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Diffusion-influenced reactions in a hollow
nano-reactor with a circular hole

Francesco Piazza*ab and Sergey D. Traytakcd

Hollow nanostructures are paid increasing attention in many nanotechnology-related communities

in view of their numerous applications in chemistry and biotechnology, e.g. as smart nanoreactors or

drug-delivery systems. In this paper we consider irreversible, diffusion-influenced reactions occurring

within a hollow spherical cavity endowed with a circular hole on its surface. Importantly, our model is

not limited to small sizes of the aperture. In our scheme, reactants can freely diffuse inside and outside

the cavity through the hole, and react at a spherical boundary of given size encapsulated in the chamber

and endowed with a given intrinsic rate constant. We work out the solution of the above problem,

enabling one to compute the reaction rate constant to any desired accuracy. Remarkably, we show that,

in the case of narrow holes, the rate constant is extremely well-approximated by a simple formula that

can be derived on the basis of simple physical arguments and that can be readily employed to analyze

experimental data.

1 Introduction

Chemical processes at the nano-scale are central to many
complex phenomena in a wide array of modern nanotechnological
applications. For example, it has long been known that hollow
nanostructures provide some advantages in a number of appli-
cations (fillers, pigments, coatings, catalysts etc.) because of
their lower density.1–5 Furthermore, physical and chemical
features of hollow nanostructures can nowadays be fashioned
in a controllable manner for a wide range of sizes, shapes,
materials and structural properties of the shells, including
thickness, porosity, and surface reactivity. As a consequence,
increasing attention has been paid over the last decade to the
elaboration of different engineering methods for manufacturing
hollow nano-objects of various kinds.

Among many different nanostructures, hollow spheres and
capsules have stimulated great interest because of their potential
applications in controlled drug delivery systems,2,6,7 artificial
cells,8 catalysis,9,10 lithium batteries1 and as compartments for
confined reactions.10–12

It is clear that many important physical and chemical
processes such as diffusion transfer and chemical reactions
might be considerably influenced by spatial restrictions.13–18

Hollow nanostructures find specific applications relative to their
bulk counterparts mostly due to pronounced size-dependent effects
emerging from the confined geometry of the reaction volumes.
Nanochemical processes occurring in confined geometries usually
take place within nano-scale reaction compartments (often referred
to as nanoreactors), whose typical dimensions are greater than the
relevant reactants sizes.19,20 For example, typical nanoreactors for
drug delivery consist of hollow spheres with reflecting walls and
encapsulated prodrug particles that are needed for the local
production of the appropriate drug. The spherical shells of such
nanoreactors have one or several holes allowing small particles,
reacting with prodrugs, to penetrate inside the nanoreactor by
passive diffusion.6 Other kinds of hollow spherical yolk–shell
nanoparticles synthetized as delivery vehicles or nanoreactors rely
on hierarchical porous structures21 or are engineered as thermo-
sensitive nano-catalysts.13

Typical dimensions of reactants and compartments ensure
that reactions occurring in hollow nanostructures and mesoporous
materials are mostly diffusion-influenced. This kind of reactions
play an important role in chemistry and biology, and appropriate
mathematical theories are well established for reactions occurring
in for unbounded domains.22,23 However, despite their great
potential importance in many different applications, there are
very few studies devoted to diffusion-influenced reactions occurring
within hollow spheres.

To the best of our knowledge, this problem was first discussed by
Adam and Delbrück.24 Later Tachiya studied the kinetics of
diffusion-controlled reactions between particles encapsulated
within a micelle to describe luminescence quenching and excimer
formation.25 The theory of irreversible, diffusion-influenced
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quenching reactions of the type Aþ B� !k Aþ B occurring at
partially absorbing sinks within a spherical cavity and at the
cavity surface were developed by Bug et al.26 Three possible
schemes for the location of partially absorbing surfaces within
a spherical cavity (acceptors in the center, at the surface and at
both locations) were considered.

