Phrases: formal mathematics,
mathematical proofs, program verification, program
specification

CR Categories: 2.10, 4.6, 5.24

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported in part by the U.S. Army Research
Office on grants DAHC 04-74-G-0179 and DAAG 29-76-G-0038
and by the National Science Foundation on grant MCS 78-81486.

Authors' addresses: R.A. De Millo, Georgia Institute of Technol-
ogy, Atlanta, GA 30332; A.J. Perlis and R.J. Lipton, Dept. of Computer
Science, Yale University, New Haven, CT 06520.
© i 979 ACM 0001-0782/79/0500-0271 $00.75.

271

I should like to ask the same question that Descartes asked. You
are proposing to give a precise definition of logical correctness
which is to be the same as my vague intuitive feeling for logical
correctness. How do you intend to show that they are the same?
... The average mathematician should not forget that intuition is
the final authority.

J. Barkley Rosser

Many people have argued that computer program-
ming should strive to become more like mathematics.
Maybe so, but not in the way they seem to think. The
aim of program verification, an attempt to make pro-
gramming more mathematics-like, is to increase dramat-
ically one's confidence in the correct functioning of a
piece of software, and the device that verifiers use to
achieve this goal is a long chain of formal, deductive
logic. In mathematics, the aim is to increase one's con-
fidence in the correctness of a theorem, and it's true that
one of the devices mathematicians could in theory use to
achieve this goal is a long chain of formal logic. But in
fact they don't. What they use is a proof, a very different
animal. Nor does the proof settle the matter; contrary to
what its name suggests, a proof is only one step in the
direction of confidence. We believe that, in the end, it is
a social process that determines whether mathematicians
feel confident about a theorem--and we believe that,
because no comparable social process can take place
among program verifiers, program verification is bound
to fail. We can't see how it's going to be able to affect
anyone's confidence about programs.

Communications May 1979
of Volume 22
the ACM Number 5

Communications of the ACM, 1979

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 15 / 38

http://dx.doi.org/10.1145/359104.359106

Similar issues elsewhere (2/2)
4XDQWD�0DJD]LQH

KWWSV���ZZZ�TXDQWDPDJD]LQH�RUJ����������LQ�FRPSXWHUV�ZH�WUXVW�)HEUXDU\���������

,Q�&RPSXWHUV�:H�7UXVW"
$V�PDWK�JURZV�HYHU�PRUH�FRPSOH[��ZLOO�FRPSXWHUV�UHLJQ"

,OOXVWUDWLRQ�E\�6LPRQV�6FLHQFH�1HZV

7KLV�VLPSOH�FRPSXWDWLRQ��ZULWWHQ�ZLWK�PDWK�VRIWZDUH�FDOOHG�0DSOH��YHULILHV�D�IRUPXOD�IRU�WKH�QXPEHU�RI�LQWHJHU
WULDQJOHV�ZLWK�D�JLYHQ�SHULPHWHU�

%\�1DWDOLH�:ROFKRYHU

6KDORVK�%��(NKDG��WKH�FR�DXWKRU�RI�VHYHUDO�SDSHUV�LQ�UHVSHFWHG�PDWKHPDWLFV�MRXUQDOV��KDV�EHHQ
NQRZQ�WR�SURYH�ZLWK�D�VLQJOH��VXFFLQFW�XWWHUDQFH�WKHRUHPV�DQG�LGHQWLWLHV�WKDW�SUHYLRXVO\�UHTXLUHG
SDJHV�RI�PDWKHPDWLFDO�UHDVRQLQJ��/DVW�\HDU��ZKHQ�DVNHG�WR�HYDOXDWH�D�IRUPXOD�IRU�WKH�QXPEHU�RI
LQWHJHU�WULDQJOHV�ZLWK�D�JLYHQ�SHULPHWHU��(NKDG�SHUIRUPHG����FDOFXODWLRQV�LQ�OHVV�WKDQ�D�VHFRQG�DQG
GHOLYHUHG�WKH�YHUGLFW��e7UXH�f

