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Anomalous diffusion is characterized by its asymptotic behavior for t → ∞. This makes it difficult
to detect and describe in particle trajectories from experiments or computer simulations, which
are necessarily of finite length. We propose a new approach using Bayesian inference applied
directly to the observed trajectories sampled at different time scales. We illustrate the perfor-
mance of this approach using random trajectories with known statistical properties and then use
it for analyzing the motion of lipid molecules in the plane of a lipid bilayer. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4965881]

Anomalous diffusion has been observed in a wide range
of physical systems and has also been the subject of theoretical
investigations.1–4 The term “anomalous” refers to a non-linear
(asymptotic) growth of the mean square displacement (MSD)
of the diffusing particles with time, and thus to a deviation
from Einstein’s classical diffusion model.5 Most anomalous
diffusion processes display subdiffusion, where the MSD
grows like 2Dαtα, with 0 < α < 1 for large t, and Dα is the
fractional diffusion constant.

A central problem in the study of anomalous diffusion
is the estimation of the parameters Dα and α from
experimental or simulated particle trajectories. Since any
observed trajectory consists of a finite set of points, it is
not even obvious that it makes sense to discuss its asymptotic
behavior for t → ∞. The most common approach is to compute
a time-averaged MSD over all position pairs with identical lag
time t, complemented by a statistical average over multiple
trajectories that are assumed to be equivalent. Since there are
fewer position pairs for large values of t than for small ones,
the statistical quality of the MSD decreases with t although
it is exactly the large-t data that are most relevant for the
asymptotic behavior. In the case of normal diffusion, this
approach works reasonably well because the characteristic
linear growth of the MSD with time is easy to spot visually
on a plot, but for anomalous diffusion, the identification of a
potential asymptotic regime is not reliable.

Another approach is to assume a concrete model for
the joined probability distribution functions of the sampled
trajectories and use inference techniques to estimate the model
parameters. There are several fundamentally different physical
and mathematical models that give rise to the same 2Dαtα form
of the MSD for long times, which raises the question of how
to choose the most appropriate one for a given dataset. Much
recent work on particle trajectory analysis for subdiffusion
has been dedicated to this question.6 Moreover, none of these
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models can be expected to be valid on all time scales. Diffusive
dynamics gives way to ballistic motion at time scales smaller
than the atomic or molecular collision times, meaning that for
sufficiently small t, the MSD always grows as t2.

In this work, we address these issues with a new data
analysis technique that is based on two core ideas: (1) a
multiscale approach in which the data are analyzed at different
sampling time steps and (2) the use of Bayesian inference
to obtain model parameters and their uncertainties directly
from observed particle positions, without the computation
of intermediate quantities such as an MSD. We will limit
ourselves to descriptions of subdiffusion in molecular systems,
but our method is not limited to this type of diffusion. In the
first step, we explore the performance of our method for ideal
trajectory ensembles generated randomly from a precisely
known model. This allows us to see how the inference process
converges as more input data are added, and to understand
how it can be used to identify the asymptotic behavior in
the presence of distinct short-time dynamics. In the second
step, we analyze the lateral diffusion of lipid molecules in a
computer simulation of a hydrated lipid bilayer.

The starting point of our approach is an observed particle
trajectory X(iδt), i = 0, . . . ,K . From this trajectory we extract
subsamples of length L at sampling time step ∆t = sδt,
s = 1,2, . . ., i.e., the points X j = X( j∆t), j = 0, . . . ,L. We
interpret these trajectories as realizations of an L-step
stochastic process that is defined by its probability distribution

P(X0, . . . ,XL |φ1, . . . , φM), (1)

where φ1, . . . , φM are the numerical parameters of the model
whose values we wish to estimate. For our intended application
to molecular diffusion, we need a model for a continuous
diffusion process that is sampled at arbitrarily chosen discrete
time values. This excludes models such as the Continuous
Time Random Walk (CTRW),7 which describes a hopping
process with random waiting times, but also mathematical
models such as the autoregressive fractionally integrated
moving average (ARFIMA) process,8,9 which assume from
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the start a discrete time series and thus cannot accommodate
different choices of sampling times. The simplest continuous
stochastic process that gives rise to anomalous diffusion is
fractional Brownian Motion (fBM). Its probability distribution
is given by8,9

P(X|α,Dα) = 1(2π)N |Σ| exp
(
−1

2
X · Σ−1 · X

)
, (2)

where X = (X0, . . . ,XL) and

Σi, j = Dα∆tα (iα + jα + |i − j |α) (3)

are the components of the covariance matrix Σ of the process.
For α = 1, fBM reduces to standard Brownian motion,
whereas 0 < α < 1 describes subdiffusion and 1 < α < 2
superdiffusion. Although the choice of the fBM model is
motivated by its capacity to describe asymptotic subdiffusion,
we use it here as an analysis tool for all time scales present in
the observed trajectories.

