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An algorithm is developed that finds the optimal orientation of a rigid molecular structure, represented by 
Nreference sites, with respect to the same number of sites in an observed structure. The optimal orientation 
is found by minimizing the weighted sum of squared deviations of the rotated reference site positions from 
the observed site positions. The rotation is parametrized by a quaternion whose components, written as a 
column vector, are shown to be an eigenvector of a characteristic matrix which is defined in terms of the 
coordinate sets to be superimposed. 

The presented algorithm is particularly useful with respect to the calculation of orientational cor- 
relations of molecular structures. 

KEY WORDS: Rigid-body, quaternions, superposition of protein structures, orientational correlations of 
molecules. 

1 INTRODUCTION 

The simulation or analysis of molecular systems often requires the rotational fit of a 
given molecular reference structure, defined by a set of atomic coordinates, to a 
corresponding observed structure. Good examples are the investigation of rigid-body 
motions in proteins by the analysis of molecular dynamics (MD) simulations, the 
comparison of protein structures [I  ,2], and the removal of unwanted protein rotations 
in MD simulations or their analysis. The algorithm described in the following to solve 
such problems is an efficient general purpose algorithm that has a particular adva_n- 
tage for the study of orientational correlations: Given the observed site positions ( r x } ,  
a = l . . .N, and the corresponding positions {$)} of the reference structure, both 
coordinate sets related to a suitable chosen rotation center, we define for each site an 
‘error’ - 

~ ~ ( 4 )  A D(g.)rT) - 6. (1) 
The rotation to be optimized is described by an orthogonal matrix D(9) which is 
parametrized in terms of four quaternion parameters (qo, q l ,  q2, q3),  written in 
compact notation as gT = (qo,q7) [3]: 

1 ( 2(-4oq* + 4143) 2(40q1 + 42q3) d + d - 4: - 4: 

d + d - d - d 2(-%q3 + 4142) 2(%42 + 4143 
D(d = 2(qoq, + ql%) d + 4: - 4: - d 2(-qOq, + 4243) . (2) 

For the notation of vectors we keep the following convention throughout this paper: 
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Arrows label three-dimensional column vectors, underscores label four-dimensional 
column vectors, and an upper ‘T’  stands for the transposition of a matrix or a vector. 

The quaternion parameters have to satisfy the normalization constraint 

4”, + q: + q: + s: = 4’4 = 1. (3) 
To find the optimal superposition of the coordinate sets {<} and {el} in a least- 
squares sense the following function has to be minimized with the constraint (3): 

The w, are positive weights for each site. 
If needed, the choice of the rotation centers can easily be included into the above 

minimization problem since the correspond_ing fit is decoupled from the rotational fit: 
WithC,w, = 1 and the coordinate sets {x,} and {e)}, a = l . . .N,  representing the 
observed structure and the reference structure, the optimal rotation centers are found 
to be 

The coordinate sets for the following rotational fit are then given by 

rX = x, - x,, 

It is convenient to use quaternion parameters for the rotational minimization problem 
not only because their usage leads to an algorithm that is numerically easy to handle 
and efficient, as we will see, but also because they allow to express easily relative 
orientations between molecules or parts of them. The second property is particularly 
useful if one wants to study orientational correlations [4,5]. A comprehensive treatise 
on quaternions can be found in [3] and [6].  

The quaternion parameters are related in the following way to the familiar Euler 
angles: 

(7) 

The convention for the Euler-angles used here is the ‘y-convention’ where the rotation 
is defined by successive rotations about the z,y’,z’’-axis with angles a,&y. Th? quater- 
nion parameters can be as well expressed in terms of the rotation axis n and the 
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rotation angle @ of a rotation: 

90(<@) = cos (@PI, 
q, = sin (@/2)n,, 
q2 (<a) = sin (@/2)n,, , 
q3(<@) = sin (@/2)nI 
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2 FITTING THE QUATERNION PARAMETERS 
2.1 Preliminary Definitions 
The algorithm to find the quaternion parameters that minimize m(s> defined in (4), 
subject to the constraint 4.4 = 1, is most conveniently derived in the framework of 
quaternion algebra. An arbitrary quaternion A is determined by four real parameters 
(ao, a , ,  a,, a3)  z g T  7 (ao, a ) and is written as: 

A = aol  + a,I  + a,J + a,K. 
I2 = J2 = K2 = -1 .  
IJ = K, cycl. 