In another study, the somewhat similar problem of the
desorption of a lipid molecule from a lipid vesicle and its
incorporation into another vesicle at high acceptor concentrations
was reduced to solving the diffusion equation inside two concentric
spheres.27 To this end, perfectly absorbing boundary condition
were imposed on the large sphere and appropriate matching
boundary conditions were used on the surface of the small sphere.
Analogous calculations were performed by Lü and Bülow, who
solved the diffusion equation in different hollow geometries featur-
ing either impermeable or permeable inner cores.28

Recently, more sophisticated in silico schemes based on
complex sets of coupled reaction-diffusion boundary problems
have been introduced with the aim of understanding the cellular
behavior of toxic foreign compounds. Methods motivated by
homogenization techniques have been applied to make such
problem treatable, yielding good agreement with experiments.29

Along similar lines, the theory of irreversible diffusion-controlled
reactions has been applied to describe reactions between sub-
strates and enzymes in a whole-cell model.30 However, the
Smoluchowski reaction rate constant was used in this study,
which is questionable when one takes into account the confined
geometry of the cell and crowding effects.

Overall, many studies that investigated reactions within
confined geometries did not take into consideration the struc-
ture of the outer surface, often featuring one of more apertures
(e.g. circular pores). Generally speaking, diffusive problems in
geometries of this kind with the constraint of small apertures
are known as narrow escape problems31–34 and have been
widely studied in many applications, such as diffusion in
cellular microdomains35 and long dendritic spines.36 Recently,
Sheu and Yang generalized the diffusive narrow escape pro-
blem to a gating escape model, describing the escape process of
a Brownian particle out of a spherical cavity through a circular
gate on the surface.37 The angular size of the aperture was
described by a time-dependent function y0(t), so that the gate
behaves like an absorbing or reflecting patch in the open and
closed states, respectively.

Remarkably, as it is done in ref. 37, absorbing boundary
conditions are usually imposed on the gate/patch with the aim
of modeling the diffusive escape of a particle from a confined
volume through a hole on its surface. As a consequence, these
theories cannot describe free diffusion of particles through the
hole. In fact, this would necessitate that the model accommo-
date for both the diffusion from the inside to the exterior and in
the opposite direction. Moreover, the mean first passage time
approach is a powerful tool to study diffusion in compact
domains but it is not appropriate for diffusion in a cavity
connected with an outer, unbounded domain.

The problem of leakage of Brownian particles through a
narrow pore studied in ref. 38 is much closer to the problem of

free diffusion through a hole, as the flux density of the source
on the boundary was taken into account. However, the flux of
diffusing particles was given by a prescribed function and
therefore it cannot describe free diffusion of particles through
the hole.38 Along the same lines, Berezhkovskii and Barzykin
studied the kinetics of diffusive escape from a cavity through a
narrow hole in the cavity wall and successive reentry by a formal
kinetic scheme for reversible dissociation.39

The diffusion-influenced binding to a buried binding site
connected to the surface by a channel studied in ref. 40 is the
closest problem to the subject of our study that can be found in
the literature. Nevertheless, this problem was only solved for
the case of a conical pit with the aid of a constant-flux
approximation or for all geometries where diffusion occurs in
interior regions that are so narrow that the problem can be
approximately considered as one-dimensional.

A thorough analysis of the literature showed that up to now
there are no studies devoted to the theory of diffusion-
influenced reactions occurring in hollow spheres connected
through a circular hole of arbitrary size to the unbounded outer
space containing an excess of diffusing particles in the bulk.
This is the problem that we solve in this paper.

The paper is organized as follows. In Section 2 we present a
detailed formulation of the problem at issue. The solution of
the problem is described in Section 3, where we compute the
reaction rate constant. In Section 4 we discuss our results and
we show that our problem can be considered as equivalent to a
much simpler one in the case of very small apertures. The main
conclusions of the paper and possible extensions of the theory
are given in Section 5. The appendix contains the details of the
calculation and the explicit expressions of the matrix equations
obtained by a dual series relations approach.