6KDORVK�%��(NKDG�LV�D�FRPSXWHU��2U��UDWKHU��LW�LV�DQ\�RI�D�URWDWLQJ�FDVW�RI�FRPSXWHUV�XVHG�E\�WKH
PDWKHPDWLFLDQ�'RURQ�=HLOEHUJHU��IURP�WKH�'HOO�LQ�KLV�1HZ�-HUVH\�RIILFH�WR�D�VXSHUFRPSXWHU�ZKRVH
VHUYLFHV�KH�RFFDVLRQDOO\�HQOLVWV�LQ�$XVWULD��7KH�QDPH�b�+HEUHZ�IRU�eWKUHH�%�RQHf�b�UHIHUV�WR�WKH
$7	7��%���(NKDGdV�HDUOLHVW�LQFDUQDWLRQ�

e7KH�VRXO�LV�WKH�VRIWZDUH�f�VDLG�=HLOEHUJHU��ZKR�ZULWHV�KLV�RZQ�FRGH�XVLQJ�D�SRSXODU�PDWK
SURJUDPPLQJ�WRRO�FDOOHG�0DSOH�

Quanta Magazine, 2013

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 16 / 38

https://www.quantamagazine.org/20130222-in-computers-we-trust/

Digital Scientific Notations

Informal language programming language

Digital
Scientific
Notation

formal

embedded into
scholarly discourse

automated
(partial) validation

verifiable by
human readers

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 17 / 38

Full story

K. Hinsen, The Self-Journal of Science, 2016

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 18 / 38

http://sjscience.org/article?id=527

Commented summary

630 NATURE PHYSICS | VOL 12 | JULY 2016 | www.nature.com/naturephysics

thesis

Digital science
Technology is transforming science. We
can calculate faster than ever before, and
gather more precise data, of an ever-
expanding variety. We now store staggering
volumes of information, and draw on it
ever more creatively. Communication
between scientists is changing too, even
if the scientific paper still remains the
standard element of information transfer
and recording. The web, e-mail and blogs, as
well as social media including Facebook and
Twitter, have completely altered how we
exchange thoughts.

The standard scientific paper increasingly
offers only a limited glimpse of today’s
scientific process. After all, computer
software of innumerable kinds has
established itself implicitly within the fabric
of scientific practice — in the structuring
of databases, and in computer algorithms
used to process such data, or to carry out
mathematical analyses. How the intricate
details of software and algorithms influence
results isn’t always clear.

Indeed, one might worry that the
standards of science are quietly being
eroded. Can we trust the results of a new
paper if they depend on calculations carried
out by proprietary software with non-public
source code? Just recently, mathematicians
reported the proof of a long-standing
conjecture — the Boolean Pythagorean
triples problem. The proof resides in some
200 terabytes of computer-generated output.
If only computers running other algorithms
can check the result, how can we really know
it’s all ok?

These issues have been raised recently
by biophysicist Konrad Hinsen (preprint
at https://arxiv.org/abs/1605.02960; 2016),
who has drawn motivation from years of
relying on software to run biomolecular
simulations. As he points out, computing
applications have become so utterly familiar
to all of us that we treat them as practical
tools not requiring further analysis. We see
tools for integrating, simulating, sorting
and transforming as the equivalent of forks,
spoons and other tableware; as unquestioned
things to be used and judged only by their
capacity to produce results.

Yet beyond results, science aims to record
the process of logic and argument that leads
to a deduction or interpretation. Scientists
judging work need to scrutinize the path
leading to results. An experiment, for
example, only leads to new understanding
if we understand all the details of how the

apparatus was set up and used; we accept
theoretical arguments only if each step is
made explicit. Likewise, Hinsen argues,
trusting the results of any calculation
run on scientific software requires full
understanding of the functioning of that
software. Unfortunately, most software used
today never gets any peer review.

Hinsen offers an illustration of the
problem. Consider using Newton’s equations
to calculate the celestial mechanics of planets
and predict their future trajectories. The
scientific knowledge relevant to the problem
is embodied in Newton’s laws of motion and
gravitation, the mathematics of calculus, as
well as a considerable body of astronomical
observation and experimental knowledge
(on telescopes and the interpretation of their
output, for example) that yields accurate
initial conditions for the bodies in question
at some moment. The calculation of future
motion can then be carried forward, in
principle using only pencil and paper.

In practice, we use computers, as
otherwise we could calculate little of
practical interest. This introduces another
layer of required specification, for the
numerical algorithm used to approximate
the continuous dynamical equations with
finite difference analogues, as well as for
the software that determines how real
numbers get approximated by floating
point operations. Calculations relying on
software need to be explicit on such details
if they are to fully describe the pathway
to a set of results, so other scientists can
reproduce them. Today, this is often —
probably even typically — not the case. Our
casual familiarity with software is partially
to blame.