A possible matrix representation of A is [6]: 

From (12) we derive the following multiplication rule for the product C = AB of two 
quaternions: 

- -  

(13) 
1. co = aobo - a.6,  

c = a06+ b,;+ ; / \b  
+ 

The symbol ‘ A  ’ denotes the vector-product. An immediate consequence from (12) 
and (13) is the following formula for the scalar product - -  a-b:  

1 - a*b = aobo + i*g = -tr{ATB}. 4 

With tr{ ...} the trace is denoted. The most important feature of normalized quater- 
nions is that they represent rotations: Introducing the quaternions X o - x E (0,x)‘ 
and Q o g E (q0dT, with 4.9 = 1, we have for the components of 

X = QXQT (15) 
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the following relations: 

(16) 

x i  = 0, 
X’ = D(g)G, 
... 

where D(q) is given by (2). 

2.2 The Algorithm 
Using eqs. (14), (1 5),  and (1 6 )  of the last subsection we can write the sum of squared 
deviations m(g) as 

where E,(g) is the quaternion representation of ;,(g) defined in (1): 

E,(g) = QX(,“’Q‘ - X,. (18) 
Instead of minimizing m(g), with respect to g it is, more convenient to minimize the 
function +(g), defined by 

E,(g) = QX;” - X,Q. 

From equation (20) and the invariance of the trace under cyclic permutation of the 
arguments it follows immediately that 

k(g) = m(g) if 4.4 = 1. (21) 

The advantage of using A(g) instead of m(q) is due to the fact that the quaternions 
E,(q) are linear in q, i.e. its component vectors S, can be related to the component 
vector g of the quaternion Q by a matrix K, whose explicit form will be derived later: 

E, = Keg. 

Consequently A(g) can be written as a quadratic form in 9, regardless if 4 is nor- 
malized or not: 

The general form of M given in (24) follows from eqs. (22), (19), and (14). Taking into 
account the side-constraint 4.4 = 1 by the method of Lagrange multipliers we have 
to minimize the following extended function: 

k’(g,A) = k(g) - A(g*g - 1). (25) 

The necessary condition for a minimum of k’(g,A) with respect to g and A leads 
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SUPERPOSITION OF MOLECULAR STRUCTURES 117 

immediately to the following eigenvector equation for 4: 

Mg = Ag, (26) 
4.4 = 1 .  (27) 

According to (24) M is a symmetric and positive semidefinite matrix and therefore all 
its eigenvalues are real and greater than or equal to zero. Since m(q) is equal to fi(q) 
if 4-9 = 1, we have for all normalized solutions gi, i = 0...3, of (26): 

Therefore the normalized eigenvector corresponding to the smallest eigenvalue of M 
is the solution we are looking for. 

It remains to find the explicit form of the matrix M. To do this we start from eq. 
(24) which expresses M in terms of the matrices K, which are themselves defined by 
the relation (22). The explicit form of the matrices K, can be easily found from the 
definition of e, (g) given in (20 and the multiplication rules for quaternions listed in 
(1 3). Introducing the vectors 2 and s’, , defined by 

m(gi) = Ai. (28) 

and the antisymmetric matrix W,, 

w, 2 s,, 0 -Sux  , i - s a y  O -suz SUX ”1 0 
K, can be written as 

K, = - d,- W, 
The explicit form of M can now be obtained from straight-forward insertion of the 
above expression for K, into eq. (24). Defining the quantities 

- +  

u, + r , A  $1, (33) 
P, & r‘, 0 ip + $1 0 ;, (34) 

M =I W a M u ,  (35) 

where the symbol ‘0’ stands for the dyadic product, we arrive at the following 
expression for M: 

U 

(36) 

If the number of sites N in the minimization problem is equal to one the matrix 
Here 1 denotes the three by three unit matrix. 