2 The problem

Let us consider particles B with bulk density rB diffusing into a
randomly distributed 3D system of hollow spheres with immobile
reactants A (sinks) encapsulated inside them. We assume the hollow
spheres to be either fixed in space or mobile but much larger than
the size of B particles, so that they can be considered as immobile.
Furthermore, we assume that rB is much smaller than the density
of hollow spheres, so that one can consider the equilibrium of B
particles reacting with an isolated hollow nanoreactor.

For the sake of simplicity, we treat hollow spheres as
infinitely thin identical spherical shells (SR) of radius R comprising
one spherical sink (Sa) of radius a (a r R) and reaction surface qOa

each, and featuring an axially symmetric hole qO0 corresponding to a
spherical cap of aperture y0 (see Fig. 1). To make calculations
simpler, we consider every sink to be concentric with the envelope
hollow sphere.† Introducing a spherical coordinate system (r,y,j)
with the origin at the center of the sphere, we have the following
boundaries

† We note in passing that this constraint may be removed with the aid of re-expansion
formulae methods.41,42 In this way the solution of more general problems with sinks at
arbitrary locations inside the hollow spheres is also feasible.
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qO0 = {r = R,0 o y o y0,0 r j o 2p} (1a)

qO1
� = {r = R � 0,y0 o y o p,0 r j o 2p} (1b)

qOa = {r = a,0 o y o p,0 r j o 2p} (1c)

It is clear that, since the sphere is a two-sided surface, we deal
with both the inside and outside boundaries: qO1

+ and qO1
�

refer to limits taken from within the diffusion subdomains O+

and O�, respectively, where O+ = {a o r o R,0 o y o p,0 r j o
2p} and O� = {R o r,0 o y o p,0 r j o 2p}.

In general, keeping in mind, e.g., biological applications, we
should consider different media inside and outside the hollow
sphere. Thus, we assume that the translational diffusion coeffi-
cient of particles B can be approximated as

DðrÞ ¼
Do in O� [ @O� ðoutsideÞ

Di in Oþ [ @Oþ ðinsideÞ

(
(2)

under the natural condition of consistency on the hole qO0,

DðrÞ ¼
Do on @O�0

Di on @Oþ0

(
:

Let us also assume that the system relaxation time for the
diffusive flux of B particles tD p max{(R � a)2/Di, R2/Do} is small
enough to neglect time-dependent effects. Hence, in the
absence of external forces, the diffusion of particles B with
normalized number density u(r) = r(r)/rB is described by the
steady-state diffusion equation

r�[D(r) ru(r)] = 0 in O = O+ , O� , qO0 (3)

which should be solved with the customary bulk boundary
condition

lim
jrj!1

uðrÞ ¼ 1 (4)

It is well known from the general theory of partial differential
equations that the classical solution (twice continuously differ-
entiable in O and continuous on �O) of the stationary diffusion
eqn (3) does not exist in the whole domain O.43 Therefore one
should consider the function

uðrÞ ¼
u�ðrÞ for O� [ @O�

uþðrÞ for Oþ [ @Oþ

(
(5)

Accordingly, a condition on the hole can be derived by restricting
to a small cylinder Ce of section dS A qO0 with its axis along the
normal with height e{ R, i.e. Ce = {R� eo r o R + e,(y,j) A dS}.
Using Gauss-Ostrogradsky theorem and eqn (3) one has

lim
e!0

ð
Ce

r � DðrÞruðrÞ½ �d3r ¼
ð
dS

Di
@uþ

@r
�Do

@u�

@r

� �
dS ¼ 0 (6)

Since dS is arbitrary, we obtain the following continuity condition for
the local diffusion fluxes, holding at each point of the cap hole qO0,