But the nature of software, Hinsen argues,
makes the problem worse. The programming
languages behind it all aren’t anything like
human languages, and only permit writing
instructions for a computer, and nothing
else. This disrupts the ordinary process by
which scientists record what they’re doing
in a way that can be easily understood
by others, as anything scientific has to be

reduced to numerics. The result is a series
of diabolical tendencies all too familiar
to computational scientists. As he notes,
scientists can develop software using the best
practices of software engineering and the
result may still compute something different
from what its users think it computes. Of
course, concerned users can in principle
consult the documentation, but how do
they know that documentation is complete
and accurate?

All of this would be avoided if computing
source code were intelligible to human
readers, but that’s very far from the
case. At the moment, Hinsen suggests,
“most scientific software source code is
unintelligible to its users, and sometimes it
even becomes unintelligible to its developers
over time.”

Hinsen got concerned about the issue
after having to abandon a research project
when he could not reproduce the most
important prior work on the topic, which
relied on software that no longer existed.
He wrote his own software, obtained
very different results, yet couldn’t explore
where the differences might come from.
He couldn’t publish on the topic, given
the lack of real information to make
any comparisons.

What’s the solution? Hinsen doesn’t
offer any specific solution, but merely raises
the question and outlines possible routes
to better practice. At the moment, many
people don’t even realize that there is a
problem. It can be solved, he suggests, if
scientists relying on computation — and
this is increasingly just about everyone —
take the issue seriously. Yet it will require
insight from computer science itself to find
the right techniques. Hinsen has started an
open science project in the hope of finding
collaborators to start working toward better
practices (see https://www.guaana.com/
projects/scientific-notations-for-
the-digital-era).

Scientists haven’t learned yet that
software represents more than just tools
for doing things; it’s part of the precious
repository of knowledge. It’s currently being
built up out of language that the majority of
human scientists can’t read or understand,
and this is a big problem, even if it is largely
invisible. There’s no guarantee that the
cumulative and self-correcting history of
science will automatically continue. ❐

MARK BUCHANAN

Computer software
of innumerable kinds
has established itself
implicitly within the fabric
of scientific practice.

M. Buchanan, Nature Physics 12 630 (2016)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 19 / 38

http://dx.doi.org/10.1038/nphys3815

Leibniz - a digital notation for the physical sciences

My first attempt at a Digital Scientific Notation

Still in a very early stage

Any feedback welcome:
Open Science project on Digital Scientific Notations in general
Leibniz on GitHub

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 20 / 38

https://www.guaana.com/projects/scientific-notations-for-the-digital-era
http://github.com/khinsen/leibniz

Gottfried Wilhelm Leibniz (1646-1716)

Leibniz attributed all his discov-
eries in mathematics to the de-
velopment and use of good no-
tations.

Ideas most relevant to Digital
Scientific Notations:

Leibniz’s notation in
calculus: dy/dx,

R
etc.

Calculus ratiocinator:
computing, formal logic,
etc.

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 21 / 38

https://en.wikipedia.org/wiki/Leibniz%27s_notation
https://en.wikipedia.org/wiki/Calculus_ratiocinator

Approximation chain in numerical simulations

Mathematical
model

Simulation
program

Discretization

Real→Float

Optimization

Model parameters

Model
transformations

Specification

Leibniz

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 22 / 38

Leibniz syntax

<context id="point-kinematics">
<sorts>
<sort id="point_system" />
<sort id="velocities" />
<sort id="a_trajectory" />
<sort id="positions" />
<sort id="velocity" />
<sort id="position" />
<sort id="v_trajectory" />
<sort id="accelerations" />
<sort id="acceleration" />
<sort id="trajectory" />
<sort id="point" />
<sort id="time" />

</ sorts>
<subsorts>
<subsort sort="point" sort="point_system" />

</ subsorts>
<ops>
<op id="at">

<arity>
<sort id="a_trajectory" />
<sort id="time" />

</ ar i ty>
<sort id="accelerations" />

</op>

. . .

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 23 / 38

Software tools around Leibniz

Leibniz

Authoring
tools

Manipulation
tools

Numerical
tools

Visualization
tools

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 24 / 38

Leibniz authoring environment (just a demo for now)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 25 / 38

Output for human readers

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 26 / 38

“Development” syntax (works now)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 27 / 38

Leibniz in a nutshell

An algebraic specification language

based on equational logic

... and term rewriting

Today, Leibniz is a subset of Maude with different syntax.

In the future, Leibniz will further diverge from Maude.

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 28 / 38

http://maude.cs.illinois.edu/

Order-sorted term algebra

A Leibniz term is either a standard term or a special term.

A standard term has the form op(arg1 arg2 . . .),
or just op for zero arguments.

Special terms are integers, rationals, and floats.

Each term has an associated sort.

Sorts have a partial order, defined by subsort relations.