M = M, has two twofold degenerate eigenvalues: 

,I,,* = lqZ + jr70)12 T 214 Ir7O’I. (37) 
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The eivenvalue 1, is equal to the mkimum of rn(q), which is achieved when the rotated 
reference vector go) is parallel to-r, and L2 is equal to the maximum rn(g), when the 
rotated reference vector go) and r are antiparallel. The degeneracy of the eigenvalues 
is due to the fact that the rotations which lead to the minimum or maximum in rn(g) 
are evidently not unique: If we choose a coordinate system in which go) is parallel to 
the z-axis and express the active rotation of go) by the Euler-angles a, p, and y,  the 
rotation is entjrely determined by a and B, which are the azimuthal and polar angle 
of the vector r .  TheJhird angle - y - is redundant since the axis for the third rotation 
is (anti)parallel to r .  Correspondingly any linear combination 

g = clg{’.’) + c,&), with 4 + 4 = 1, (38) 
where g‘ilv2) and d*” are orthonormal basis-vectors which span the two-dimensional 
eigenspaces belonging to 1, and respectively, leads to the same rn(q). In this case 
the solution of our minimization problem is given by an arbitrary normalized linear 
combination of the eigenvectors q{” and g$’) which are the basis of the eigenspace 
belonging to 1,. 

The above case can be immediately generalized for the fit of linear structures with 
a number of sites, N 7 1: For linear structures the optimal rotation for each single site 
in the reference structure, and therefore for the whole reference structure, is the same. 
Consequently the two twofold degenerate eigenvalues read: 

1, .2  = c w, (It12 + 1r-y T 2 1 4  I?’l>. (39) 
3 

3 CONCLUSION AND NUMERICAL CONSIDERATIONS 

As was shown above the optimal rotational superposition of two molecular structures 
- regardless of the arrangement of the atoms - can be found by the calculation of the 
normalized eigenvector belonging to the smallest eigenvalue of the real and symmetric 
4 x 4-matrix M = xu w,M,, defined in eqs. (35,36). The components of this eigen- 
vector represent the quaternion parameters describing the optimal orientation of the 
reference structure with respect to the target structure. For the numerical solution of 
the eigenvalue problem the single components of the matrices M, are given below. 
Since the Mu are symmetric matriies, i t  suffices to list - and to calculate - only the 
upper triangle Mu,jJ,  i < j. With r, = ( X ~ , ~ ~ , Z , ) ~  and $‘) 3 (xoa,yoa,zou)z we have: 

Mu,,, 
MzJ, = 2@,zou - ZXYOZ) 

M a . , ,  = 2(- xuzh + zuxou) 

4 1 4  = 2(x,.You - V , ~ , )  
Mu,22 = 4 + d + d + & + y k  + & - 2xux0, + 2yuyou + 2ZUZ0, 

4 2 4  = -2(xuzQl + z,xou) 

Mu,, 
Ma.34 = -2Cvazou + z a ~ k )  

MU.u = 4 + 

= .’, + Yt +z’, + & + + 2, - 2xux0, - 2y,you - 2z,20, 

Mu.23 = - 2 ( x u y O u  + YuXOu) 

= 4 + d +z: + 2, + yk + & + 2XUX, - 2y,y, + 22,z, 

+ 2 + X& + .& + 20, + 2 ~ ~ x 0 ,  + 2yuyh - ~ Z , Z ,  (40) 
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SUPERPOSITION OF MOLECULAR STRUCTURES 119 

The complete matrix M is obtained by a loop over all sites 01 = l...N, accumulating 
the matrices Mu, multiplied by the weights w,. Because of its structure this loop 
vectorizes well on vector machines if the number of sites is sufficiently large. 

To solve the eigenvector problem for M one could in principle use a routine that 
calculates by inserve iteration [7] only its smallest eigenvalue and the corresponding 
eigenvector. However, for a 4 x 4-matrix no gain in speed can be expected [73 since 
it is only an advantage to use inverse iteration if less than approximately 25% of the 
eigenvalues and eigenvectors are needed. Tests with the routes DSPEV (full solution) 
and DSPSV (inserve iteration) from the IBM ESSL-library [S] confirm this. 

The superposition of two peptid conformations, each described by 310 atom 
positions, takes 2.1 ms on an IBM 3090/600 G computer in vector mode, and 15.0ms 
in scalar mode. Approximately 0.4 ms of the above CPU-times are used to diagonalize 
the matrix M. 
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