@u�

@r

����
@O�

0

¼ w
@uþ

@r

����
@Oþ

0

(7)

where we have introduced the diffusion anisotropy parameter

w ¼ Di

Do

Another condition at the hole can be formulated in general as
follows44

@u�

@r

����
@O�0

� 1

R y0ð Þ
u�j@O�0 �u

þj@Oþ
0

h i
¼ 0 (8)

The parameter R(y0) gauges the contact resistance that particles
experience across the hole separating the two media and is related to
the microscopic mechanism underlying the heterogeneity in sub-
strate mobility inside and outside the cavity. In general, in the limit
y0 - p one should consistently recover Do = Di and continuity of the
substrate concentration field

u�j@O�0 �u
þj@Oþ

0
¼ 0 (9)

corresponding to R- 0. In the following, we will assume that there
is no interfacial resistance associated with substrate flow in the
radial direction across the hole, so that we can enforce the continuity
condition (9) for all values of y0.

Conditions (9) and (7) for Di a Do are often called the weak
discontinuity conditions for the concentration field u(r). To
complete the set of boundary conditions, the two-sided surface
of the hollow sphere is assumed to be reflecting both from the
inside qO1

+ and from the outside qO1
�, i.e.

@uþ

@r

����
@O1

þ
¼ @u

�

@r

����
@O1

�
¼ 0 (10)

This is of course an approximation, as ligand-wall interactions
are known to be important in certain applications, such as the

Fig. 1 Schematic representation of our problem. Particles B diffusing
from the outside (diffusion coefficient Do) can be either reflected at the
spherical surface SR (dashed trajectory) or penetrate through the spherical
cap hole. In the latter case, they diffuse with coefficient Di and can be
either absorbed at the inner spherical surface Sa (dotted trajectory) or
diffuse back to the exterior through the hole (solid trajectory).
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release of a guest particle from mesoporous matrices, catalysis
taking place in porous materials or processes occurring in
separation techniques.45–48 However, we note that our theoretical
framework can be easily modified to accommodate for guest–host
interactions by introducing an intrinsic reaction constant at the
inner (and possibly outer) surface, which means considering
radiative instead of reflecting BCs in eqn (10).

2.1 The reaction rate constant

We are interested in the pseudo-first-order irreversible bulk
diffusion-influenced reaction between sinks A (encapsulated in
hollow spheres with a hole) and reactants B freely diffusing in
3D space

Aþ BÐ
kD

k�D
A � B !kin Aþ P (11)

where A�B denotes the so-called encounter complex, kD and k�D

are the association and dissociation diffusive rate constants,
respectively, and kin is the intrinsic rate constant of the
chemical reaction occurring at the sink surface. Reactions of
the kind (11) are customary dealt with by enforcing radiation
boundary conditions‡ at the reaction surface qOa, i.e.

4pa2Di
@uþ

@r
� kinu

þ
� �

@Oa

¼ 0 (12)

Thus, we can consider that hollow spheres effectively act as
sinks of infinite capacity according to the pseudo-first-order
reaction scheme

Aþ B �!ka Aþ P (13)

where the forward diffusion-influenced rate constant ka is
defined by the formula

ka ¼
ð
@Oa

Di
@uþ

@r

����
r¼a

dS (14)

Using this rate constant one can approximately describe the
kinetics of the effective reaction (13) as

cB(t) = cB(0)exp(�kacAt) (15)

where cA = const is the bulk concentration of hollow spheres,
cB(t) is the time-dependent effective bulk concentration of
B particles. We stress that our schematization of the problem
holds under the excess reactant condition rA { rB, rA being the
bulk number density of sinks. Our goal is to compute the rate
constant (14).

