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Franck-Condon picture of incoherent neutron scattering

Supplementary information appendix

Gerald R. Kneller

Quantum oscillator
Wave functions in momentum space. We consider the station-
ary Schrödinger equation{

− ~2

2M

∂2

∂x2
+
MΩ2x2

2

}
ψ(x) = Eψ(x). (1)

for a particle in a quadratic potential of the form V (x) =
MΩ2x2/2. The eigenfunctions in momentum space, which are
defined through the symmetric Fourier transform pair,

φ(p) =
1√
2π~

∫ +∞

−∞
dx e−ipx/~ψ(x),

φ(x) =
1√
2π~

∫ +∞

−∞
dp eipx/~φ(x),

are solutions of the differential equation{
p2

2M
− M~2Ω2

2

∂2

∂p2

}
φ(p) = Eφ(p). (2)

Defining z =
√

2/(M~Ω)p, the solutions of the dimensionless
version of (2),

φ′′(z) +

(
ε− z2

4

)
φ(z) = 0, (3)

are given by

φm(z) =
e−

z2

4 Hem(z)
4
√

2π
√
m!

, (4)

where m = 0, 1, 2, . . . and ε = m + 1/2, with ε = E/(~Ω).

Here Hem(z) = Hm

(
z√
2

)
/
√

2m and Hm(z) are the Hermite

polynomials. The normalization of the eigenfunctions φm(z)
is chosen such that∫ +∞

−∞
dz φ∗n(z)φm(z) = δmn. (5)

Overlap integrals and transition probabilities. Defining the di-
mensionless momentum transfer

y =

√
2~
MΩ

q, (6)

we consider overlap integrals of the form

am→n(y) =

∫ +∞

−∞
dz φ∗n(z + y)φm(z)

=

∫ +∞

−∞
dz φ∗n(z + y/2)φm(z − y/2). (7)

Using that [1]

Hem(z + y) =

m∑
k=0

(
m

k

)
Hek(z)ym−k (8)

one finds that

φm(z ± y/2) =
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1
4 (z± y2 )2 ∑m

k=0

(
m
k

) (
± y

2

)m−k
Hek(z)

4
√

2π
√
m!

such that
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(
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l
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√
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×
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dz e−
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2 Hek(z)Hel(z)︸ ︷︷ ︸
=
√

2π
√
k!l!δkl

=
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k!(−1)m−k
(
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)(
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)
22k−m−ny−2k+m+n.

The polynomial in the last line can be expressed in terms of
the confluent hypergeometric function U(a, b, z) [2],

am→n(y) =
(−1)me−

y2

8 2m−nyn−mU
(
−m,−m+ n+ 1, y

2

4

)
√
m!n!

,

(9)
and using the relation [1, 3]

U(−k, α+ 1, z) = (−1)kk!L
(α)
k (z), k = 0, 1, 2, . . . , (10)

where L
(α)
k (z) are the generalized Laguerre Polynomials, one

obtains

am→n(y) = e−
y2

8 2m−n
√
m!

n!
yn−mL(n−m)

m

(
y2

4

)
. (11)

The transition probabilities being defined through wm→n(y) =
|am→n(y)|2 it follows from am→n

∗(y) = an→m(−y) that
wm→n(y) = am→n(y)an→m(−y). Using here the identity

L(n−m)
m (z) = L(m−n)

n (z)(−z)m−n n!

m!
(12)

and that (−1)−n = (−1)n one obtains the compact form

wm→n(y) = e−
y2

4 (−1)m+nL(n−m)
m

(
y2

4

)
L(m−n)
n

(
y2

4

)
.

