
xmlf90: A parser for XML in Fortran90

Alberto Garćıa
Departamento de F́ısica de la Materia Condensada

Facultad de Ciencia y Tecnoloǵıa
Universidad del Páıs Vasco

Apartado 644 , 48080 Bilbao, Spain
http://lcdx00.wm.lc.ehu.es/ag/xml/

21 September 2003 — xmlf90 Version 0.9.8

1 Introduction

This tutorial documents the user interface of xmlf90, a native Fortran90 XML parser. The
parser was designed to be a useful tool in the extraction and analysis of data in the context of
scientific computing, and thus the priorities were efficiency and the ability to deal with very large
XML files while maintaining a small memory footprint. There are two programming interfaces.
The first is based on the very successful SAX (Simple API for XML) model: the parser calls
routines provided by the user to handle certain events, such as the encounter of the beginning
of an element, or the end of an element, or the reading of character data. The other is based on
the XPATH standard. Only a very limited set of the full XPATH specification is offered, but it
is already quite useful.
Some familiarity of XML is assumed. Apart from the examples discussed in this tutorial (chosen
for their simplicity), the interested reader can refer to the Examples/ directory in the xmlf90
distribution.

2 The SAX interface

2.1 A simple example

To illustrate the working of the SAX interface, consider the following XML snippet

<item id="003">
<description>Washing machine</description>
<price currency="euro">1500.00</price>

</item>

When the parser processes this snippet, it carries out the sequence of calls:

1. call to begin element handler with name=”item” and attributes=(Dictionary with the
pair (id,003))

2. call to begin element handler with name=”description” and an empty attribute dictio-
nary.

3. call to pcdata chunk handler with pcdata=”Washing machine”

1



4. call to end element handler with name=”description”

5. call to begin element handler with name=”price” and attributes=(Dictionary with the
pair (currency,euro))

6. call to pcdata chunk handler with pcdata=”1500.00”

7. call to end element handler with name=”price”

8. call to end element handler with name=”item”

The handler routines are written by the user and passed to the parser as procedure arguments. A
simple program that parses the above XML fragment (assuming it resides in file inventory.xml)
and prints out the names of the elements and any id attributes as they are found, is:

program simple
use flib_sax

type(xml_t) :: fxml ! XML file object (opaque)
integer :: iostat ! Return code (0 if OK)

call open_xmlfile("inventory.xml",fxml,iostat)
if (iostat /= 0) stop "cannot open xml file"

call xml_parse(fxml, begin_element_handler=begin_element_print)

contains !---------------- handler subroutine follows

subroutine begin_element_print(name,attributes)
character(len=*), intent(in) :: name
type(dictionary_t), intent(in) :: attributes

character(len=3) :: id
integer :: status

print *, "Start of element: ", name
if (has_key(attributes,"id")) then
call get_value(attributes,"id",id,status)

print *, " Id attribute: ", id
endif

end subroutine begin_element_print

end program simple

To access the XML parsing functionality, the user only needs to use the module flib sax, open
the XML file, and call the main routine xml parse, providing it with the appropriate event
handlers.
The subroutine interfaces are:

subroutine open_xmlfile(fname,fxml,iostat)
character(len=*), intent(in) :: fname ! File name
type(xml_t), intent(out) :: fxml ! XML file object (opaque)

2



integer, intent(out ) :: iostat ! Return code (0 if OK)

subroutine xml_parse(fxml, &
begin_element_handler, &
end_element_handler, &
pcdata_chunk_handler ....
.... MORE OPTIONAL HANDLERS )

The handlers are OPTIONAL arguments (in the above example we just specify
begin element handler). If no handlers are given, nothing useful will happen, except that
any errors are detected and reported. The interfaces for the most useful handlers are:

subroutine begin_element_handler(name,attributes)
character(len=*), intent(in) :: name
type(dictionary_t), intent(in) :: attributes
end subroutine begin_element_handler

subroutine end_element_handler(name)
character(len=*), intent(in) :: name
end subroutine end_element_handler

subroutine pcdata_chunk_handler(chunk)
character(len=*), intent(in) :: chunk
end subroutine pcdata_chunk_handler

The attribute information in an element tag is represented as a dictionary of name/value pairs,
held in a dictionary t abstract type. The information in it can be accessed through a set of
dictionary methods such as has key and get value (full interfaces to be found in Sect. 5).