Eqn (3) with the boundary conditions (4), (9), (7) and (12)
completely specify our mathematical problem. It is expedient in
the following to use the dimensionless spatial variable x = r/R.
The problem at issue can be cast in the following form

r 2u� = 0 in O� (16a)

@uþ

@x

����
x¼e
�huþðeÞ ¼ 0 for 0 � yo p (16b)

lim
x!1

u�ðxÞ ¼ 1 (16c)

@u�

@x

����
x¼1�
¼ 0 for y0 o yo p (16d)

uþjx¼1��u�jx¼1þ¼ 0 for 0 � y � y0 (16e)

w
@uþ

@x

����
x¼1�
�@u

�

@x

����
x¼1þ
¼ 0 for 0 � y � y0 (16f)

where e = a/R and h = kinR/(4pa2Di). The limit h - N

corresponds to considering the boundary qOa as a perfectly
absorbing sink. In this case the reaction (11) becomes diffusion-
limited, as the chemical conversion from the encounter complex
A�B to the product P becomes infinitely fast with respect to the
diffusive step leading to the formation of A�B.

3 The solution

We look for solutions in the form

u�ðxÞ ¼ 1þ
X1
n¼0

An

xnþ1
PnðmÞ for x 	 1 (17a)

uþðxÞ ¼
X1
n¼0

Bn

xnþ1
þ Cnxn

� �
PnðmÞ for x � 1 (17b)

where An, Bn and Cn are constants, m = cos y and Pn(m) are
Legendre polynomials of order n. Inserting eqn (17b) in
eqn (16b), we get

Cn = anBn (18)

with

an ¼
nþ 1þ he

e2nþ1ðn� heÞ (19)

Formula (14) leads to the reduced reaction rate

ka
� ¼ ka

kþS
¼ 1

2

ð1
�1

@uþ

@x

����
x¼e

dm (20)

where kS
+ = 4pDia is the internal Smoluchowski rate constant for

an ideal spherical sink of radius a. Inserting eqn (17b) in
eqn (20) and making use of eqn (18) and (19), we get

ka
� ¼ �B0

e
(21)

So the problem is reduced to the calculation of the constant B0.
The mixed boundary-value problem (16a)–(16f) can be solved
with the method of dual series relations (DSR).49 DSR admit
solutions in the form of an infinite-dimensional system of
algebraic equations for a new set of unknown coefficients Xn,Yn,
that are linearly related to An,Bn

50

Zn ¼ Zn
0 þ

X1
m¼0

MnmZm; ðn ¼ 0;1Þ (22)‡ This kind of boundary conditions are also known as Robin boundary
conditions.
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Here Zn = (Xn,Yn)T, Zn
0 = (Xn

0,Yn
0) and

Mnm ¼
M11

nm M12
nm

M21
nm M22

nm

� �
(23)

where Mij
nm are four infinite-dimensional matrices of known

elements, functions of the relevant geometrical and physical
parameters e, h and w (see appendix A for the details of the
calculation and the explicit expressions of the matrices Mij

nm). In
particular, the expression for the rate as a function of the new
coefficients is

ka
� ¼ �Y0

e
(24)

4 Results and discussion

Let us start by considering the limit e - 1, that is, a - R.
Furthermore, for the sake of simplicity, let us consider diffusion-
limited reactions, i.e. h -N. This case corresponds to considering
a perfectly absorbing circular patch on an otherwise reflecting
sphere of radius R. The rate constant for this system can be
characterized by a steric factor fR(y0) A [0,1]

kR

k�S
¼ fR y0ð Þ (25)

where kS
� = 4pDoR is the external Smoluchowski rate constant

for an ideal spherical sink of radius R. The steric factor fR(y0)
can be calculated to any necessary accuracy with the DSR
method.50 In particular, it was found that

fR y0ð Þ 

1

2p
y0 þ sin y0ð Þ as y0 ! 0 (26)

In the general case a o R, it is expedient to normalize the
reaction rate constant ka to the rate constant (25). This is
tantamount to characterizing the sink inside the spherical
cavity through a normalized effective steric factor f̂ (y0;e,w) A
[0,1], defined as

f̂ y0; e; wð Þ: ¼ ka

kR
¼ ka

k�S fR y0ð Þ
¼ ew

fR y0ð Þ
ka

kþS

� �
(27)