Subsort relations form a directed acyclic graph.

The connected components of this graph are called kinds.

All terms must be kind-correct (“static typing”)

Sort errors within a kind can be resolved during rewriting
(“dynamic typing”)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 29 / 38

Sort graph for the number sorts

NonZeroNatural

NonZeroIntegerPositiveRational Natural

NonNegativeRational

NonNegativeReal Rational

IEEE-binary64

IEEE-floating-point

NonZeroRational

NonZeroReal

Real

IntegerPositiveReal

Zero IEEE-binary32

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 30 / 38

A very simple example

define-context mass
;
include real-numbers
;
sort Mass
;
; The sum of two masses is a mass.
op {Mass + Mass} Mass
; The product of a positive number with a mass is a mass.
op {PositiveReal * Mass} Mass
; A mass divided by a positive number is a mass.
op {Mass / PositiveReal} Mass
; The quotient of two masses is a positive number.
op {Mass / Mass} PositiveReal

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 31 / 38

Using subsorts

define-context distance
;
include real-numbers
;
sort Distance
;
sort NonZeroDistance ; an important special case for division
subsort NonZeroDistance Distance
;
op {Distance + Distance} Distance
op {Distance - Distance} Distance
;
op {Real * Distance} Distance
op {NonZeroReal * NonZeroDistance} NonZeroDistance
op {Distance / NonZeroReal} Distance
;
op {Distance / NonZeroDistance} Real
op {NonZeroDistance / NonZeroDistance} NonZeroReal

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 32 / 38

Terms

define-context distance-test
include distance
op d Distance
op nzd NonZeroDistance

with-context distance-test
displayln T(d)
displayln T(nzd)
displayln T{2 * d}
displayln T{2 * nzd}
displayln T{0 * nzd}
displayln T{d / nzd}
displayln T{nzd / d}

Distance:d
NonZeroDistance:nzd
Distance:(* 2 d)
NonZeroDistance:(* 2 nzd)
Distance:(* 0 nzd)
Real:(/ d nzd)
[NonZeroNatural]:(/ nzd d)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 33 / 38

Rewrite rules

define-context distance-with-rules
;
include distance
;
=> D : Distance

{1 * D}
D

=> F1 : Real
F2 : Real
D : Distance

{{F1 * D} + {F2 * D}}
{{F1 + F2} * D}

=> F : NonZeroReal
D : Distance

{D / F}
{{1 / F} * D}

=> F1 : Real
F2 : Real
D : Distance

{F1 * {F2 * D}}
{{F1 * F2} * D}

define-context distance-test
include distance-with-rules
op d Distance

with-context distance-test
displayln T{{2 * d} + {3 * d}}
displayln RT{{2 * d} + {3 * d}}
displayln RT{{2 * d} + {d / 2}}

Distance:(+ (* 2 d) (* 3 d))
Distance:(* 5 d)
Distance:(* 5/2 d)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 34 / 38

∀

∀

∀

∀

∀

∀

∀

∀

∀

Equations and transformations

define-context distance-with-equations
;
include distance-with-rules
;
op d1 Distance
op d2 NonZeroDistance
;
eq #:label eq-1

d1
{2 * d2}

with-context distance-with-equations
;
displayln eq(eq-1)
;
displayln

A
tr #:var (D Distance) D {D / 2}
eq(eq-1)
#:label eq-2

(eq #:label eq-1 d1 (* 2 d2))

(eq #:label eq-2 (* 1/2 d1) d2)

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 35 / 38

Unusual features

Embedding code into scholarly discourse leads to different priorities
from software development.

No namespaces, no scopes, no modularity.

Use explicit renaming instead (supported by the authoring
environment).

Minimal built-in contexts: just numbers and booleans.

No “standard library”.

Re-use and adapt published libraries instead.

Prevents the creation of large black-box code libraries.

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 36 / 38

Play with it yourself

All the code is on GitHub.

Written in Racket, which provides excellent support for this kind
of project.

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 37 / 38

http://github.com/khinsen/leibniz
http://racket-lang.org/

Future work

Leibniz
Associative/commutative operators

Built-in collections: lists, sets, maybe more

Interfaces to external data (files, databases, ...)

Support tools
Authoring environment

Manipulation tools for numerical work (real ! float etc.)

Libraries for popular programming languages

Find funding
Project outside of every funding agency’s categories

Suggestions welcome!

Konrad HINSEN (CBM/SOLEIL) Leibniz: A Digital Scientific Notation 24 November 2016 38 / 38

	Computational science today
	Digital Scientific Notations
	Leibniz