2.2 Monitoring the sequence of events

The above example is too simple and not very useful if what we want is to extract information
in a coherent manner. For example, assume we have a more complete inventory of appliances
such as

<inventory>
<item id="003">

<description>Washing machine</description>
<price currency="euro">1500.00</price>

</item>
<item id="007">

<description>Microwave oven</description>
<price currency="euro">300.00</price>

</item>
<item id="011">

<description>Dishwasher</description>
<price currency="swedish crown">10000.00</price>

</item>
</inventory>

3



and we want to print the items with their prices in the form:

003 Washing machine : 1500.00 euro
007 Microwave oven : 300.00 euro
011 Dishwasher : 10000.00 swedish crown

We begin by writing the following module

module m_handlers
use flib_sax
private
public :: begin_element, end_element, pcdata_chunk
!
logical, private :: in_item, in_description, in_price
character(len=40), private :: what, price, currency, id
!
contains !-----------------------------------------
!
subroutine begin_element(name,attributes)

character(len=*), intent(in) :: name
type(dictionary_t), intent(in) :: attributes

integer :: status

select case(name)
case("item")

in_item = .true.
call get_value(attributes,"id",id,status)

case("description")
in_description = .true.

case("price")
in_price = .true.
call get_value(attributes,"currency",currency,status)

end select

end subroutine begin_element
!---------------------------------------------------------------
subroutine pcdata_chunk_handler(chunk)

character(len=*), intent(in) :: chunk

if (in_description) what = chunk
if (in_price) price = chunk

end subroutine pcdata_chunk_handler
!---------------------------------------------------------------
subroutine end_element(name)

character(len=*), intent(in) :: name

4



select case(name)
case("item")

in_item = .false.
write(unit=*,fmt="(5(a,1x))") trim(id), trim(what), ":", &

trim(price), trim(currency)

case("description")
in_description = .false.

case("price")
in_price = .false.

end select

end subroutine end_element
!---------------------------------------------------------------
end module m_handlers

PCDATA chunks are passed back as simple fortran character variables, and we assign them
to what or price depending on the context, which we monitor through the logical variables
in description, in price, updated as we enter and leave different elements. (The variable
in item is not strictly necessary.)
The program to parse the file just needs to use the functionality in the module m handlers:

program inventory
use flib_sax
use m_handlers

type(xml_t) :: fxml ! XML file object (opaque)
integer :: iostat

call open_xmlfile("inventory.xml",fxml,iostat)
if (iostat /= 0) stop "cannot open xml file"

call xml_parse(fxml, begin_element_handler=begin_element, &
end_element_handler=end_element, &
pcdata_chunk_handler=pcdata_chunk )

end program inventory

2.2.1 Exercises

1. Code the above fortran files and the XML file in your computer. Compile and run the
program and check that the output is correct. (Compilation instructions are provided in
Sect. 8).

2. Edit the XML file and remove one of the </item> lines. What happens? This is an
example of a mal-formed XML file. The parser can detect it and complain about it.

3. Edit the XML file and remove the currency attribute from one of the elements. What
happens? In this case, the parser cannot detect the missing attribute (it is not a validating

5



parser). However, it could be possible for the user to detect early that something is wrong
by checking the value of the status variable after the call to get value.

4. Modify the program to print the prices in euros (1 euro buys approximately 9.2 swedish
crowns).

2.3 Other tags and their handlers

The parser can also process comments, XML declarations (formally known as “processing in-
structions”), and SGML declarations, although the latter two are not acted upon in any way
(in particular, no attempt at validation of the XML document is done).