The physical meaning of f̂ (y0;e,w) is to gauge how effective is the
inner sink of radius a in trapping a particle diffusing through
the spherical cap hole with respect to the situation when the
particle is instantaneously trapped the moment it touches the
cap from the outside (a = R). Indeed, as the sink grows to touch
the internal wall of the cavity, one has

lim
e!1

f̂ y0; e; wð Þ ¼ 1 (28)

independently of w, as the inner sphere merges with the outer
one. Conversely, as the sink shrinks, one has

lim
e!0

f̂ y0; e; wð Þ ¼ 0 (29)

uniformly with respect to w. In this case, the effective steric factor
vanishes as there is no sink within the spherical cavity SR.

In Fig. 2 we plot the normalized effective steric factor as a
function of the inner sink size a for different values of the

angular aperture of the circular hole. As the aperture decreases,
f̂ feels less and less the dependence on a, which appears to be
limited to two boundary layers in the vicinity of a = 0 and a = R.
Between the two boundary layers, the effective steric factor is
nearly constant.

In view of the Gauss-Ostrogradsky theorem, this is
tantamount to saying that for small patches the inner sphere
feels a constant flux on the surface r = R. Hence, the rate
does not depend on the surface used for evaluating the
integral (20).

The value of f̂ within the plateau is a measure of how much
the whole system is less effective in trapping a tracer particle
from the exterior with respect to the patched sphere SR.
Therefore, it is a measure of the portion of incoming particle
flux through the hole that does not reach the inner sink, e.g. the
flux that escapes back to the exterior through the aperture in
the cavity.

Interestingly, we see that the such value increases when the
outside diffusion coefficient decreases with respect to the
inside (increasing w). There are many situations where this
might happen, such as when the ligand diffuses in an obstruct-
ing or otherwise confining outside medium, and/or at
increased ligand density. In such situations, the single-
particle diffusion coefficient of the ligand decreases. We con-
clude that, in order to reach diffusively the inner target more
effectively through the hole, the inner medium should be less
densely populated or less confining than the outside. This can
be rationalized in terms of a reduced escape probability
towards the exterior. A different way to picture this effect is to
recall that in the limit w - N the continuity condition (16f)
turns the spherical hole into a perfectly reflecting patch from
the interior. Again, no particles allowed to escape outside the
spherical cavity.

The plateau value of the effective steric factor for small y0 is
proportional to the fraction of flux that reaches the inner
sink at equilibrium, Fin, while its complement to one is
proportional to the flux Fout that leaves the inside of SR.
As Di/Do increases, we see that Fout goes to zero, meaning
that particles become more and more trapped once they have
diffused inside SR. A measure of Fout can thus be obtained
by plotting the plateau value of f̂ as a function of w. This is
shown in Fig. 3 for the choice a/R = 0.5 and y0/p = 0.02, so as
to ensure that the boundary layers are sufficiently thin (see
again bottom right panel in Fig. 2). We see that, for large
values of the ratio Di/Do, the system behaves as a single
sphere of radius R with a small absorbing patch (practically
no flux leaking back to the outside), i.e. ka - kS

�fR(y0) (see
again the definition (27)).

The flux through the hole that reaches the sink is propor-
tional to Di, while the incoming flux into the cavity is propor-
tional to Do. We can thus surmise that, when the rate into the
sink becomes independent of its size a for small values of y0,
the fractions of flux reaching the sink and leaking back
through the hole are approximately given by Di/(Di + Do) and
Do/(Di + Do), respectively. This leads us to conjecture that the
value of the effective steric factor (27) for sinks occupying the
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bulk region of the cavity, i.e. the plateau shown in Fig. 2, is
given by

f̂ plat ¼
Di

Di þDo
¼ w

1þ w
(30)

Fig. 3 shows that eqn (30) yields a perfect interpolation of the
plateau values, confirming the validity of our simple physical
reasoning.