Bayesian inference is based on the idea of introducing
a probability distribution not only for the data but also
for the parameters of the model describing them.10 This
distribution is taken to be a description of the knowledge one
has about these parameters, in contrast to the more common
use of probabilities in statistical physics for describing natural
phenomena by random processes. Our data are equidistantly
sampled trajectories X, which are treated as “physical”
random variables, and the model parameters α and Dα,
which are treated as “informational” random variables, leading
to an interpretation of Eq. (2) as a conditional probability
distribution.

The starting point of Bayesian inference is a prior
probability distribution P0(α,Dα), which describes the prior
information one has about the parameters, before exploiting
any observations. We use a uniform distribution for α in
the interval (0,2) and a uniform distribution for Dα in the
interval (0,Dmax) with a large but finite Dmax to ensure
normalizability. Each observed L-step trajectory X( j) (for
j = 1, . . . ,N) adds information about α and Dα. The posterior
probability distribution that integrates the information from N
trajectories is derived via Bayes’ theorem and is given by

PN(α,Dα) =
N
j=1

P(X( j)|α,Dα)
dα


dDαP(X( j)|α,Dα)P0(α,Dα), (4)

assuming that the trajectories are independent realizations
of the fBM process. The factor P(X( j)|α,Dα) is called the
likelihood of the observation X( j) and is given by Eq. (2). It
describes the information about α and Dα contributed by a
single trajectory. The denominator in Eq. (4) is not important
for our application, it can be regarded as a normalization
factor for PN(α,Dα).

Bayesian inference has several advantages over the
traditional approaches for studying diffusion processes. First
of all, it yields probability distributions for the parameters
and thus information about their uncertainties, in addition to
estimates for their values. Second, it allows a comparative
evaluation of the quality of different models through the
computation of their Bayes factor,11 although we will not

discuss this aspect here. Third, it makes all the assumptions
that have an impact on the results explicit.

Although we have performed simultaneous estimation
of the parameters α and Dα, yielding the two-dimensional
posterior distribution from Eq. (4), we report only single-
parameter Bayesian inference on α in this communication.
The two parameters turn out to be only weakly correlated, with
2Dα∆tα being narrowly distributed around the straightforward
estimate,

(2Dα∆tα)est =
(X (k)

j+1 − X (k)
j )2

j,k
. (5)

In the following, we use this estimate for Dα, allowing us to
concentrate on the more difficult and more important inference
for α.

Before applying Bayesian inference to the estimation of
fBM parameters for observed particle trajectories, we must
develop an understanding of how it is affected by the quality
of the input data. To this end, we analyze synthetic trajectories
whose statistical properties are known by construction. In the
first step, we generate these trajectories as numerical samples
of the distribution given by Eq. (2), choosing 2Dα∆tα = 1 for
simplicity and α = 0.6 because that is the order of magnitude
we will find for subdiffusion in our lipid bilayer simulations.
We thus study an ideal case in which the fBM model is known
to be exact.

Fig. 1 shows how the posterior distribution narrows as
more trajectories are supplied to the inference algorithm. For
short trajectories (10 steps, upper panel), a single trajectory
provides little information, the distributions being wide and
their maxima often far away from the known value for α.
Several hundred trajectories are required before the maximum
of the distribution stabilizes near the correct value. As is to
be expected, longer trajectories (100 steps, lower panel) yield
individual parameter distributions that are narrower and closer
to the true value. As a consequence, a reliable estimate for
α can be obtained from about 200 input trajectories. We use
trajectory lengths of L = 100 everywhere in the rest of this
work.

As we explained earlier, trajectories for any real physical
system cannot be expected to be exactly described by the
fBM model, in particular for short times, when the dynamics
of the underlying microscopic processes become visible. In
order to study the impact of a different short-time behavior on
our inference approach, we analyze another set of synthetic
trajectories, generated from a modification of the fBM model
that has different short-time properties.

To construct such a model, we consider the increments of
the fBM process, defined by ∆Xi = Xi+1 − Xi. The increments
form a Gaussian stochastic process as well, which is often
called fractional Brownian noise. Its covariance matrix is
given by

Σ
(inc)
i, i = 1,

Σ
(inc)
i, i+k
= Dα∆tα [(k + 1)α − 2kα + (k − 1)α] for k , 0.