• An empty element tag of the form

<name att="value"... />

can be handled as successive calls to begin element handler and end element handler.
However, if the optional handler empty element handler is present, it is called instead.
Its interface is exactly the same as that of begin element handler:

subroutine empty_element_handler(name,attributes)
character(len=*), intent(in) :: name
type(dictionary_t), intent(in) :: attributes
end subroutine empty_element_handler

• Comments are sections of the XML file contained between the markup <!-- and -->,
and are handled by the optional argument comment handler

subroutine comment_handler(comment)
character(len=*), intent(in) :: comment
end subroutine comment_handler

• XML declarations can be processed in the same way as elements, with the “target”
being the element name, etc. For example, in

<?xml version="1.0"?>

xml would be the “element name”, version an attribute name, and 1.0 its value. The
optional handler interface is:

subroutine xml_declaration_handler(name,attributes)
character(len=*), intent(in) :: name
type(dictionary_t), intent(in) :: attributes
end subroutine xml_declaration_handler

• SGML declarations such as entity declarations or doctype specifications are treated
basically as comments. Interface:

subroutine sgml_declaration_handler(sgml_declaration)
character(len=*), intent(in) :: sgml_declaration
end subroutine sgml_declaration_handler

In the current version of the parser, overly long comments and SGML declarations might be
truncated.

6



3 The XPATH interface

NOTE: The current implementation gets its inspiration from XPATH, but by no means it is a
complete, or even a subset, implementation of the standard. Since it is built on top of the SAX
interface, it uses a “stream” paradigm which is completely alien to the XPATH specification. It
is nevertheless still quite useful. The author is open to suggestions to refine the interface.

This API is based on the concept of an XML path. For example:

/inventory/item

represents a ’item’ element which is a child of the root element ’inventory’. Paths can contain
special wildcard markers such as // and *. The following are examples of valid paths:

//a : Any occurrence of element ’a’, at any depth.
/a/*/b : Any ’b’ which is a grand-child of ’a’
./a : A relative path (with respect to the current path)
a : (same as above)
/a/b/./c : Same as /a/b/c (the dot (.) is a dummy)
//* : Any element.
//a/*//b : Any ’b’ under any children of ’a’.

3.1 Simple example

Using the XPATH interface it is possible to search for any element directly, and to recover its
attributes or character content. For example, to print the names of all the appliances in the
inventory:

program simple
use flib_xpath

type(xml_t) :: fxml

integer :: status
character(len=100) :: what

call open_xmlfile("inventory.xml",fxml,status)
!
do

call get_node(fxml,path="//description",pcdata=what,status=status)
if (status < 0) exit
print *, "Appliance: ", trim(what)

enddo
end program simple

Repeated calls to get node return the character content of the ’description’ elements (at any
depth). We exit the loop when the status variable is negative on return from the call. This
indicates that there are no more elements matching the //description path pattern.1

Apart from path patterns, we can narrow our search by specifying conditions on the attribute
list of the element. For example, to print only the prices which are given in euros we can use
the att name and att value optional arguments:

1Returning a negative value for an end-of-file or end-or-record condition follows the standard practice. Positive
return values signal malfunctions

7



program euros
use flib_xpath

type(xml_t) :: fxml

integer :: status
character(len=100) :: price

call open_xmlfile("inventory.xml",fxml,status)
!
do

call get_node(fxml,path="//price", &
att_name="currency",att_value="euro", &
pcdata=price,status=status)

if (status < 0) exit
print *, "Price (euro): ", trim(price)

enddo
end program euros

We can zero in on any element in this fashion, but we apparently give up the all-important
context. What happens if we want to print both the appliance description and its price?

program twoelements
use flib_xpath

type(xml_t) :: fxml

integer :: status
character(len=100) :: what, price, currency

call open_xmlfile("inventory.xml",fxml,status)
!
do

call get_node(fxml,path="//description", &
pcdata=what,status=status)

if (status < 0) exit ! No more items
!
! Price comes right after description...
!
call get_node(fxml,path="//price", &

attributes=attributes,pcdata=price,status=status)
if (status /= 0) stop "missing price element!"

call get_value(attributes,"currency",currency,status)
if (status /= 0) stop "missing currency attribute!"

write(unit=*,fmt="(5a))") "Appliance: ", trim(what), &
". Price: ", trim(price), " ", trim(currency)

enddo
end program twoelements

8



3.1.1 Exercises

1. Modify the above programs to print only the appliances priced in euros.

2. Modify the order of the ’description’ and ’price’ elements in a item. What happens to the
’twoelements’ program output?

3. The full XPATH specification allows the query for a particular element among a set of
elements with the same path, based on the ordering of the element. For example, ”/in-
ventory/item[2]” will refer to the second ’item’ element in the XML file. Write a routine
that implements this feature and returns the element’s attribute dictionary.