4.1 Rationalizing the results through a simplified effective
model

From the above discussion it should be clear that, for small y0,
we may model our system as a single sphere of radius R
endowed with a partially absorbing surface, characterized by
an effective intrinsic reaction rate constant keff. This means that
our boundary problem, for small values of the hole aperture,
should become equivalent to the following reduced problem

d

dx
x2
du

dx

� �
¼ 0 (31a)

du

dx
� heffu

� �����
x¼1
¼ 0 (31b)

lim
x!1

uðxÞ ¼ 1 (31c)

The parameter heff = keff/k�S gauges the effective absorbing
power of the sphere SR. This should depend on the steric
factor fR(y0), which guarantees that only a portion of the surface
is potentially absorbing by construction, and on w = Di/Do. It is

Fig. 3 Plot of the plateau value of the normalized effective steric factor
(27), f̂plat = f̂ (a/R = 0.5, y0/p = 0.02) as a function of the inner-to-outer
diffusivity ratio w = Di/Do (symbols). The inner sphere is taken as a perfectly
absorbing sink, i.e. the calculation is performed for h - N. The dotted
curve is a plot of the theoretical prediction, eqn (30).

Fig. 2 Plot of the normalized effective steric factor (27) as a function of the radius of the inner sphere for different sizes of the spherical cap hole and
different values of w. The inner encapsulated sphere is taken as perfectly absorbing, i.e. the calculations are performed for h - N.
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easy to check that the rate constant k for the above reduced
problem is given by

k

k�S
¼ heff

1þ heff
(32)

Recalling the definition (27), we see that eqn (30) and (32) fix
the effective reactivity of the reduced model, i.e.

heff ¼
wfR y0ð Þ

1þ w 1� fR y0ð Þ½ � (33)

5 Conclusion and perspectives

In this paper we investigated an irreversible, diffusion-influenced
reaction occurring within a spherical cavity endowed with a
circular hole on its surface. Importantly, our model is not limited
to small values of the angular aperture y0 of the hole on the cavity
surface. In our model, B particles can freely diffuse inside and
outside the cavity through the hole, and react at a spherical
boundary A encapsulated in the cavity and endowed with a given
intrinsic rate constant. This model is relevant for chemical and
biochemical reactions occurring in hollow nano-structures, which
are intensively studied for a wide array of nanotechnological
applications.

We work out the solution of the above problem, enabling
one to compute the reaction rate constant for the encapsulated
sphere within the cavity to any necessary accuracy.

Remarkably, we find that, for small values of the hole
aperture, the rate constant ka becomes independent of the size
of the inner reactive sphere. In this case, the rate is simply
proportional to the fraction of diffusive flux that is actually
absorbed by the sink and thus does not leak back through the
hole into the bulk. We show how this situation can be encapsulated
in a simple effective model, whose theoretical prediction pro-
vides a simple yet powerful formula, i.e.

ka ¼ k�S fR y0ð Þ
w

1þ w
(34)

Here w = Di/Do is the ratio of the inside to outside diffusion
coefficients, k�S = 4pDoR is the outside Smoluchowski rate
constant into the spherical cavity and fR(y0) C (y0 + sin y0)/
(2p) is the steric factor that characterizes the rate into the cavity
when the hollow sphere is modeled as a perfectly absorbing
patch (the hole) on an otherwise reflecting surface. Eqn (34) is a
key result of this paper.

Future follow-ups of this work may include extending our
mathematical framework to diffusion-influenced reactions with
two axially symmetric hollow spheres and to situations where
the encapsulated sink is no longer concentric with the hollow
sphere but lies at an arbitrary location in the interior.51

Appendix

In this appendix we describe in detail the solution of the mixed
boundary-value problem(16a)–(16e) with the method of dual
series relations (DSR).

