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The Hamiltonian of a holonomically constrained dynamical many-particle system in Cartesian
coordinates has been recently derived for applications in statistical mechanics [G. R. Kneller, J.
Chem. Phys. 125, 114107 (2006)]. Using the same projector formalism, we show here the
equivalence of the corresponding equations of motion with those obtained from a Newtonian and a
Lagrangian description. In the case of Newtonian mechanics, the general case of nonholonomic
constraints is considered, too. © 2007 American Institute of Physics. [DOI: 10.1063/1.2779326]

I. INTRODUCTION

In a recent work, the Hamiltonian of a constrained clas-
sical mechanical system in Cartesian coordinates and the cor-
responding Hamiltonian equations of motion have been de-
rived on the basis of a projector formalism, which relies on
the concept of generalized inverse (pseudoinverse) matrices,
in particular, on the Bott-Duffin inverse.' Introducing the
projection of the mass matrix to the subspace of linear ve-
locity constraints and its generalized inverse allowed to de-
rive a concise form for the Hamiltonian, which was subse-
quently used to define effective masses in semiflexible
molecules and to revisit the problem of Fixman corrections
of constrained phase space averages.2 The corresponding
Hamiltonian equations of motion were derived, too, but the
equivalence with more familiar forms in the Newtonian and
Lagrangian formulation of mechanics has not been demon-
strated. To establish this nontrivial equivalence is the objec-
tive of the present article. In this context, the reader is re-
ferred to the earlier work on constrained Hamiltonian
dynamics by de Leeuw et al.® and to the classical articles by
Dirac*® and by Anderson and Bergman,(’ where constraints
are imposed to satisfy invariances in relativistic field theo-
ries.

Il. EQUATIONS OF MOTION
FOR CONSTRAINED SYSTEMS

A. Accelerations in presence of constraints

We consider a system consisting of N pointlike particles,
which are located at positions ry,...,ry. In the following,
the column vector r contains the Cartesian components of all
position vectors and the dot denotes a derivative with respect
to time. We assume that the mechanical system under con-
sideration is subject to arbitrary constraints of the form

h(r)=h®, i=1..s, (2.1)

“Electronic mail: kneller@cnrs-orleans.fr
Y Affiliated with the University of Orléans.

0021-9606/2007/127(16)/164114/5/$23.00

127, 1641141

. 0 .
gj(r,r)=g(- ) =15, (2.2)
Differentiating the velocity-dependent constraints once with
respect to time and the purely position-dependent constraints
twice, one obtains a set of linear constraints for the accelera-
tions,

Ar=b. (2.3)
Here A is an s X 3N matrix, with s=s5;+s5,, whose elements
are given by

&hi/é’rk, i=1,...,sl
A.= . N k=1,...,3N,
" &gi—Sllarks i=S1+1,...,Sl+82
(2.4)
and b is a vector of length s with elements
—(c?zhi/c?rk&rl)fkr'l, i= 1, s8]
i= . (2.5)
0, i=si+1,...,5+5,.

Equation (2.3) may be considered as an incomplete set
of linear equations for the components of the acceleration
vector, the solution of which is bound to an f-dimensional
subspace of RV, where f is the number of degrees of free-
dom of the system,

f=3N-rank(A). (2.6)
To construct the solution for the acceleration vector, we use
the generalized inverse of A, which is denoted A* in the
following and which is uniquely defined in terms of the four
Moore-Penrose conditions listed in Appendix A. Multiplying
Eq. (2.3) by AA* and using relation (A1) shows that the
consistency condition,

AA*b =b, (2.7)

must be fulfilled. In case that all constraints are independent,
the matrix A has full rank, and its generalized inverse can be
expressed in the form
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At=AT(AAD), (2.8)

Consequently, AA*=1,, where 1; is the s-dimensional unit
matrix, and consistency condition (2.7) is trivially fulfilled.

Supposing that consistency condition (2.7) is verified,
the solution of Eq. (2.3) is given by

i=A'b+i, (2.9)

where ¥ is a yet undetermined vector satisfying A¥;=0.
The Moore-Penrose conditions show that A*A and AA*
are the respective projectors on the row and column spaces
of A (the spaces spanned by the rows and columns, respec-
tively), and in the following we consider, in particular, the
projector on the row space and its orthogonal complement,

P, = A*A, (2.10)

PHZI—PL. (211)

The subspaces of R*M onto which P, and P, project are
denoted by V', and V), respectively. The corresponding di-
mensions are dim(),)=rank(A) and dim(),)=f. One sees
easily that

P, =AbeV,. (2.12)

The general form [Eq. (2.9)] of the acceleration vector in the
presence of constraints thus represents a decomposition into
two mutually orthogonal components.