4. Queries for paths can be issued in any order, and so some mechanism for ”rewinding”
the XML file is necessary. It is provided by the appropriately named rewind xmlfile
subroutine (see full interface in the Reference section). Use it to implement a silly program
that prints items from the inventory at random. (Extra points for including logic to
minimize the number of rewinds.)

3.2 Contexts and restricted searches

The logic of the twoelements program in the previous section follows from the assumption that
the ’price’ element follows the ’description’ element in a typical ’item’. If the DTD says so, and
the XML file is valid (in the technical sense of conforming to the DTD), the assumption should
be correct. However, since the parser is non-validating, it might be unreasonable to expect the
proper ordering in all cases. What we should expect (as a minimum) is that both the price and
description elements are children of the ’item’ element. In the following version we make use of
the context concept to achieve a more robust solution.

program item_context
use flib_xpath

type(xml_t) :: fxml, contex

integer :: status
character(len=100) :: what, price, currency

call open_xmlfile("inventory.xml",fxml,status)
!
do

call mark_node(fxml,path="//item",status=status)
if (status < 0) exit ! No more items
context = fxml ! Save item context
!
! Search relative to context
!
call get_node(fxml,path="price", &

attributes=attributes,pcdata=price,status=status)
call get_value(attributes,"currency",currency,status)
if (status /= 0) stop "missing currency attribute!"
!
! Rewind to beginning of context
!

9



fxml = context
call sync_xmlfile(fxml)
!
! Search relative to context
!
call get_node(fxml,path="description",pcdata=what,status=status)
write(unit=*,fmt="(5a))") "Appliance: ", trim(what), &

". Price: ", trim(price), " ", trim(currency)
enddo
end program item_context

The call to mark node positions the parser’s file handle fxml right after the end of the starting
tag of the next ’item’ element. We save that position as a “context marker” to which we can
return later on. The calls to get node use path patterns that do not start with a /: they are
searches relative to the current context. After getting the information about the ’price’
element, we restore the parser’s file handle to the appropriate position at the beginning of the
’item’ context, and search for the ’description’ element. In the following iteration of the loop,
the parser will find the next ’item’ element, and the process will be repeated until there are no
more ’item’s.
Contexts come in handy to encapsulate parsing tasks in re-usable subroutines. Suppose you are
going to find the basic ’item’ element content in a whole lot of different XML files. The following
subroutine extracts the description and price information:

subroutine get_item_info(context,what,price,currency)
type(xml_t), intent(in) :: contex
character(len=*), intent(out) :: what, price, currency

!
! Local variables
!
type(xml_t) :: ff
integer :: status
type(dictionary_t) :: attributes

!
! context is read-only, so make a copy and sync just in case
!
ff = context
call sync_xmlfile(ff)
!
call get_node(ff,path="price", &

attributes=attributes,pcdata=price,status=status)
call get_value(attributes,"currency",currency,status)
if (status /= 0) stop "missing currency attribute!"
!
! Rewind to beginning of context
!
ff = context
call sync_xmlfile(ff)
!
call get_node(ff,path="description",pcdata=what,status=status)

10



end subroutine get_item_info

Using this routine, the parsing is much more compact:

program item_context
use flib_xpath

type(xml_t) :: fxml

integer :: status
character(len=100) :: what, price, currency

call open_xmlfile("inventory.xml",fxml,status)
!
do

call mark_node(fxml,path="//item",status=status)
if (status /= 0) exit ! No more items
call get_item_info(fxml,what,price,currency)
write(unit=*,fmt="(5a))") "Appliance: ", trim(what), &

". Price: ", trim(price), " ", trim(currency)
call sync_xmlfile(fxml)

enddo
end program item_context

It is extremely important to understand the meaning of the call to sync xmlfile. The file
handle fxml holds parsing context and a physical pointer to the file position (basically a variable
counting the number of characters read so far). When the context is passed to the subroutine
and the parsing carried out, the context and the file position get out of sync. Synchronization
means to re-position the physical file pointer to the place where it was when the context was
first created.

3.2.1 Exercises

1. Modify the above programs to print only the appliances priced in euros.

2. Write a program that prints only the most expensive item. (Assume that the inventory is
very large and it is not feasible to hold everything in memory...)