The constants An and Bn can be determined by imposing the
boundary conditions (16d) and the two continuity conditions
(16e) and (16f). Recalling eqn (18), we get the two following
coupled DSRs

X1
n¼0

1þ anð ÞBn � An � dn0f gPnðmÞ ¼ 0; 0 � y � y0 (35a)

X1
n¼0
ðnþ 1ÞAnPnðmÞ ¼ 0; y0 o yop (35b)

X1
n¼0

ðnþ 1ÞAn � w n 1� anð Þ þ 1½ �Bnf gPnðmÞ ¼ 0;

0 � y � y0

(35c)

X1
n¼0

n 1� anð Þ þ 1½ �BnPnðmÞ ¼ 0; y0 o yop (35d)

where dij is the Kronecker delta. The above DSRs can be cast in
canonical form by defining

Xn ¼
nþ 1

2nþ 1

� �
An (36a)

Yn ¼
n 1� anð Þ þ 1

2nþ 1

� �
Bn (36b)

which gives

X1
n¼0

XnPnðmÞ ¼ GðyÞ 0 � y � y0 (37a)

X1
n¼0
ð2nþ 1ÞXnPnðmÞ ¼ 0 y0 o yop (37b)

X1
n¼0

YnPnðmÞ ¼ FðyÞ 0 � y � y0 (37c)

X1
n¼0
ð2nþ 1ÞYnPnðmÞ ¼ 0 y0 o yop (37d)

with

GðyÞ ¼
X1
m¼0

Xm

2ðmþ 1Þ þ bmYm

� �
Pmðcos yÞ �

1

2
(38a)

FðyÞ ¼
X1
m¼0

2mþ 1

w
Xm � 2mYm

� �
Pmðcos yÞ (38b)

and

bm ¼
1þ amð Þð2mþ 1Þ
2 m 1� amð Þ þ 1½ � (39)

The DSRs (37a)–(37d) admit a formal solution in the form of the
infinite-dimensional system of algebraic equations49

Xn ¼
ffiffiffi
2
p

p

ðy0
0

du cos nþ 1

2

� �
u

� �
d

du

ðu
0

GðyÞ sin ydyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� cos u
p (40a)
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Yn ¼
ffiffiffi
2
p

p

ðy0
0

du cos nþ 1

2

� �
u

� �
d

du

ðu
0

FðyÞ sin y dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� cos u
p (40b)

The integrals appearing in eqn (40a) and (40b) can be computed
explicitly,52 by noting that§ðu

0

Pmðcos yÞ sin y dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� cos u
p ¼ 2

ffiffiffi
2
p

2mþ 1
sin mþ 1

2

� �
u

� �
(41)

which finally gives

Xn ¼
X1
m¼0

M11
nmXm þM12

nmYm

	 

þ Xn

0

Yn ¼
X1
m¼0

M21
nmXm þM22

nmYm

	 

þ Yn

0

where

M11
nm ¼

1

2ðmþ 1ÞFnm; M12
nm ¼

1þ amð Þð2mþ 1Þ
2 m 1� amð Þ þ 1½ �Fnm

M21
nm ¼

2mþ 1

w
Fnm; M22

nm ¼ �2mFnm

Xn
0 ¼ �Fn0

2
Yn

0 ¼ 0

Fnm ¼
1

p
sinðmþ nþ 1Þy0

mþ nþ 1
þ sinðm� nÞy0

m� n
1� dmnð Þ þ y0dmn

� �

Note that Fnm = 0 for y0 = 0, which gives Y0 = 0. Hence the rate
vanishes in this limit, as it should. The other interesting limit is
y0 = p, when the larger external sphere no longer exists. In this
case it is easy to see that Y0 = (a0 + 1 � w)�1. However, in the limit
y0 = p, one has to consider Di = Do = D, as the separation between
the two spatial domains r o R and r Z R becomes immaterial.
Hence, recalling eqn (19) and (24), we get

k

kS
¼ � 1

a0e
¼ he

1þ he
¼ kin

kS þ kin
(42)

where kS = 4pDa, which is the correct result for a partially
absorbing sphere with intrinsic reaction rate constant kin.
The limit of fully absorbing sphere k = kS is recovered in the
limit kin - N.
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