B. Newtonian dynamics and the Bott-Duffin problem

We consider now the situation where N particles move
according to Newton’s laws of motion in the presence of
constraints. In the following, f denotes a column vector con-
taining the Cartesian components of all external forces acting
upon the particles and z contains the components of the con-
straint forces. With these definitions, Newton’s equation of
motion have the form

Mi =f +z. (2.13)

The matrix M is supposed to be diagonal with only positive
entries representing the masses of the particles in the system
(1 is here the 3 X 3 unit matrix),

mi 0 0
0 1 e 0

1 D (2.14)
0 0 o omy

We may now write ¥=F +F, where I, is determined by the
coordinates and velocities according to Eq. (2.12) and ¥ is
unknown. Newton’s equations of motion thus represent a
system of linear equations of motion in which ¥ and z are
unknown. Obviously, a solution can exist only if z L ¥, i.e.,
if

zeV,. (2.15)

The solution of Eq. (2.13) is a classical Bott-Duffin problem,
the solution of which is described in Ref. 11. Here we will
take a slightly different route. Projecting Newton’s equation
of motion onto V) will eliminate the constraint forces and
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using explicit form (2.9) for the acceleration vector yields a
linear equation for ¥y only,

Mci:||:P“(f—Mi;l). (216)
Here M, is the projected mass matrix,
ML‘ = P”MPH, (2 17)

and ¥, is given by relation (2.12). To solve Eq. (2.16) for ¥,
we use relations (A9) and (A10), which have been proven in
Ref. 1. Multiplying Eq. (2.16) from the left by the general-
ized inverse of M, yields

i, = M (f - Mi,). (2.18)

The above solution can be formally obtained from the
Gauss principle of least constraint,'” which we write here in
the form

Q =|M"?¢ - M~"?f|> = Min{i}. (2.19)

The minimum has to be taken with respect to the accelera-
tions, ¥=f +f,, where ¥, is given by Eq. (2.12) and &,
€V, is to be determined. Writing ¥ =Px, where x is an
arbitrary vector in R*", the minimum principle [Eq. (2.19)]
takes the form

0=[M"[Pyx +i,]- M "f|? = Min{x}.

The necessary condition dQ/dx=0 leads then to P;(M[P;x
+1, ]-f)=0. This equation is equivalent to Eq. (2.16), re-
placing P\x by &y.

The equation for the total acceleration, ¥=¥+¥ |, is fi-
nally given by

F=Mf+(1-MM)_, (2.20)
where M can be expressed in the form
M =M"'-M'ATAM'AT)'TAM !, (2.21)

if A has full rank.' For completeness, we state also the ex-
pression for the vector of constraint forces,

z=(MM. - 1Df+M(1-MM)r, .
Using that M.M_ =Py, one finds easily that Pjz=0.

(2.22)

C. Lagrangian dynamics with holonomic constraints

We consider now the variational approach to classical
mechanics, which leads to the celebrated Euler-Lagrange
equations of classical mechanics. Starting from the Lagrang-
ian of a dynamical system,

L(r,i) = 3¥™MF - U(r), (2.23)

where U is the potential energy of the system, the equations
of motion are derived from the variational principle
gl
Szzf dtL(r,¥) = Min. (2.24)
1

0

In the following, we consider only holonomic constraints,
i.e., constraints of form (2.1), which yield linear velocity
constraints of the form Ar=0. Using the projector P, intro-
duced above, one may write
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i'=P||i', (225)
i, =P, (2.26)

where the second equation follows from the first by differ-
entiation and the identity PHI.’”PH=0, which holds for any
time-dependent projector.

Requiring that the action integral S has a minimum leads
to the condition

oo doL L
8= | do'| ——-—1]=0 (2.27)
Ty

dtor  dr

Due to the imposed holonomic constraints, the paths are not
arbitrary. We require that any admissible path r(z) must fulfill
the holonomic constraints at any time. Calling the optimal
path ry(z), an arbitrary path in the neighborhood can be de-
composed as ry(f)+ dr(z), where dr(ty)=0r(t;)=0, and we
have

hiro(r) + 66()) =0, i=1,....s.

Developing the above expression up to first order in the
variation yields the condition

Adr=0. (2.28)

Therefore, ore ), and condition (2.27) leads to Euler-
Lagrange equations of the form

dJilL JL

Py ——-—(=0
dtogr or

This means simply that the vector between the curly brackets

is an element of V. If we define z:={---} and use that the
force vector is given by

(2.29)

f=—aUlor, (2.30)

we obtain Newton’s equations of motion [Eq. (2.13)], where
the constraint forces may be expressed by Eq. (2.22).
Equivalently, one can write

F=MT+(1-MM)§, (2.31)

which is identical with Eq. (2.20).