3. Use the get item info subroutine to print descriptions and price information from the
following XML file:

<vacations>
<trip>

<description>Mediterranean cruise</description>
<price currency="euro">1500.00</price>

</trip>
<trip>

<description>Week in Majorca</description>
<price currency="euro">300.00</price>

</trip>
<trip>

11



<description>Wilderness Route</description>
<price currency="swedish crown">10000.00</price>

</trip>
</vacations>

(Note that the routine does not care what the context name is (it could be ’item’ or ’trip’).
It is only the fact that the children (’description’ and ’price’) are the same that matters.

4 Handling of scientific data

4.1 Numerical datasets

While the ASCII form is not the most efficient for the storage of numerical data, the portability
and flexibility offered by the XML format makes it attractive for the interchange of scientific
datasets. There are a number of efforts under way to standardize this area, and presumably we
will have nifty tools for the creation and visualization of files in the near future. Even then,
however, it will be necessary to be able to read numerical information into fortran programs.
The xmlf90 package offers limited but useful functionality in this regard, making it possible to
build numerical arrays on the fly as the XML file containing the data is parsed. As an example,
consider the dataset:

<data>
8.90679398599 8.90729421510 8.90780189594 8.90831710494
8.90883991832 8.90937041202 8.90990866166 8.91045474255
8.91100872963 8.91157069732 8.91214071958 8.91271886986
8.91330522098 8.91389984506 8.91450281355 8.91511419713
8.91573406560 8.91636248785 8.91699953183 8.91764526444
8.91829975142 8.91896305734 8.91963524555 8.92031637799
8.92100651514 8.92170571605 8.92241403816 8.92313153711
8.92385826683 8.92459427943 8.92533962491 8.92609435120
8.92685850416 8.92763212726 8.92841526149 8.92920794545
</data>

and the following fragment of a m handlers module for SAX parsing:

real, dimension(1000) :: x ! numerical array to hold data

subroutine begin_element(name,attributes)
...
select case(name)

case("data")
in_data = .true.
ndata = 0

...
end select

end subroutine begin_element
!---------------------------------------------------------------
subroutine pcdata_chunk_handler(chunk)

character(len=*), intent(in) :: chunk

12



if (in_data) call build_data_array(chunk,x,ndata)
...

end subroutine pcdata_chunk_handler
!-------------------------------------------------------------
subroutine end_element(name)
...

select case(name)
case("data")

in_data = .false.
print *, "Read ", ndata, " data elements."
print *, "X: ", x(1:ndata)

...
end select

end subroutine end_element

When the <data> tag is encountered by the parser, the variable ndata is initialized. Any
PCDATA chunks found from then on and until the </data> tag is seen are passed to the
build data array generic subroutine, which converts the character data to the numerical format
(integer, default real, double precision) implied by the array x. The array is filled with data and
the ndata variable increased accordingly.
If the data is known to represent a multi-dimensional array (something that could be encoded
in the XML as attributes to the ’data’ element, for example), the user can employ the fortran
reshape intrinsic to obtain the final form.
There is absolutely no limit to the size of the data (apart from filesystem size and total memory
constraints) since the parser only holds in memory at any given time a small chunk of character
data (the default is to split the character data stream and call the pcdata chunk handler routine
at the end of a line, or at the end of a token if the line is too long). This is one of the most
useful features of the SAX approach to XML parsing.
In order to read numerical data with the XPATH interface in its current implementation, one
must first read the PCDATA into the pcdata optional argument of get node, and then call
build data array. However, there is an internal limit to the size of the PCDATA buffer, so
this method cannot be safely used for large datasets at this point. In a forthcoming version there
will be a generic subroutine get node with a data numerical array optional argument which will
be filled by the parser on the fly.

4.1.1 Exercises

1. Generate an XML file containing a large dataset, and write a program to read the infor-
mation back. You might want to include somewhere in the XML file information about
the number of data elements, so that an array of the proper size can be used.

2. Devise a strategy to read a dataset without knowing in advance the number of data
elements. (Some possibilities: re-sizable allocatable arrays, two-pass parsing...).

3. Suggest a possible encoding for the storage of two-dimensional arrays, and write a program
to read the information from the XML file and create the appropriate array.