For any Gaussian process, Σi, j and Σ(inc)
i, j are related by

Σi, j =

i
k=1

j
l=1

Σ
(inc)
k,l

. (6)
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FIG. 1. Convergence of the inference
process as a function of the number of
trajectories. Upper panel: short trajec-
tories (L = 10). Lower panel: long tra-
jectories (L = 100). On the left, each
blue bar describes the likelihood P(α)
for a single input trajectory. The dot
is the location of the maximum, which
is the maximum-likelihood estimate for
α. The ends of the bar are the half-
maximum points. The red lines provide
the same information for the cumulative
posterior distribution. The green dashed
line shows the value of α used for gen-
erating the trajectories.

Contrary to the fBM process itself, the increment
process is stationary, and therefore its autocorrelation function
⟨∆Xi∆X j⟩ = Σ(inc)

i, j depends only on the time lag (i − j)∆t.
Its physical meaning is very similar to that of a velocity
autocorrelation function in atomic or molecular liquids. In
fact, if we assume the existence of a microscopic velocity v(t)
such that ∆X(t) =  ∆t

0 dτv(t + τ), then ⟨∆Xi∆X j⟩ is given by
the microscopic velocity autocorrelation function convoluted
with a triangular weight function of width 2∆t. The increment
autocorrelation function has been used by Jeon et al.12 to
characterize subdiffusion in lipid bilayers, and their analysis
shows clear deviations from fBM for short lag times.

A straightforward way to modify the short-time behavior
of a process is to add a term Σ(st)i, j to the increment covariance
matrix that is non-zero only for small |i − j |. According to
Eq. (6), it is sufficient to respect the condition


k Σ

(st)
i, i+k
= 0

to ensure that the asymptotic behavior of the process remains
unaltered. We choose a form with only two non-zero terms,
Σ
(st)
i, i+1 = −Σ

(st)
i, i+2 = 1/2(Σ(inc)

i, i+1 + Σ
(inc)
i, i+2), i.e., we replace the

points at k = 1 and k = 2 by their average. This leads to
a wider and shallower minimum, as shown in the leftmost
panel of Fig. 2, which shows the increment autocorrelation
functions for the fBM process and for our modified process.
The middle panel of Fig. 2 shows the MSD for the standard
and modified fBM processes. There is a pronounced difference
in the short-time behavior that persists over a much longer
time range than for the increment correlations. However, the
asymptotic subdiffusive behavior of the two processes is the
same.

We now use the modified process for generating synthetic
trajectories of L = 100 steps and perform parameter inference
on these trajectories using the standard fBM process from

FIG. 2. Left: the increment correla-
tion of the standard fBM process (blue)
and our short-time modification (red).
Middle: the mean-square displacements
for the standard and modified fBM
processes. Although the modification
changes the correlations of the incre-
ments only up to 2∆t , the processes
differ significantly over a much longer
time range. Right: maximum-likelihood
estimates for α obtained from 500 tra-
jectories of 100 steps generated from
the fBM model with a modified short-
time behavior, sampled with a time step
of sδt .
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FIG. 3. Convergence of the inference
process for lipid center-of-mass diffu-
sion, as a function of the number of
trajectories.

Eq. (2) as a model. The inference process converges with no
sign of a problem (see figures in the supplementary material),
but yields an estimate for α of 0.66, which is rather far from
the input value of 0.6. This shows that short-time effects
cannot simply be neglected. It also illustrates a well-known
limitation of uncertainty estimation by Bayesian inference,
which captures the uncertainty due to noise in the input data,
but not the uncertainty due to a possible mismatch between the
data and the chosen model (fBM in our case). The convergence
of the inference process to α = 0.66 thus does not permit the
conclusion that fBM with α = 0.66 is a good description of
the data. In particular, it does not mean that the asymptotic
diffusive behavior of our trajectories corresponds to α = 0.66.
In fact, we know by construction that its long-time diffusion
is described by α = 0.6.

However, we can still say that “fBM with α = 0.66” is
a well-defined characterization of the data, since Bayesian
inference yields a posterior probability distribution that is
sharply peaked around this value. We then address the question
of the asymptotic behavior by applying fBM-based inference
to our data at different time scales, sampling the trajectories
from the modified fBM process at time steps ∆t = sδt, for s
ranging from 1 to 100. For each s, we generate trajectories with
L = 100 points, such that the total amount of data received
by the inference procedure is always the same. The length of
each trajectory in physical time is sLδt. With increasing s, we
thus include less short-time information and more long-time
information. As Fig. 2 shows, this change of sampling time
yields estimates for α that converge towards the input value
of 0.6 around s = 100, i.e., for sampling times that are 50 times
longer than the short-time perturbation we added to our model.