(13)
The identity (12) can be derived from Relation (10) and the
Kummer transform (Ref. [3]):

U(a, b, z) = z1−bU(1 + a− b, 2− b, z). (14)
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Intermediate scattering function.An explicit analytical ex-
pression for the intermediate scattering function

Fs(q, t) =
1

Z

∑
m,n

e−β~Ω(m+1/2)ei(n−m)Ωtwm→n(y(q)) (15)

can be obtained if a closed form can be found for the expres-
sion

g(z;u, v) =

∞∑
m,n=0

umvnL(n−m)
m (z)L(m−n)

n (z). (16)

Defining

u = −e−iΩ(t−iβ~), (17)

v = −eitΩ, (18)

it follows then from (13) that

Fs(q, t) =
C

Z
e−

βΩ~
2
− 1

4
y(q)2g

(
y(q)2

4
;u, v

)
, (19)

where C is a normalization constant and the partition function
is given by

Z =
e
βΩ~

2

eβΩ~ − 1
. (20)

A closed form for g(z;u, v) is obtained by solving the differ-
ential equation

(1− uv)
∂g(z;u, v)

∂z
= −g(z;u, v)(2uv + u+ v), (21)

which is established by using that [1]

d

dz
L(α)
n (z) = −L(α+1)

n−1 (z). (22)

The solution of (21) is an exponential function of the form

g(z;u, v) = Ce
z(2uv+u+v)

uv−1 , (23)

with C being a constant. Choosing the normalization
F1(q, 0) = 1 it then follows from (19) the desired closed form
for the intermediate scattering function,

Fs(q, t) = ei
y(q)2

4 (sin(Ωt)+i(1−cos(Ωt)) coth( βΩ~
2 )), (24)

which can be found in the literature [4].

Ideal gas – proof of formula (39) in the main text
Starting with a square-normalized Gaussian wave packet
which is sharply peaked around p = p0,

φ̃(p;p0) =
1

(2πε2)3/4
e
− (p−p0)2

4ε2 , (25)

one finds

〈φ(p1)|φ(p0)〉 =

∫
d3p φ̃(p;p1)∗φ̃(p;p0)

= e
− (p0−p1)2

4ε2 . (26)

The orthogonality relation

〈φ(p1)|φ(p0)〉 =

{
1 if p1 = p0,

0 otherwise.
(27)

is thus fulfilled in the limit ε→ 0. For the transition amplitude
one obtains

a(p1|p0;q) = e
− (p0+~q−p1)2

8ε2 (28)

and setting for the density of final states

ρ(p1) = 1/(2
√
πε)3, (29)

it follows that

W (p1|p0;q) = ρ(p1)|a(p1|p0;q)|2

=
e
− (p0−p1+~q)2

4ε2

(2
√
πε)

3

ε→0
= δ(p0 + ~q− p1). (30)

QENS – proof of Eq. (55) in the main text
We consider an intermediate scattering function of the form

Fs(t) = EISF + (1− EISF )R(t), (31)

where 0 < EISF < 1, and R(t) is a relaxation function ful-
filling R(0) = 1 and limt→∞R(t) = 0. Due to this property
Fs(t) belongs to the class of “slowly growing functions” L(t) in
asymptotic analysis, which fulfil limt→∞ L(λt)/L(λt) = 1 for
any λ > 0. Therefore one can use a theorem by Karamata [5]
which establishes the equivalence

h(t)
t→∞∼ L(t)tβ ⇔ ĥ(s)

s→0∼ L(1/s)
Γ(1 + β)

s1+β
(32)

between the asymptotic form of a function, f(t), and its

Laplace transform, f̂(s) =
∫∞

0
dt, exp(−st)f(t) (<{s} > 0),

for large and small arguments, respectively. The parame-
ter β must here fulfil the condition β > −1. Given that

Fs(t)
t→∞∼ L(t), where L(t) is given by the r.h.s. of Eq. (31),

we thus find that

F̂s(s)
s→0∼ Fs(1/s)/s (33)

such that

Ss(ω)
ω→0∼ lim

ε→0+

1

π
<
{
Fs(1/(iω + ε))

iω + ε

}
. (34)

We use here that Ss(ω) = limε→0+ <{F̂ (iω+ ε)} since the real
and imaginary part of F (t) are, respectively, even and odd in
time.
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