4. Write a program that could read a 10Gb Monte Carlo simulation dataset and print the
average and standard deviation of the data. (We are not advocating the use of XML for
such large datasets. NetCDF would be much more efficient in this case).

13



4.2 Mapping of XML elements to derived types

After the parsing, the data has to be put somewhere. A good strategy to handle structured
content is to try to replicate it within data structures inside the user program. For example, an
element of the form

<table units="nm" npts="100">
<description>Cluster diameters</description>
<data>
2.3 4.5 5.6 3.4 2.3 1.2 ...
...
...
</data>
</table>

could be mapped onto a derived type of the form:

type :: table
character(len=50) :: description
character(len=20) :: units
integer :: npts
real, dimension(:), pointer :: data

end type table

There could even be parsing and output subroutines associated to this derived type, so that the
user can handle the XML production and reading transparently. Directory Examples/ in the
xmlf90 distribution contains some code along these lines.

4.2.1 Exercises

1. Study the pseudo example in Examples/sax/ and Examples/xpath/. Now, with your
own application in mind, write derived-type definitions and parsing routines to handle
your XML data (which would also need to be designed somehow).

5 REFERENCE: Subroutine interfaces

5.1 Dictionary handling

Attribute lists are handled as instances of a derived type dictionary t, loosely inspired by the
Python type. The terminology is more general: keys and entries instead of names and attributes
(execept in the get name routine: this will be corrected in a later version).

• function number_of_entries(dict) result(n)
!
! Returns the number of entries in the dictionary
!
type(dictionary_t), intent(in) :: dict
integer :: n

• function has_key(dict,name) result(found)
!
! Checks whether there is a key with
! the given name in the dictionary

14



!
type(dictionary_t), intent(in) :: dict
character(len=*), intent(in) :: name
logical :: found

• subroutine get_value(dict,key,value,status)
!
! Gets values by key
!
type(dictionary_t), intent(in) :: dict
character(len=*), intent(in) :: key
character(len=*), intent(out) :: value
integer, intent(out) :: status

• subroutine get_name(dict,i,name,status)
!
! Gets keys names by their order in the dictionary
!
type(dictionary_t), intent(in) :: dict
integer, intent(in) :: i
character(len=*), intent(out) :: name
integer, intent(out) :: status

• subroutine print_dict(dict)
!
! Prints the contents of the dictionary to stdout
!
type(dictionary_t), intent(in) :: dict

5.2 SAX interface

• subroutine open_xmlfile(fname,fxml,iostat)
!
! Opens the file "fname" and creates an xml handle fxml
! iostat /= 0 on error.
!
character(len=*), intent(in) :: fname
integer, intent(out) :: iostat
type(xml_t), intent(out) :: fxml

• subroutine xml_parse(fxml, begin_element_handler, &
end_element_handler, &
pcdata_chunk_handler, &
comment_handler, &
xml_declaration_handler, &
sgml_declaration_handler, &
error_handler, &
signal_handler, &
verbose, &
empty_element_handler)

15



type(xml_t), intent(inout), target :: fxml

optional :: begin_element_handler
optional :: end_element_handler
optional :: pcdata_chunk_handler
optional :: comment_handler
optional :: xml_declaration_handler
optional :: sgml_declaration_handler
optional :: error_handler
optional :: signal_handler ! see XPATH code
logical, intent(in), optional :: verbose
optional :: empty_element_handler

• Interfaces for handlers follow:

subroutine begin_element_handler(name,attributes)
character(len=*), intent(in) :: name
type(dictionary_t), intent(in) :: attributes
end subroutine begin_element_handler

subroutine end_element_handler(name)
character(len=*), intent(in) :: name
end subroutine end_element_handler

subroutine pcdata_chunk_handler(chunk)
character(len=*), intent(in) :: chunk
end subroutine pcdata_chunk_handler

subroutine comment_handler(comment)
character(len=*), intent(in) :: comment
end subroutine comment_handler

subroutine xml_declaration_handler(name,attributes)
character(len=*), intent(in) :: name
type(dictionary_t), intent(in) :: attributes
end subroutine xml_declaration_handler

subroutine sgml_declaration_handler(sgml_declaration)
character(len=*), intent(in) :: sgml_declaration
end subroutine sgml_declaration_handler

subroutine error_handler(error_info)
type(xml_error_t), intent(in) :: error_info
end subroutine error_handler

subroutine signal_handler(code)
logical, intent(out) :: code
end subroutine signal_handler

subroutine empty_element_handler(name,attributes)