We now apply our Bayesian inference method to computer
simulation trajectories for a hydrated lipid bilayer. The
simulation data we use have been described and analyzed
earlier.13,14 The simulated system consists of 2033 POPC (1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) molecules
and 57 952 water beads (equivalent to 231 808 water
molecules), using the coarse-grained MARTINI force field.
The simulation was performed in an NVT ensemble at
T = 320 K. Two trajectory files were generated during the
simulation run: (1) a short-time trajectory of length 300 ps,
sampled every 0.03 ps and (2) a long-time trajectory of
length 600 ns, sampled every 18 ps. Extracts of these
trajectories containing the center-or-mass trajectories of the

lipid molecules have been published15,16 and are the basis for
the present analysis.

We use only the x and y components of the center-of-mass
trajectories, discarding the z coordinate which is perpendicular
to the membrane plane. Assuming that the x and y components
for all molecules are statistically equivalent and independent,
we thus have 4066 single-coordinate input trajectories for
inference. We use subsets consisting of L = 100 steps, with
different sampling time steps ∆t = sδt.

Fig. 3 shows that the inference procedure converges
much like for the synthetic trajectories. The dependence of
the maximum-likelihood estimate for α on the sampling step
size is shown in Fig. 4. On a very short time scale, we find
α ≈ 2, i.e., we see the nearly ballistic motion typical for times
shorter than the mean time between collisions. Increasing the
sampling step size, we see a rapid decrease of α, ending in a
stable plateau with α ≈ 0.55 that extends over three decades.
In Fig. 4 we also show the values of 2Dα∆tα estimated
using Eq. (5). Its behavior for large sampling times also

FIG. 4. Maximum-likelihood estimates for α (upper panel) and 2Dα∆t
α

(lower panel) describing lipid center-of-mass diffusion in a membrane. Each
estimate was obtained using 4066 single-coordinate trajectories of 100 steps,
with varying sampling step sizes ∆t . The fBM model with α = 0.55 and
Dα = 0.66 ·10−4 nm2/psα is shown in black, whereas the short-time ballistic
motion (α = 2, Dα =

kBT
2m ) is shown in red. The intersection of these pure

power-law behaviors defines a characteristic time scale τ for the diffusion
process. For comparison, we also show the fBM parameterizations from
Ref. 14.
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indicates a stable asymptotic fBM regime for ∆t >≈ 10 ps.
For short times, we see a ballistic regime that remains a good
approximation up to ∆t <≈ 0.2 ps. The transition between
the two regimes can be used to define a time scale τ for the
diffusion process through the relation D2τ

2 = Dατ
α, yielding

a value of τ = 0.59 ps for our trajectories. Up to a factor
of 21/(2−α), this time scale is the same as the time scale
τVACF = (Dα/⟨|v|2⟩)1/(2−α) introduced earlier by Kneller et al.17

For comparison, we have added to Fig. 4 asymptotic
behavior of the three fBM model fits from Ref. 14. Their
“MSD” fit, which fits the long-time part of a computed MSD
to its fBM form, yields parameters that are very similar to
those found in this work. The other two approaches (WDFT
= Windowed Discrete Fourier Transform, MEE = Maximum
Entropy Estimation) fit the frequency spectrum of the velocity
autocorrelation function to its known functional form for the
fBM process and lead to noticeably smaller values for α.

This analysis of computer simulations of lipid dynamics
shows that Bayesian inference on multiple time scales is a
powerful method to gain insight into subdiffusion processes.
In comparison to the most common approach of fitting long-
time MSD data to the asymptotic 2Dαtα form, it has several
advantages. The application of Bayesian inference directly to
the observed particle positions makes it possible to focus on
a small and well-defined time scale range. In our application,
we chose a time scale range from [∆t . . . 100∆t], for many
different values of ∆t. The only arbitrary parameter choice
is L = 100, but different choices lead to similar conclusions
(see the supplementary material). Furthermore, monitoring the
narrowing of the posterior distribution as more trajectory data
were injected into the procedure allowed us to evaluate the
statistical quality of our dataset, which is always a problematic

aspect in MSD-based fits. We can therefore have confidence
in our observation of a stable α ≈ 0.55 for time scales ranging
from 10 to 10.000 ps. For an analysis of observed trajectories,
which are necessarily of finite length, this is as close as one
can get to identifying asymptotic long-time behavior. We note,
however, that this conclusion could only be reached because
our simulation trajectories spanned an exceptionally long time
range.

The complete source code of our analysis software
and additional figures are available as the supplementary
material to this article.
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