D. Redundant velocity constraints in Lagrangian
dynamics

Instead from the Lagrangian [Eq. (2.23)], one could also
start from the constrained Langrangian

L(r,¥) = 3¢™M i - U(r), (2.32)

to derive the equations of motion. Here one uses explicitly
that r=Pr, and on the constraint surface defined by Eq.

(2.1), we have obviously
L=L, (2.33)

Replacing L by L. in the Euler-Langrange equations [Eq.
(2.29)], we obtain by straightforward calculation
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. VIR By
Mi=P f-Ma+ —|-ir"M.r) (.
ar\2

The component of the acceleration in V) is thus given by
o + - " . (}) l . T .
r= MC f- P”MP”r - PHMP”r + g Er Mcr R

expanding M,.=P,MP, before differentiation with respect to
t. Using Eq. (2.26), the resulting equation of motion becomes

i=MT+(1-MM)i,

+ i l.T . - .
+ M, po 2r M.rx | -PMPr (.

In Appendix B, it is shown that

a1l .
P{ —(—i'TMCi'> - P|MP|1"} =0.
ar\2

Knowing that M projects implicitly onto ), one obtains
again explicit form (2.20) for the acceleration vector. Identity
(2.34) shows that the use of L, instead of L does not change
the equations of motion, which means that the explicit veloc-
ity constraints in L, are redundant. It should be mentioned
that the redundancy of the velocity constraints is much easier
to see in mass-weighted coordinates, where it follows simply
from the relation P/P/P;=0, which was already mentioned
and which holds for any projector. The prime indicates here
either a differentiation of P, with respect to time or with
respect to the positions.

(2.34)

E. Hamiltonian dynamics with holonomic constraints

As described in Ref. 1, one starts from the constrained
Lagrangian L. to construct the corresponding Hamilton func-
tion. Using the momenta

JL. .
p:= P = Mcr,

(2.35)

one performs the Legendre transform dL.(r,¥)— dH (r,p),
where H,=p’i—L.. Here the velocities are to be eliminated
in favor of the momenta, i.e., Eq. (2.35) must be inverted.
This is possible since the constrained Lagrangian L. gener-
ates by construction momenta, which are in the same sub-
space as the velocities, p € V), and one can write

r=Mp. (2.36)
The Hamiltonian thus has the form
H(r,p)=3p"Mp + U(r). (2.37)

The Hamiltonian equations of motion are derived in the
usual way from variational condition (2.27), expressing the
Langrangian as L.=p’F—H, and considering the positions
and momenta as independent dynamical variables,
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(2.38)

We require that any admissible momentum path p(¢) in the
variational principle [Eq. (2.38)] fulfills at any time p(r)
e V). Taking the optimal path py(f) and a variation p(z)
=po(1)+ p(r), with Sp(zy)=p(t;)=0, we thus have (the time
argument is omitted) Ap,=0 and A(py+p)=0. In addition
to condition (2.28) for the variations of the coordinate paths,
we also have

Adp=0, (2.39)

for the variations of the momentum paths. We thus obtain
from Eq. (2.38) the necessary conditions

(2.40)

(2.41)

for the stationarity of the action integral S. Since r € V) and
since dH./dp=Mp € V,, the projector in Eq. (2.40) can be
omitted. The time derivative of p has, in contrast, compo-
nents in V) and in its orthogonal complement, V. As for the
time derivative of the velocity vector r, one derives

p.=Pp, (2.42)
and the equations of motion may be written in the form

r=M'p,

, a1 ., :
p=Py-—-—\pMp|[+Pp.

(2.43)

2.44
o ar\2 244)

To establish the equivalence to the Langrangian equa-
tions of motion, we reintroduce the velocities as dynamical
variables, writing p=M_f. Using identity (A1l), which is
proven in Appendix A, it follows that

a1 1 IM*
e ()
ar(zp P)=op\ TP

1 M
= El‘TMC<MT—6M+>Mci~

With p=dL./dr, Eq. (2.44) may be cast into the form
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diL. L,
doke _ple o
dr o Vgr T PL

and projecting the above equation onto V) yields again the
Euler-Langrange equation [Eq. (2.29)]. The equivalence of
the Hamiltonian and Langrangian equations of motion—and
consequently also of the Hamiltonian and Newtonian equa-
tions of motion—is therefore established.