16



character(len=*), intent(in) :: name
type(dictionary_t), intent(in) :: attributes
end subroutine empty_element_handler

Other file handling routines (some of them really only useful within the XPATH interface):

• subroutine REWIND_XMLFILE(fxml)
!
! Rewinds the physical file associated to fxml and clears the data
! structures used in parsing.
!
type(xml_t), intent(inout) :: fxml

• subroutine SYNC_XMLFILE(fxml,status)
!
! Synchronizes the physical file associated to fxml so that reading
! can resume at the exact point in the parsing saved in fxml.
!
type(xml_t), intent(inout) :: fxml
integer, intent(out) :: status

• subroutine CLOSE_XMLFILE(fxml)
!
! Closes the file handle fmxl (and the associated OS file object)
!
type(xml_t), intent(inout) :: fxml

5.3 XPATH interface

• subroutine MARK_NODE(fxml,path,att_name,att_value,attributes,status)
!
! Performs a search of a given element (by path, and/or presence of
! a given attribute and/or value of that attribute), returning optionally
! the element’s attribute dictionary, and leaving the file handle fxml
! ready to process the rest of the element’s contents (child elements
! and/or pcdata).
!
! Side effects: it sets a "path_mark" in fxml to enable its use as a
! context.
!
! If the argument "path" is present and evaluates to a relative path (a
! string not beginning with "/"), the search is interrupted after the end
! of the "ancestor_element" set by a previous call to "mark_node".
! If not earlier, the search ends at the end of the file.
!
! The status argument, if present, will hold a return value,
! which will be:
!
! 0 on success,
! negative in case of end-of-file or end-of-ancestor-element, or

17



! positive in case of other malfunction
!
type(xml_t), intent(inout), target :: fxml
character(len=*), intent(in), optional :: path
character(len=*), intent(in), optional :: att_name
character(len=*), intent(in), optional :: att_value
type(dictionary_t), intent(out), optional :: attributes
integer, intent(out), optional :: status

• subroutine GET_NODE(fxml,path,att_name,att_value,attributes,pcdata,status)
!
! Performs a search of a given element (by path, and/or presence of
! a given attribute and/or value of that attribute), returning optionally
! the element’s attribute dictionary and any PCDATA characters contained
! in the element’s scope (but not child elements). It leaves the file handle
! physically and logically positioned:
!
! after the end of the element’s start tag if ’pcdata’ is not present
! after the end of the element’s end tag if ’pcdata’ is present
!
! If the argument "path" is present and evaluates to a relative path (a
! string not beginning with "/"), the search is interrupted after the end
! of the "ancestor_element" set by a previous call to "mark_node".
! If not earlier, the search ends at the end of the file.
!
! The status argument, if present, will hold a return value,
! which will be:
!
! 0 on success,
! negative in case of end-of-file or end-of-ancestor-element, or
! positive in case of a malfunction (such as the overflow of the
! user’s pcdata buffer).
!
type(xml_t), intent(inout), target :: fxml
character(len=*), intent(in), optional :: path
character(len=*), intent(in), optional :: att_name
character(len=*), intent(in), optional :: att_value
type(dictionary_t), intent(out), optional :: attributes
character(len=*), intent(out), optional :: pcdata
integer, intent(out), optional :: status

5.4 PCDATA conversion routines

• subroutine build_data_array(str,x,n)
!
! Incrementally builds the data array x from
! character data contained in str. n holds
! the number of entries of x set so far.
!
character(len=*), intent(in) :: str
NUMERIC TYPE, dimension(:), intent(inout) :: x

18



integer, intent(inout) :: n
!
! NUMERIC TYPE can be any of:
! integer
! real
! real(kind=selected_real_kind(14))
!

6 Other parser features, limitations, and design issues

6.1 Features

• The parser can detect badly formed documents, giving by default an error report including
the line and column where it happened. It also will accept an error handler routine as
another optional argument, for finer control by the user. In the SAX interface, if the
optional logical argument ”verbose” is present and it is ”.true.”, the parser will offer
detailed information about its inner workings. In the XPATH interface, there are a pair of
routines, enable debug and disable debug, to control verbosity. See Examples/xpath/
for examples.