lll. CONCLUSION

It has been proven that the Hamiltonian equations of
motion of a constrained dynamical system derived in Ref. 1
are equivalent to the corresponding Newtonian and Lagrang-
ian equations of motion. Splitting the acceleration vector into
a component tangential to the surface defined by the imposed
constraints and an orthogonal component, the solution of the
Newtonian equations of motion can be phrased as a Bott-
Duffin problem, which is known from linear algebra. The
equivalence of the latter with the minimization of a quadratic
form in the presence of linear constraints establishes the
equivalence with Gauss’ principle of least constraint. The
projector formalism makes transparent that the equivalence
of the Newtonian and the Lagrangian formulation of the
equations of motion is effectively due to the redundancy of
the associated velocity constraints. This redundancy allows
to introduce a constrained Lagrangian by projecting the ve-
locities explicitly on the tangential space defined by the con-
straints and yields a one-to-one correspondence between the
velocities and the momenta, which is the prerequisite to con-
struct the Hamiltonian for the constrained system. A useful
identity for the differentiation of generalized inverse matri-
ces, which is proven in the Appendix, allows to demonstrate
the equivalence of the Hamiltonian equations of motion de-
rived in Ref. 1 and the Lagrangian equations of motion. The
equivalence of the Newtonian, Lagrangian, and Hamiltonian
formulation of the dynamics of constrained systems is thus
proven.

APPENDIX A: SOME USEFUL RELATIONS
FOR GENERALIZED INVERSE MATRICES

Let A be an m X n matrix. The n X m matrix A* is called
the generalized inverse (pseudoinverse) of A if it fulfills the
following four relations, which are known as Moore-Penrose
conditions,HO

AA*A =A, (A1)
ATAAT=A", (A2)
(AAHT=AA", (A3)
(A*A)T=A*A. (A4)

If m=n and all columns of A are linearly independent, A*

may be expressed as
At =(ATA)TAT. (AS)

If, in contrast, m=<n and all rows of A are linearly indepen-
dent, we have
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At =AT(AAD). (A6)

A special class of generalized inverse matrices are the
Bott-Duffin inverses.”'' Let M be an n Xn matrix, P be an
nXn projector matrix with P2=P and P"=P, and Q its or-
thogonal complement. If det(MP+Q)#0, the Bott-Duffin
inverse exists and is given by

M) =P(MP + Q). (A7)

If we define the projected matrix M,=PMP, the Bott-Duffin
inverse can be expressed as

M) = M; (A8)

and is thus the inverse of a quadratic matrix with respect to a
subspace of R". The above relation is mentioned in different
references and a simple proof can be found in Ref. 1. We
note that M verifies the relations

MM, =MM =P, (A9)

PM; = M:P =M. (A10)

Consider now the case that the matrix M, depends on a
parameter A, M, =M_(\). With the Moore-Penrose relation
[Eq. (A2)], we thus have

d d
—M = —(MMM)
N

)N
M’ M
= ( £ )MM+ + M:(—C>M:
)N )N
o [(ME
+ MM, | —
)N

M M\ M
= P+M | — M +P .
O\ \ N O\
Multiplying this equation from the left and from the right
with the projector matrix P and using Eq. (A10) show that

M M\
P P=-M!/—* M.
N N

(A11)

The corresponding relation for nonsingular matrices is re-
trieved by setting P=1, M.=M, and M=M"".

APPENDIX B: PROOF OF RELATION (2.34)

We start from the variation 8r(z) of the admissible paths
in the variation problem [Eq. (2.24)] and consider the varia-
tion of the corresponding velocity. Using that for holonomic
constraints Ar=0, such that r=Pr, we thus have
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Since or=d/dtdr and since or=P;dr, it follows that

. d d : :
51' = _51' = _(PHEI') = PHEI' + P”5r.
dt dt

Equating the above two expressions for o shows that
(8P)i =Py or.

With P‘,!j being the components of P, it follows from the
above relation that

aP". aP".
—llﬁrki"i = —llﬁr]rk
&rk X ’

Interchanging the indices j and k on the right-hand side thus
leads to

oPl. P!
<_ll—_lk 5}’/(’:/‘:0,
dry  Or;

which may be written in the alternative form
9 il |
(0—’%(Pijr-) - P, |6r,=0.

Since or is an arbitrary vector in V), the above relation is
equivalent to

a
(;,}}Pl,-rj) —P',-'k)Pkﬁo. (B1)

Consider now identity (2.34), which may be cast into the
form

J ro.
P <_P1") —-P;(MPr=0,
ar

due to the symmetry of M,. Since Pi{---}=0 on account of
Eq. (B1), the above relation is indeed fulfilled and identity
(2.34) is proven.
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