• It ignores PCDATA outside of element context (and warns about it)

• Attribute values can be specified using both single and double quotes (as per the XML
specs).

• It processes the default entities: &gt; &amp; &lt; etc, not ”on the fly”, but after reading
chunks of PCDATA.

• Understands and processes CDATA sections (transparently passed as PCDATA to the
handler).

6.2 Limitations

• It is not a validating parser.

• It accepts only single-byte encodings for characters.

• Currently, there are hard-wired limits on the length of element and attribute identifiers,
and the length of attribute values and unbroken (i.e., without whitespace) PCDATA sec-
tions. The limit is set in sax/m buffer.f90 to MAX BUFF SIZE=300.

• Overly long comments and SGML declarations can also be truncated, but the effect is
currently harmless since the parser does not make use of that information. In a future
version there could be a more robust retrieval mechanism.

• The number of attributes is limited to MAX ITEMS=20 in sax/m dictionary.f90:

• In the XPATH interface, returned PCDATA character buffers cannot be larger than an
internal size of MAX PCDATA SIZE=65536 set in xpath/m path.f90

19



6.3 Design Issues

See {sax,xpath}/Developer.Guide.
The parser is actually written in the F subset of Fortran90, for which inexpensive compilers are
available. (See http://fortran.com/imagine1/).
There are two other projects aimed at parsing XML in Fortran: those of Mart Rentmeester
(http://nn-online.sci.kun.nl/fortran/) and Ar-
jun Markus (http://xml-fortran.sourceforge.net/). Up to this point the three projects
have progressed independently, but it is anticipated that there will be a pooling of efforts in
the near future. In particular, it will be nice to have a DOM interface to the parser, and some
measure of DTD checking.

20



7 Installation Instructions

There is extensible built-in support for arbitrary compilers. The setup discussed below is taken
from the author’s flib project2 The idea is to have a configurable repository of useful modules
and library objects which can be accessed by fortran programs. Different compilers are supported
by tailored macros.
xmlf90 is just one of several packages in flib, hence the flib prefix in the package’s visible
module names.
To install the package, follow this steps:

* Create a directory somewhere containing a copy of the stuff in the
subdirectory ’macros’:

cp -rp macros $HOME/flib

* Define the environment variable FLIB_ROOT to point to that directory.

FLIB_ROOT=$HOME/flib ; export FLIB_ROOT (sh-like shells)
setenv FLIB_ROOT $HOME/flib (csh-like shells)

* Go into $FLIB_ROOT, look through the fortran-XXXX.mk files,
and see if one of them applies to your computer/compiler combination.
If so, copy it or make a (symbolic) link to ’fortran.mk’:

ln -sf fortran-lf95.mk fortran.mk

If none of the .mk files look useful, write your own, using the
files provided as a guide.

The above steps need only be done once.

* Go into subdirectory ’sax’ and type ’make’.
* Go into subdirectory ’xpath’ and type ’make’.
* Go into subdirectory ’Examples’ and explore.

8 Compiling user programs

After installation, the appropriate modules and library files should already be in
$FLIB ROOT/modules and $FLIB ROOT/lib, respectively. To compile user programs, it is sug-
gested that the user create a separate directory to hold the program files and prepare a Makefile
following the template (taken from Examples/sax/simple/):

#---------------------------------------------------------------
#
default: example

2There seems to be other projects by that very obvious name...

21



#
#---------------------------
MK=$(FLIB_ROOT)/fortran.mk
include $(MK)
#---------------------------
#
# Uncomment the following line for debugging support
#
FFLAGS=$(FFLAGS_DEBUG)
#
LIBS=$(LIB_PREFIX)$(LIB_STD) -lflib
#
OBJS= m_handlers.o example.o

example: $(OBJS)
$(FC) $(LDFLAGS) -o $@ $(OBJS) $(LIBS)

#
clean:

rm -f *.o example *$(MOD_EXT)
#
#---------------------------------------------------------------

Here it is assumed that the user has two source files, example.f90 and m handlers.f90. Simply
typing make will compile example, pulling in all the needed modules and library objects.

22


